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ON A THEOREM OF INGHAM
ON NONHARMONIC FOURIER SERIES

ROBERT M. YOUNG

ABSTRACT. A well-known result due to Ingham [3] shows that the system

of complex exponentials {elXnt} is a basic sequence in L2(—7r,7r) whenever

An+i — An > "y > 1. In this note, we show that the system need not be basic

if A„+i — An > 1.

1. Introduction. Let {A„} be an increasing sequence of real numbers. A well-

known result due to Ingham [3] states that if A„+i — Xn > 7 > 1 then the series

J2cne%Xrit converges in L2(—tt,tt) whenever J2 \cn\2 < 00 and, moreover,

(1) A^\cn\2 ^W^cne^f < B^Kl2 ■

Here, A and B are positive constants depending only on 7. (That the right-hand

inequality is valid whenever 7 > 0 appears to have been first proved by Titchmarsh

[10].)
Ingham showed that his result is the best possible in the sense that if 7 = 1

then the left-hand inequality cannot obtain. A counterexample is provided by the

sequence {An} where

(2) A,
1/4,    n > 0,

1/4,    n < 0.

It follows readily from (1) that the system of exponentials {elXnt} is a basic

sequence in L2(—tt, tt), that is, a basis for its closed linear span S. Accordingly,

each function f in S has a unique representation

f(i) = y^c„e*Ant    (in the mean).

The study of such nonharmonic Fourier series was initiated by Paley and Wiener

[5] who showed that the system {elXr,t} is a basis for L2(—tt,tt) whenever the An

are sufficiently close to the integers. Since then the theory has been generalized

in many ways and in many different directions (see, e.g., [2, 6, 8, 11] and the

references therein).

Condition (1), while tractable, is a stringent requirement to place on a basic

sequence. Nevertheless, we show in Theorem 1 that the right-hand inequality must

obtain for every basic sequence of exponentials. At present, there is no known

example of such a sequence for which the left-hand inequality does not also obtain.

Theorem 2 further dramatizes the strength of Ingham's result by showing that the

slightly weaker separation condition A„+i — A„ > 1 cannot even guarantee that the

system {elXnt} is a basic sequence in L2(—tt, tt).
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THEOREM 1. //{A„} is an increasing sequence of real numbers for which the

system of exponentials {elXnt} is a basic sequence in L2(—tt,tt), then the inequality

|| ^c„elAnt||2 < ß^3|c„|2 is valid for some constant B and all square summable

sequences of scalar s {c„}.

THEOREM 2. There exists a sequence {p,n} of real numbers satisfying ptn+\ —

/in > 1 such that {etßnt} is exact in L2(—tt,tt) and yet not a basis.

Recall that {elfint} is said to be exact if it is complete but fails to be complete

upon the removal of a single term.

2. Proof of Theorem 1. We need only show that the An are separated, i.e.,

that An+i — An > 7 for some positive constant 7; the result will then follow from

[10].
Let S be the closure in L2(—tt, tt) of the linear span of the system {etXnt}, and

let {fn}, fn G S*, be the associated sequence of coefficient functionals. Then

||eîA„t|| iiy^n < m £or some constant M and all values of n (see, e.g., [9, p. 20]).

Since each A„ is real, ||e*Ant|| = 1 and hence ||/„|| < M. Now fn(elXrit-elXn+lt) = 1

so that ||/n|| He**"' - etA"+lt|| > 1. Accordingly, ||elA"' - eîA"+lt|| > Í/M and the

existence of 7 follows.

3. Proof of Theorem 2. The system {eîXnt} where the Xn are given by (1),

is known to be exact in L2(—tt,tt) [4, p. 67]. We begin by showing that it is not a

basis. Suppose it were. Then we could write

(3) l = ^cnelXnt    (in the mean).

To compute the cn, we shall make use of the Paley-Wiener space P consisting of

all entire functions of exponential type at most tt that are square integrable on the

real axis. The inner product of two functions F and G in P is, by definition,

/oo _F(x)G(x)dx.
-OO

By virtue of the Paley-Wiener theorem, the complex Fourier transform

is an isometric isomorphism from L2(—tt,tt) onto all of P. The exponentials elXnt

are sent to the "reproducing" functions

sin7r(g-A„)

tt(z- Xn)

which then consistute a basis for P. Let {gn} be biorthogonal to {Kn}. When the

Fourier transform is applied to (3), we obtain

sin7T2      ^
- = >cnÄ„(z)

TTZ t—'

where c„ = ((sin7rz)/7rz,(7n) = gn(0)

Let
,2/ 2 \

Fi'}-R(l-k)
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It was shown by Levinson [4, p. 67] that

F(z) = cT   Los-l'2l-t\etztdt.

Since cos-1/2 \t is integrable over (—tt,tt), it follows that F(z) is bounded along

the real axis and each of the functions

Fn(z) = F(z)/F'(Xn)(z-Xn)

therefore belongs to P. Since (Fn,Km) = Fn(Xm) — 6mn, it follows that Fn = gn.

Thus

cn = Fn(0) = -l/XnF'(Xn),

and (3) becomes

y.     e'^t "    cosAwt

[> 2^xnF'(Xn)-       ¿A„F'(A„)

since zF'(z) is even. It is to be shown that the series on the right does not converge

in L2(-7T,7r).

Now the values of F'(Xn) were determined explicitly in [7]:

*<»J-<-«■>* (!)r$?n    <"=u,3,....).

Using the asymptotic formula T(n)/r(n 4-1) = 1/v^ + 0(l/n3/2) [1], we have

F'(Xn) = A(-l)n{l/s/Xn~ + en}    where £n = 0(l/n3/2).

A straightforward calculation then shows that the difference between the series on

the right in (4) and

1   ~   (-l)"cosA„£

n=l v    "

is uniformly convergent on [—7r, rr]. Accordingly, we need only show that this series

diverges in L2(—tt,tt).

Let x = rr - t (0 < t < tt). Then

(-l)ncosAni _ ^2, (-l)n cos(Trn-tt/4 - Xnx)

cos(7r/4 + Anx)

n=l VA" n=l VÄn

n=l

-E

For N = 1,2,3,..., let ¿at = 7r/16JV. If x G [0,6N], then ?r/4 + Anx G [tt/4, 3tt/8]
whenever 1 < n < 2N and hence cos(7r/4 + Xnx) > A > 0. Thus

2AT ,     , .        ,       » 2N

V     vä;        ^^^174-  ^2^-1/4~
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where B is a positive constant independent of N. Accordingly,

2JV

E
N

(-l)ncosA„i
>

2N

E
cos(7r/4 + A„x)

' XnN

> ±B2N6N = ~
- 2tt 32

Li(0,6N)

for all iV. Thus the series in (3) does not converge in L2(—tt,tt), and the system

{elXnt} fails to be a basis.

Let {ei, 62, ■ ■ •} be a decreasing sequence of positive numbers such that £i < j

and ^2 £n < oo. It is to be shown that if iin = Xn — en, pt-n = — p,n (n — 1,2,...),

then the system {elfint} satisfies the conclusions of the theorem.

Clearly, p,n+i — /zn > L Since ^Z 1^« — ßn\ < oo and {etAnt} is exact, so is

{eI/2nt} [6]. It remains only to show that {elßnt} is not a basis for L2(—tt,tt).

Suppose it were. Then the system {hn(t)}, biorthogonal to {eVni}, would satisfy

||eIMr,i|| • \\hn\\ < M for some constant M and all values of n. Since each //„ is real,

||eií¿„t|| _ i an(j jjence ||/jn|| < m. We complete the proof by showing that

(5) ]T)|An - pn\ < oo=> J2\ „¿A„( 0ÎMnt|
< 00.

The convergence of J2 \\elXnt - e*Mnt|| \\hn\\ will then imply that {eîAni} is a basis

for L2(—it, tt) (see, e.g., [9, p. 94]). The contradiction will prove the theorem.

To establish (5), write

JXnt olUnt „iKti -!£„(!

Expanding 1 — ellt in an everywhere-convergent Taylor series, we find

i\nt _ev«t| < j2~eït*

K=\
K\

and hence

Ei „i\nt

K=l        '    \   n / K    ■

— exp(7r 2_\ £n) — 1 < OO.

K = l

This completes the proof.
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