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1. Introduction.

Let k be a positive integer. Let ƒÔ be a non-principal primitive real character 

to modulus k, and let L (s, ƒÔ) denote the corresponding L-series. We denote by 

h=h (•}k) the class number of the quadratic field with the fundamental dis

criminant•}k. Then (see [2], p, 203) (numbers in square brackets refer to the 

references at the end of the paper), using Kronecker's symbol (•}k/n)

,

(1) h (k)=•ãk/2logƒÅ•‡‡”n=1 (k/n)1/n, h(-k) w•ãk/2ƒÎ •‡‡”n=1 (-k/n) 1/n,

where ƒÅ=a•{b•ãk/2(>1) is the fundamental unit and w=6, =4 and =2 

for k=3, =4 and >4 respectively. Since ƒÅ-ƒÅ-1=a or b•ãk•†1 and ƒÅ+ƒÅ-1=•ã

(ƒÅ-ƒÅ-1)2+4•†•ã5, we obtain

ƒÅ•† 1+•ã5/

2.

It is well known (see the proof of Lemma 4) that

(2) ƒÔ (n)=(ƒÔ(-1)k/n).

Hence, by (1),

(3) L (1, ƒÔ)•†2log 1+•ã5/2 1/•ãk,

where the equality holds if and only if ƒÔ (n)=(5/n). The result is almost the 

same as the one obtained by Page [7].

Still deeper result of Siegel (see [10] and [1]) is stated as follows:

L (1, ƒÔ)>c (ƒÃ)/kƒÃ
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for any positive , where c () is a positive constant depending only on , But this 

constant cannot be given explicitly. In this paper, making considerable use of 

Estermann's method (see [1]), with a little additional argument, we shall replace 

his result by the following

Theorem 1. For any positive ,

with one possible exception.

The constant 1 of this theorem is not the best which can be obtained by our 

methods. In fact, our calculations are mainly devoted to prove the following one, 

which gives better result than the above theorem for the subsequent class number 

problem.

Theorem  Let 1>>0 and kMax (e, e112). Then

L (1, )>0.655 /

with one possible exception.

For the imaginary quadratic field with the fundaental discriminant- 

where kMax (e1, e112), we obtain, from Theorem 2 and (1)

>0.655k/2-

except at most one field. On taking  such that

(4) 12log12log eh, 

for a given positive h01, we have

)h0 .655

with one possible exception, if ke. Our theorem is therefore effective for the 

problem investigated by Heilbronn and Linfoot [3] for h1 and recently by 
Iseki [5] for the general case. Thus we conclude the following
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Theorem 3. Let h be the class number of imaginary quadratic field with 

the fundamental discriminant-k. If we take

k•†2100h20 log2 (13h0)

for a given positive h0•†1, then h>h0 with one possible exception.

Proof. For h0<2, the result is true by the argument of [3] . So we assume 
h0>2. Now we put

A=log (ƒÎeh0/0.655)2, A0=log (ƒÎe2/0.655)2

and

1/ƒÃ
=A+2log A+1.12 .

It follows that

1/ƒÃ-2l
og 1/ƒÃ= A+2log A+1.12-2log (A+2log A+1 .12)

=A+1 .12-2log A+2logA+1.12/
A

•† A+1.12-2log A0+2logA0+1.12/A0>A

and

1/ƒÃ
=A+2log A+1.12•†A0+2logA0+1 .12>11.2.

Hence, by (4), the result is true if

k•†exp (A+2log A+1.12).

But the right hand side is equal to the left side of the following inequalities

e1.12 (ƒÎe/0.655)2 h20 4 log2 (ƒÎeh0/0.655)<2085 h20 log2 (13.05h0)<2100 h20log2  (13h0).

We have still to prove Theorem 1 and Theorem 2. This is done in the last 

paragraph. Throughout the paper, I have used the mathematical tables of ex

ponential functions [9] for calculations. Finally, I should like to express my 

warmest thanks to Prof. Suetuna and Mr. Iseki for their valuable advices.

2. General lemmas.

Here and in the following we denote by ƒÐ the real part of the complex variable

s.

Lemma 1. Let 0<ƒÁ<s0. On the circle |s-s0|= ƒÁ,
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2

This can be easily verified by the geometrical consideration, whose device is 

due to Mr. Iseki.

In what follows, K1 and  denote the circles

15

8

and

25

respectively, where 1<s<113

Using the above lemma, we have

(5) <2.88 on K1,

6 <3.61 o 2

Lemma 2 For >,

(s)s+1(u[u])du.
This is obtained by the well known formula ([4], p. 26, (3))

1-d

Hence we have

s)
s1+2

for >, s1. Accordingly, by (5), (6) and the geometrical consideration,

(7) (s)<1+288<229 on K1

(8)

 

|ζ (s) (s-1)
12212361326 on K

2

Fo the non-principal character , we write

m=1  

Lemma 3. Let  be the non-principal primitive real character to oduls 

k Then
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M ()1(log k+2loglog k+2log 2+6+

This is obtained by Polya-Landau's method. For any positive integer n, we 

have, by [6],

()+(gn+2)+2klog 
n+1

On taking n=[2k log ], the result follows at once.

Since

1.1>2log +2log 2+6+ex/2

for x112, we have

(9) M ()<k log k<k8

for e2

Lemma 4 Let  and 2 be the non-principal primitive real characters to 

oduli k and k2 respectively, and 2 Then

M (2)1kk2 log (kk2)+2log log (kk2)+2log 2+6+
kk2

In [11], Suetuna has remarked that the modulus of the non-principal primi

tive real character  is either of P, 4P, or 8P where P is the product of odd 

distinct primes. Hence we can easily deduce that

(1)  (n)

nfor k P
,

 (n) for k4P,

 (n) n or 3 (n) n for k=P,

where

1 (n)
(1)for 2 n,

 for 2  n,

(18 for 2 n,
  for 2  n,

and

3 (n)  (n)2 (n)

whose conductors are 4,  and respectively. Hence we can easily verify that the
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quotient k12 is the perfect square where k is the conductor of Consequent

ly, by Landau's argument (see [6]),

M ()(0)
k

where  is the primitive character corresponding to 2. Then the result follows 

immediately by Lemma 3. Finally, we note that (2) follows from (10) by the 

law of reciprocity. (see also [11])

Since

0.61> 2logx+2log 2+6+e

for x22.4, we have

(11) M (12)<1.61kk2 log (kk2)<(k2)0.58

for, k2e.

Lemma 5 Let  be the real non-principal character to modulus k. Then

L (ss

for >0.
Noting that

L (s, )(n)n=(d)nd(n(n1))

and

s(1)s-s-dusu-1du=s((1))

for >0, we obtain

L(s,)(+)d(n(n+1))

s11sM1-

sm
n1+M

for any positive integer . The result follows by taking M () It should 

be noticed that n is steadily decreasing with .

As an immediate consequence of Lemma 5, we have

(12)  L (sM ()1-
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for 0<<1. Further we have

(13) L (1,)n<log M ()+C+2M (

here is Euler's constant. (see [8], p. 197).

t follows from (5), (6), (9), (12) and (13) that

(14) ,)< 3.3 k541 on K,

(15) L (s,< 3.8 k5 on K2,

(16) L (1,)<0.67 log k,
f is the character of Lemma and ke.

It follows from (5), (6), (11), (12) and (13) that

(17) L (s, 2)3.3 (k2)5 on K,

(18) L (s, )<3.8 (kk2)55 on K2,

(19) L (1, 2)<0.606 log (k2,
if 2 is the character of Lemma 4 and 1, ke11.2.

Lemma 6. Is s regular H s0 (s)< eM n the circle

ss, and has no zeros n the right half of this circle, then

s+1212log 

where runs over the zeros of (s n ss0<.

Let  be any zero of H (s) in the circle ss<. Since

(20)

on the circle s=, we can deduce that

(21)
  s

is regular and f (s)0 in the circle ss<, and

s)H s-H (s)e

on the circle. This inequality of course holds inside the circle. Hence, by 

Caratheodory's theorem ([4], p. 50, Theorem E)

This shows that
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(22) -(s)+12M

by (21). Hence, noting that
-

s-)1>0,

we obtain

+1

by (22), where n is the number of .

We write

sH(s) 2-(s-s) (-s)(
s)

n the circle ss, g (s)H (s)<(s)eM by (20).

Since this inequality holds in the circle -sand

=H (s0) ,we obtain

<M.

This, combined with the inequality (), gives

<M log ()1
from which the result follows by (23).

3. Fundamental Lemmas

We assume henceforth that ,  and 2 are the primitive real characters with 

moduli k, k and k2 respectively and further k, k and k2e. We define

F (s)=(s) L (s, ), G (s)=(s) L (s, ) L (s, 2) L (s, 2).

If we write

F (s)s)

for >1, and

F (s)=(2s)m, G (s) b (2s)

for s-2<1, then we have the relation
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lognbog mn

It is well known (see [1]) that

a, b {
0 always,

 1 if n is a perfect square.

Therefore

(24) 2s), b(2-)(2s)

Now we denote by E (n, s) the right hand side of (24).

Lemma 7. If 1<s<1, then

12s)-1(2e (2s) og

for any positive integer .
Noting that

ne

for positive , and inverting the order of the summations, we obtain

2 m)

>1xp (2(2s)log m) (11 (2e (2s)log mn

mm1(2e(2s) log ln

The result follows at once.

Lemma 8. Let 0<1 and let L (1, ) 0.376ƒÃ/kƒÃ. Then L (s,

has at least one real zero in the interval

1-<s<1.

Proof. n the circle K

(s)<756k

by (7) and (14),

L (1, )<0 .77log k<0.04k
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by (16). Hence, in the circle s215
8

(25) F (s)-L (1,)<76k

By Taylor's theorem

(26 F (s)1,(a-L (1,))(2s

for s-21 But since the left hand side is regular, 26 must hold for 

s-22, s1 Hence, by Cauchy's inequality

It follows from (24), 26), (27) and Lemma 7 that

F (s)L (1,(2-smL (1) (2)1
1-s

7.6k2s12s

for any positive integer n, i 7<s1. On taking

=[2log k],

and noting that

2log kn>2log k-1, n22,

we obtain

(2s)(2s) (2log)=log (2)<2 (1-)
Further, on taking =35 n Lemma 7,

E (n, s,1)(22,)>210.6452elog35

serting these results in (28), we get

F (s)>1.612-19k2 s)715
1-s
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for 7<s<1, whence

provided that 0<<1

2

If L(1,)0.376 then

1>1.612-19k75-1.504>0.1019e4651>0

 by (29). The result is obvious, since

Lemma 9. Let 0<<1, k and let L (1 ,)0.655

Then L (s,) has at least one real zero in the interva

Proof. We use also (29) in the previous lemma. If

then

(30) F1>1.612-19k-715-2.62k

Noting that as a function of

s convex for x>0, we obtain

19k-.715+2.62k-2 Max (19k25715+2.62k-019e5715+2 .62e5)

19e5k-715+2.62e-5

since ke1 and 0<<
2

It foows therefore from (30) that

F 1>1.612-19e.5k7152.62e

>1.612-19e75-262e5>0.

ence we get the required result by the same argument as in the previous lemma
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Lemma 10. For 7s<1,

G (s)>637L (1, 1) L (1, 2) L (1, 2) 2
1s

Proof. On the circle K

G (s)<2.29 (3.3k) (3.3k51) (3.3 (kk2)508)

<2.(kk2) 09

by (7), (14) and (17). If we write

L=L (,) L (1, 2) L (1, 12),
then

<(.67log ) (.67log k2) (0.606log (k1k2))

<0.2 (kk2)9.

By the same argument as in Lemma 8, we have

31) G (s)> E (n s)L (2s)1
s5

for any positive integer n and 7<s<1. On taking

n[3log (kk2)],

and noting that

3log (kk2)n>3log (kk2)-1, n67,

we obtain

3lg 12-15kk
2)(/3)<5(kk2)153

(2s)(2)log (k)gs<(kk2)31.

Further, on taking l=[e] in Lemma 7,

E (n, s)>E (n, 1)E (67, 1)
210 .64567>1

.6448.

Inserting these results in (31), we get

G (s)>1.6448347 (kk2) 4Lkk2)

>1.6371
-s

This is the desired result.
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Lemma 11 G (s) has at most two real zeros n the interval

11
8log (k1k2)

Proof. Let

5log (kk2)

and let H (s)(s-1) G (s). On the circle K2

(s)<3.26 (3.8)(3)(3.()57)
<180 (k2)15<(kk2)13

by (), (15) and (18). Noting that

1<()<s
s1

e have

<(kk2)34

.

Hence, in the circle sss12
5

(s)<(k 12)217.

It follows therefore from Lemma 6 that

(32) +1<4.34 1+2 24log 24log (kk2)

where runs over the zero in the circle On taking

(33) 1+11
log (kk2)

and noting that

we get from (32)

1<5+4
.21+4.21log (kk2)

(34) <922log (k12),
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since

ƒÁ0 <(1/5+1/8) 1/22.4<3/
200.

If H (s) has at least three real zeros in the interval

1-1/8log (k1k2)<s<1

then we have

3/ƒÁ0<9
.22log (k1k2)

by (34). But this is a contradiction by (33). Hence we get the desired result.

4. Proof of the main theorem

In the first place we shall prove Theorem 1. Noting that kƒÃ/ƒÃ is a convex 

function of positive ƒÃ and attains its minimum value elog k at ƒÃ=1/log k, and 

using (3), we obtain

L (1, ƒÔ)>0.96/•ãk•†0.96/•ãk elog kƒÃ/kƒÃ>0.96e11.2/
e5.6 ƒÃ/kƒÃ>ƒÃ/ 10kƒÃ,

for 0<ƒÃ and k<e11.2. Further, following the above remark, we see that the 

proof for 1/2•…ƒÃ and e11.2•…k is not necessary. Finally, we must prove the 

theorem for 0<ƒÃ<1/2 and e11.2•…k. In this case, the proof is similar to the 

one for Theorem 2, for which we shall work out all details in the sequel. We 

only erplace Lemma 9 by Lemma 8. So we shall not dwell longer upon it.

Now we proceed to prove Theorem 2. Suppose that

(35) L (1, ƒÔ1)•…0.655ƒÃ/kƒÃ1, L (1, ƒÔ2)•…0.655ƒÃ/kƒÃ
2,

for ƒÔ1•‚ƒÔ2, 0<ƒÃ<1/2 and k1, k2•†Max (e1/ƒÃ, e11.2). Then, by Lemma 9, 

L (s, ƒÔ1) and L (s, ƒÔ2) have real zeros in the interval

1-ƒÃ/4 <s<1,

whence G (s) must have at least two real zeros in this interval . For brevity we 
write
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s1=1-1/8log (k1k2), s2=1-
ƒÃ/4.

Noting that (k1k2)ƒÃ/ƒÃ2•†e2/4log 2(k1k2), and using (19) and (35), we obtain

L (1, ƒÔ1) L (1, ƒÔ2) L (1, ƒÔ1ƒÔ2) (k1k2)3(1-s1)/
1-s1

<(0.655)2ƒÃ2/(k1k2)ƒÃ 0.606log (k1k2) {8log (k1k2)e3/8}

(36) <8(0.655)2 0.606e3.8 4/e2<1.637.

Noting that (k1k2)ƒÃ/4 /ƒÃ/4•†elog (k1k2), and using (19) and (35), we obtain

L (1, ƒÔ1) L (1, ƒÔ2) L (1, ƒÔ1ƒÔ2) (k1k2)
3(1-s2)/ 1-s2

<(0.655)2 ƒÃ2/(k1k2)ƒÃ0.606log (k1k2) {4/ƒÃ (k1k2)3ƒÃ/4

(37) <16 (0.655)2 0.606e-1<1.637.

Since (k1k2)3(1-s)/1-s is convex for 0<s<1, we can see from (36), (37) and 

Lemma 10 that G (s) is positive in the interval s2•…s•…s1. Combining this 

with the previous argument, we are able to deduce that G (s) has at least two real 

zeros in the interval

1-1/8log(k1k2)<s<1.

But, since lims•¨1-0 G (s)=-•‡ and G (s1)>0, G (s) must have at least three 

real zeros in the interval cited above. Hence, by Lemma 11, we can infer that our 

asumption (35) leads to a contradiction. The statement of the theorem is there

fore certainly true.

Gakushuin University, Tokyo.
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