
ON A THEOREM OF MARCINKIEWICZ AND ZYGMUND

BY

A. P. CALDERÓN (')

The purpose of the present paper is to prove the following result:

Let F(P), P= (xi, x2, • ■ • , x„), be a function harmonic for xn >0 and such

that for every point Q of a set £ of positive measure on the hyperplane x„ = 0

there exists a region contained in x„>0 limited by a cone with vertex at Q

and a hyperplane x„ = const, where the function is bounded. Then except for

a set of measure Zero, the integral

(1) f—¿graded«,
J   xn

extended over any region limited by a cone with vertex at Q(E.E, a hyper-

plane x„ = const., and contained in x„>0, is finite.

The case w = 2 of the theorem was established by Marcinkiewicz and Zyg-

mund [l](2) using methods of conformai mapping; here we give a proof of

it which does not depend on analytic functions and which can be extended

without change to functions of any number of variables. It is interesting to

remark that the integral (6) below, which appears in the argument in a natu-

ral way, was introduced by Marcinkiewicz for functions of a single variable

and used by him to prove difficult results of the theory of Fourier series. The

same integral for functions of several variables was also considered by Zyg-

mund in an unpublished paper.

In the case of two variables the converse of the statement above holds,

as shown by Spencer [2]. Its validity in the general case remains an open

problem.

For the sake of simplicity we shall confine our attention to functions of

three variables F(x, y, z) harmonic for z>0, the argument applying without

change to the general case.

First we may remark that it suffices to show that whenever the function

satisfies the boundedness condition for a set £ of positive measure, there exists

a subset £' of £, also of positive measure, for which the integral (1) is finite.

In fact, the theorem follows by an obvious argument.

Another less obvious remark is the following:

Let us denote by Y(Q, a.) the intersection of the cone parallel to

*2+y2<a2z2 with vertex at Q and the layer 0<z<l. Then we may assume
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that for every point Q of E, F(P) is bounded not only in some conical region

with vertex at öi but is uniformly bounded in all Y(Q, a), QE.E, for every fixed

a. Under the assumptions of our theorem this is indeed always true for some

subset of positive measure of E.

To show this, consider a sequence of cones r(n) such that every given cone

contains at least one parallel to some r(n); such a sequence clearly exists.

Let now £™ be the set of points Q of z = 0, such that | P(P)| <m for 0<z<l

when P belongs to a cone parallel to r(n) with vertex at Q. Since F is continu-

ous in z > 0 the sets E™ are measurable and every point of £ belongs to some

£™, that is, £CU£™. Let now Q be a point of density of E„; consider Y(Q, a)

and a point P of it; draw with vertex at P a cone parallel to rCn) directed

towards the plane z = 0 and intersecting it in the ellipse 2; as P tends to Q

remaining inside r(ö> a) the average density of E™ in 2 tends to 1, and so

when the coordinate z of P is small enough 2 contains a point Q' of £™. But

this implies that P is contained in the cone parallel to r(n) with vertex at 0'7

and hence that | F(P) \ <m. So, for z small enough, we have | P(P)| <m in

T(Ö7 a); and since Pis continuous in z>0, it is bounded in r(ö> «)■

Now, since ECUE^, almost every point of £ is a density point of some

£™, and so F(P) is bounded in Y(Q, a) for almost all QÇlE and every a.

Finally let £nm be the set of points Q such that | F(P) \ <m in Y(Q,n); clearly

for every fixed « we have £nmC£n,m+i and, except for a set of measure zero,

£Climm-.«£nm; hence for that » we may find an m =</>(») such that

| £- £«,♦(») | S-^jl E\,

and putting £' = ClfEn.*^)

|£'|è|£|-E|£- £«.♦<„> I £ — | E\.
i 2

Now at every point Q of £' we have | F(P) \ <<p(n) in Y(Q, n) ; that is, for every

», F is uniformly bounded in all Y(Q, »), Q^E', as we wanted to show.

Hence from now on we are allowed to assume that F(P) is uniformly

bounded in all Y(Q, a), ÖG£, for every fixed a.

In order to avoid later consideration of more sets, we shall assume in

addition that £ is closed and contained in x2+y2^l. This clearly does not

affect the validity of the argument.

We now pass to the proof of the theorem. Let7(P, Ö) be the characteris-

tic function of the set of points P T(ö, oc). We have

(2) f        — grad2 Fdv =  f — y(P, Q) grad2 Fdv
J l\Q,a)    Z J       Z

where the integral without subscript is extended over the whole space. In-
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tegrating this equality with respect to Q over a set E' of z = 0 we get

I    da \        — grad2 Fdv =  | — grad2E f   t(P,ö)oV.
J E' Jr{Q,a)   Z J      Z J E'

Let us denote by A(£', a) the union of all regions Y(Q, a), Q(EE'. If P is not

contained in A(£', a), no T(Ö7 «)> QE.E', contains P and so 7(P, Ö) =0 f°r

QE.E', and

/J E

y(P, Q)da = 0

for that P. On the other hand, 7(P, Q) vanishes if the distance of Q from the

projection P' of P on z = 0 exceeds ctz, z being the coordinate of P. Hence the

integral of 7(P, Q) over £' never exceeds the area of the circle with center at

P' and radius az; that is,

f   y(P, Q)da £ 7ra2s2.
J E'

Then substituting above we get

/da I — grad2 Fdv ¿¡ ira2 I z grad2 Fdv.
E' J r<.Q,a)   Z J ¿\(E',a)

This shows that the finiteness of the integral at the right over A(£', a) im-

plies the finiteness of (2) for almost all QG£'. Thus, our problem reduces to

show that for ever}' a there exists a set £' such that the right-hand side above

is finite.

In order to achieve this goal, for every a>0 we shall construct a function

G(P) with the following properties:

(a) G(P) is harmonic for z>0.

(b) G(P) ^z in A(E', a), where E' is a subset of positive measure of E,

which depends on a.

(c) Let D denote the set of points P situated in the cylinder

x2+y2;S(l+a:)2 and in the layer 0<z<l, such that G(P) ^0. Then D is con-

tained in A(£, j3) for some ß>a.

Since G(P)2:z in A(£', a), and A(£', a) is contained in the cylinder

*2+y2^(l+a;)2, we have A(£', a)C£>CA(E, ß) and

f G(P) grad2 Fdv ^   f z grad2 Fdv.
J D J MB'.a)

Now, owing to the properties of G(P) it will not be difficult to show that the

left-hand side is finite.

Let us denote by B the boundary of D, by Bx the part of it at which
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G(P) =0, and by P2 the remainder of B. Assuming for a while that the bound-

ary of D is sufficiently regular and applying Green's formula, we have

r /    dF2 dG\ r
(G-F2-)da= 2      G grad2Fdv.

J b\     dn an/ J n

Now G(P) vanishes on Bi and GSiO in D, hence dG/dn ¿0 on Bi. On the

other hand

c  dG        r  de        r  dG r
I     -da =   I     -iiir+        -da =   \   VGdv = 0.

J s   an J Bi dn J b, dn J d

But the points of P2 are situated either on the cylinder x2+y2 = (1+a)2 or

on the plane z=l, and always in A(£,j3). Since £ is contained in the circle

x2+y2 = l, it is easily seen from the definition of A that the intersection of

A(£,¡3) with x2+y2=(14-a)2 is at a positive distance from z = 0. Hence B2

is also at a positive distance from z = 0 and so dG/dn is continuous and

bounded there, and the integral over P2 is finite. Now, we had dG/dn g 0 on Pi ;

on the other hand PiCPCA(E,|3), and because F is uniformly bounded in

all r(Ö7j3) for QGE, it is bounded in A(E,ß), and therefore also in Pi. Then

J Bi

dG
F2-da > -

dn

Substituting above and recalling that G = 0 on Pi we get

r /  dF2        âG\        r     dG r
I    lG-F2-)da -  I   F2-da = 2 \G grad2Fdv.

J b2\     dn dn / J Bi      dn J

Again, since B2 is at a positive distance from z = 0, all functions appearing

in the integral over P2 are continuous and bounded, and so the left-hand side

is finite, and this would establish our theorem. In order to avoid troubles

with the boundary of D, we can apply Green's formula to the functions

G(P)—e and P2 over the domain Dt of points contained in 0<z<l and

x2+y2^(l-f-a)2 where G(P)—e^0. As we shall see from the construction of

G, Dc is entirely contained in z>0 and its boundary is quite regular. Then,

arguing in the same way as above, we would obtain

(3) f   (G - e) grad2 Fdv g K,
J De

K being a constant independent of e. Let us repeat the argument briefly.

Denoting by Pe the boundary of Dt, by Bu the part of Be at which G(P) —• € = 0

and by B2t the remainder, and applying Green's formula to G — e, we have

r     d(G - e) r     d(G - e) r
j      —- da +  I       —-—- da =1     V(G - ()dv = 0.

J bu        dn J BU        dn J Dt
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Again, the integral over B2c is finite and bounded as e—>0, as is easily seen by

the same reasons as given above. Also ô(G —e)/3wá0 on B2t and F is uni-

formly bounded in all Pie; therefore

d(G - e)
F2 —- da> - k

dnJ Blt

for some fixed k>0 independent of e. Applying Green's formula again we get

r r        dp2       d(G - e)-i r
\(G - e)-F2 —-Ida = 2        (G - e) grad2Pi».

J Bt L 5» 3» J Jd,

But since G —e = 0 on Pie, the right-hand side reduces to

c r        3E2        a(c - e)-i        r     3(g - «)
(G-e)-7?2—- Ida-   I     E2 —- da.

J B2e L o» 3»      J Js1( 3»

The second integral remains bounded as we have shown; the first is also

bounded, as before; hence we get (3).

Making é tend to zero in (3) we obtain finally

f G grad2 Fdv á A,
J D

as we wanted to show.

It remains only to construct the function G(P) and to prove that it ful-

fills the required properties.

Let us denote by 5(0) the distance of the point Q of z = 0 from the set £.

We define

(4) G(P) = kz-f-
z8(Q)      A

da,

-öl
the integral being extended over the circlex2+y2á(3 + 2a)2, \P — Q\ denoting

the distance from P to Ö7 and k being a positive constant depending on a

which we shall fix later.

First, we shall show that

/l7=
KQ)     ;

- da

is bounded in some A(£', a), £' being a positive subset of £, in such a way

that choosing k large enough, we shall have CSiz in A(£', a).

In order to prove this consider the integral

r    <
(°) i—

J  \Q'

8(0)       j
—¡— da
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extended over x2-f-y2^(3 + 2a)2, Q' being a point of z = 0. Since 5(0) vanishes

in £, denoting by E the set complementary to £ in x2+y2 g (3 + 2a)2, we have

W)    ,     r    «(o)    ,
da.r, «y ,*,f

JO'- O 3 JiÖ'-Öl3        Ji|ö'-Ö 3

Integrating with respect to 0' over £ and inverting the order of integration,

we obtain

8(0)        , f.¿_    i d°'
{ da'  f   ,-—rda=   f o(Q)da f

Je      Jé ¡O' -OÍ3 Jé Jiö'-öl3       Ja Je |ö'-öl3

But since £ is closed, for every Q not contained in £, 5(0) is positive, and the

inner integral at the right does not exceed

;.

2<2+«>   2-irrdr

*<Q) r* 8(0)       (2 +a)

Substituting this expression above it follows immediately that the left-hand

member is finite and that, hence, (6) is finite for almost every Q' of £.

Next, let 0' be a point of £, and P a point of r(Ö\ «)• Then

f     8(ö)      ■        r     s(ö)      | Ö'-Öl*
I i-r-da =   I  -.-{-'-.-¡—da,

J I P - öl3        J \Q' - öl3 I p - öl3

but since Q belongs to z = 0 and P is contained in r(ö', et), elementary

computations show that

I ö'-öl3
'    ^ (1 + a2)3'2

\P-Q\

whence, replacing in the foregoing expression, we obtain

c    8(ö) r    8(ö)
-.-^—r-da <    1 + a2)3'2      -.-rda.

J I P-öl3 J lö' -öl3

Now, the right-hand side is finite for almost every Q' of £ and hence it is

bounded for Q' belonging to a suitable subset £' of positive measure of £;

that is, the integral(5) is bounded for P belonging to A(£', a), as we wanted

to show. But

therefore, choosing k large enough, property (b) follows.

Finally, to verify (c), take any ß>a and consider A(£, /3). If P is a point

of the cylinder x2+y2^ (1+a)2 not contained in A(£, ß), and P' is its projec-

tion on z = 0, the distance from P' to £ is not less than ßz, z being the coordi-
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nate of P. Hence, introducing polar coordinates in (4), we have

■ z(ßz — r)r

(al + r2)3/2

JzS(Q)                               Cßz Aßz - r)r
-.--=—r- da < kz - 2w I    —-—- dr

P-Ö3       ~                  Jo   '

and

G(P) ^ kz - 2xz r
J o

»   (ß - s)sds

(1 + s2)3'2

and if ß is taken sufficiently large, the desired result follows.

It remains to verify the properties of Dt required to allow the application

of Green's formula.

First of all, it is easily seen from (4) that G(P) has a nonpositive upper

limit when P tends to a point of z = 0. Hence every point P at which G(P)

^e>0 is contained in z>0, and the closed domain Dt is also contained in

z>0. On the other hand

c|,,-'[*-Íi7|f4Gl
the integral inside is easily seen to be a nonincreasing function of z, and since

G(P) >0 on G(P) = e, we have

-/■

5(0)
da> 0

-öl
and therefore dG/dz>0 there. Hence the surface G(P) — e = 0 has everywhere

a tangent plane which varies continuously along it. Now the boundary of

Dt consists of three parts: one, a portion of the surface where G(P) —6 = 0, a

second part contained in z = l, and perhaps a third part contained in x2+y2

= (l+a)2. This shows that the application of Green's formula is correct.
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