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Abstract—We describe an equivalence result for network
capacity. Roughly, our main result is as follows. Given
a network of noisy, independent, memoryless links, a
collection of demands can be met on the given network
if and only if it can be met on another network where
each noisy link is replaced by a noiseless bit pipe with
throughput equal to the noisy link capacity. This result
was previously known only for multicast connections.

I. INTRODUCTION

Network information theory has two natural facets re-
flecting different approaches to networking. On the one
hand, networks are considered in the graph theoretic
setup consisting of nodes and links. Typical concepts are
information flows and routing issues. The links connect-
ing nodes in a network are usually noise-free bit pipes,
which can be used error free up to a certain capacity. On
the other hand, multiterminal information theory deals
with noisy channels, or rather the stochastic nature of
input and output variables at nodes in a network. Here
the interplay of transmissions in a network leads to a
different set of questions dealing with fundamental limits
of communication. The capacity regions of broadcast
and multiple access channels are examples of questions
addressed in the context of multiterminal information
theory and that appear to have no obvious equivalent in
networks consisting of error free bit pipes. The two views
of networking are natural facets of the same problem.
The objective of this paper is to explore the relationship
between these two worlds.

Establishing viable bridges between these two areas
shows to be surprisingly fertile. For example, questions
about feedback in multiterminal systems are nicely ex-
pressed in networks of error free links. Separation issues
— in particular separation between network coding and
channel coding — have natural answers, revealing many
network problems as combinatorial rather than statistical,
even in noisy networks. In fact, many problems in
network information theory appear to be reducible to
solving a central network coding problem described as
follows: Given a network of error free rate-constrained
bit pipes, is a given set of demands satisfieable or not.
In certain situations, most notably a multicast demand,
this question has nice and simple answers. However,
the general case is wide open. In fact, it is suspected
that the central combinatorial network coding problem
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is hard, however NP hardness is only established for the
class of linear network coding [1]. Nevertheless, there
are algorithms available that, with running time that is
exponential in the number of nodes, solve just this prob-
lem [2]. This possibility to, in principle, characterize the
rate region of a combinatorial network coding problem
will be a corner stone for our investigations.

It thus appears that any research into network informa-
tion theory must acknowledge the fact that fully char-
acterizing the combinatorial network coding problem is
out of reach [3]. Nevertheless, moderate size networks
can be solved quite efficiently. The situation is not unlike
issues in complexity theory, where a lot of research is
devoted to showing that one problem is essentially as
difficult as another one without being able to give precise
expressions as to how difficult a problem is in absolute
terms. Inspired by this analogy, we resort in this paper to
characterizing the relationship of a number of network
coding problems to the central combinatorial network
coding problem. This characterization is all we need if
we want to address separation issues in networks, but
also other questions, such as a degree-of-freedom or high
signal to noise ratio analysis, reveal interesting insights.

It is interesting to note that the reduction of a network in-
formation theoretic question to its combinatorial essence
is also at the heart of some related recent publications,
see e.g. [4]. While our approach is quite different in
terms of technique and also results, we believe it to be no
coincidence that in both cases the reduction of a problem
to its combinatorial essence is a central step.

II. INTUITION AND SUMMARY OF RESULTS

To clarify the benefits of the proposed approach, consider
the problem of finding the capacity region of a network
of independent noisy channels. When there are general
demands on such a network, i.e. any two nodes in the
network may want to exchange information, this problem
seems to be completely out of reach. Yet, for special
demands on the network, the situation is different. For
example, the case of a single unicast demand in the noise
free network was solved by Ford and Fulkerson [5]. The
case of a single multicast demand was later solved for
noise-free networks [6] and noisy links [7], [8]. The lat-
ter papers show a separation between the combinatorial
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and statistical problems by first finding an outer bound
for the desired rate region and then showing that the
outer bound is reachable using channel coding to replace
noisy links by lossless bit pipes and then network coding
across those bit pipes. That approach cannot be used to
extend this result to arbitrary demands since the cut-set
outer bound is not tight and finding the true outer bound
for each new demand structure is intractable.

The separated strategy is always possible, but not always
optimal. For example, consider a pair of identical, inde-
pendent channels each of capacity C' running in parallel
from node s to node r. For any R < C, a separated code
obtains reliable communication across each link using
a channel code with 2" codewords of blocklength 7.
Consider instead operating each channel at rate 2R > C
by designing a single code with 22"% codewords of
blocklength 2n and sending half of each codeword across
each channel. Since decoding together achieves reliable
communication and doubling the blocklength improves
the error exponent, joint channel and network coding
yields better error performance; it remains to be shown
whether joint coding can also achieve better rates.

Roughly, our main result is as follows. A collection of
demands can be met on a network of noisy, independent,
memoryless links if and only if it can be met on another
network where each noisy link is replaced by a noiseless
bit pipe with throughput equal to the noisy link capacity.

This claim has a number of surprisingly powerful con-
sequences. It shows separation between channel and
network coding for arbitrary networks and arbitrary de-
mands Also, many network information theoretic ques-
tions are naturally asked in the light of this combinatorial
perspective. For example, it provides an alternative proof
to the classical result that feedback does not increase
the capacity of a point-to-point link since the min-cut
between transmitter and receiver is the same with or
without feedback. Most importantly, it reveals that at the
heart of information theory lie combinatorial problems
involving finding the rate region for error-free networks.

Since the prior approach of finding the outer bound and
proving it achievable is out of the question, we build
an equivalence theorem instead. Intuitively, we prove
equivalence between networks A and B by showing that
if anyone shows us a way to operate network A at one
rate point, then we can find a way to operate network B
at the same rate point and vice versa. Note that this never
answers the question of whether a particular rate point
is in the rate region or not. Operating codes designed for
bit pipes in the noisy channel network is straight forward
using a separated strategy. The other direction is harder
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since a noisy network allows a far richer algorithmic
behavior. It is known that a noiseless bit-pipe of a given
throughput can emulate any discrete memoryless channel
of lesser capacity [9], so a network of bit pipes may be
operated as if it were a network of noisy links. Yet ap-
plying this result seems to be difficult. Difficulties arise
with continuous random variables, timing questions, and
proving continuity of rate regions. Worst of all, since
we do not know which strategy achieves the network
capacity, we must be able to emulate all of them. We
prove our main claim directly, without exploiting [9].

III. THE SETUP

A multiterminal network comprises m nodes. We denote
the random variables transmltted and recelved at node ¢
at time-step ¢ by X € X® and Y € Y@, The
network is assumed to be memoryless, so it is character-
ized by a conditional probability distribution p(y|x) =
p(y®, .y (™) A blocklength-n code
operates the network over n time steps with the goal
of communicating, for all (4,7), message W(—7) ¢
W=Dy 9nR from node 4 to node j. The
vector of rates R(°~7) is denoted by R. A network is
thus written as a triple ([T, X@, p(y|x),[]/-, V)
with the added constraint that Xt(l) is a function of
v,y wi=D L wli—mY alone.

The structure of a network is given as a directed graph G
with node set V' = {1,...,m} and edge set E. This pa-
per treats point-to-point transmissions, where each edge
e € FE takes the form e = vy, v2], v1,v2 € V. In future
work, we replace edges by hyperedges to treat broadcast,
multiple access, and interference transmissions.

The indegree and outdegree of node i are diy(i )ClCt
[{vi|[v1,i] € E}| anddout() \{02\ i, v2 E (}| When

ot (i) and di (i) exceed 1, X = []%u (.d)
Y = Hglzngz) Yid) Xt(l) _ (Xt(l 1)7 o 7XEZ dout( )))’
and Yt(i) = (Yt(i’l),...,Yt(i’d‘"(i))). We use Vi(e) and

Va(e) to denote the input and output ports of edge e.
For example, if channel e = [i, j] has input X(**) and
output YU") for some s € {1,...,dous(7)} and r €
{1,...,din(4)}, then Vi (e) = (4, s) and Va(e) = (4,7).

When the network characterization corresponds to G' =
(V, E), we factor p(y|x) as

(H X, H p(Y(V2(0)] x (Vile))y Hy(ﬂ) ,
i=1 c€E i=1

again with the constraint that Xt(i) is a function of
v, v, wi=D L Ww—m)1 alone. We here



investigate some information theoretic aspects of replac-
ing factors in the factorization of p(y|x).

Remark 1 In some situations it is important to be
able to embed the transmissions of various nodes in a
schedule which may or may not depend on the messages
to be sent and the symbols that were received in the
network. It is straightforward to model such a situation
in the above setup by including in the input and output
alphabets symbols for the case when nothing was sent
on a particular link. In this way we can assume that at
each time ¢ random variables Xt(l) and Yt(z) are given.

Definition 1 Let a network

def <H x@ H p(y (Vz 6))|1. (Va(e))

INIRA )
eclk i=1
be given corresponding to a graph G = (V,E). A
blocklength-n solution S(N\) to this network is defined

as a set of encoding and decoding functions:
W(J%Z) (Y %)) % H W(HJ) — Wi—9

mapping (Yl(i), . Y;(_)l, W= wi=my o Xt(i)

and (V.. V,\0 W=D wli=m)y qo 16—,
Solution S(N) is called a (A, R)-solution, denoted
(A, R) — S(N), if the encoding and decoding functions
imply Pr(W (=9 £ W=y < X forall i, j.

Definition 2 The rate region Z(N') C RT(mfl) of a
network N is the closure of the set of rate vectors R such
that for any A > 0, a (\, R) — S(N) solution exists.!

IV. RESULTS

The goal of this paper is not to give the capacity regions
of networks with respect to various demands; that is
an intractable problem due to its combinatorial nature.
Rather we wish to develop equivalence relationships be-
tween capacity regions of networks. Given the existence
of a (A, R)-S(N) solution for a network N, we wish to
imply statements for the existence of a (X', R')-S(N”)
solution for a network N”.

Assume, for example, a network contains an edge
€ = [i,7]. The input and output random variables are
X(Vi(@) = x (%) and Y(V2(®)) = y'(G7)| The transition
probability for the network thus factors as:

Py |z(59) H ply 2Dz (Vile)) (1)
ee E\{e}

The blocklength n may vary with X, R, and N.
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Let another network N’ be given with random vari-
ables (X ) Y U) replacing (X (%), YG7)) in N, We
have replaced the link characterized by p(y(j T)‘LL‘(i’S))
with another link characterized by 5(¢>")|#(*)). When
I(YGm), X8y < [(YE@7); X(9)) we want to prove
that the existence of a (A, R)-S(N) solution implies the
existence of a (N, R’)-S(N’) solution, where X can
be made arbitrarily small if A can. Since node j need
not decode Y'U") channel capacity is not necessarily
a relevant characterization of the link’s behavior. For
example a Gaussian channel from ¢ to 7 might contribute
a real-valued estimation of the input random variable; a
binary erasure channel that replaces it cannot immedi-
ately deliver the same functionality.

Our proof does not invent a coding scheme. Instead,
we demonstrate a technique for operating any coding
scheme for N on the network N’. Since there exists
a coding scheme for N that achieves any point in the
interior of Z(N), this proves that Z(N) C Z(N7).
Since we don’t know the form of an optimal code for
N, our method must work for all possible codes on N.
For example, it must succeed even when the code for N
is time-varying. As a result, we cannot apply typicality
arguments across time. We introduce instead a notion of
stacking in order to exploit averaging arguments across
multiple uses of the same network not across time.

The N-fold stacked network A is the network N re-
peated N times. Thus N has N copies of each vertex
v € V and N copies of each edge e € E. Since multisets
(not sets) describe the vertices and edges of N, the
stacked network is not a network and new definitions
are required. We carry over notation from N to A
using underlines. So W=7 e W=D pi—iN
is the vector of messages from ¢ to j and Lwt S
X(Z)def( NN and YD, € Z>def(y< NN are the time-
t vectors of channel 1nputs and outputs at node i. We
use argument ¢ to denote the ¢-th layer of the stack;
for example W(—7)(¢) is the message from 4 to j in
layer £. Since W=D (W(=)N the rate R(—9) for
a stacked network is defined as (log [ W(—=7)|)/(nN).
This makes rates comparable between N and

Definition 3 Let N be the N -fold stacked network for a
network N. A blocklength-n solution S(N') to \ is a set
of encoding and decoding functions:

X0, ()« [, We=) — x©
W= . (Y@ ) > HFl W('L—>]) — W0,

S,

t—

We call S(N) a (A, R)-solution, denoted (), R)
ifPr(W =9 £ WE=0)) < X forall i, j.




Definition 4 The rate region Z(N') C ]R:'_L(m_l) of N is
the closure of all rate vectors R such thata (A, R) —S(N)
solution exists for any A > 0 and all N sufficiently large.

Theorem 1 Rate regions #Z(N') and Z (/) are identical,
and for each R € int(#(N)) there exist (27V° R) —
S(N) solutions that channel code the messages and then
apply the same solution independently in each layer of N.

Proof. Z(N) C #(N): Forany R € int(Z(N)) and
A > 0, there exists a (\,R) — S(N\) solution to N'. Let
n be its blocklength. We build a blocklength nN solution
S(N) for N by implementing the N layers of time step
t of S(N) in times (t — 1)N + 1,...,tN in N. Since
S(N) satisfies the causality constraints and operates the
mappings from S(N') on N, S(N') achieves the same rate
and error probability on N as S(N') achieves on .

AN) O ZN): Let R € int(#(N)), and fix some
R e int(RZ(N)) for which R—7) > R(=1) for
all i,j. Set p = min; ;(R~7) — RU—7). For rea-
sons that will become clear later, we seek a solution
with error probability A and blocklength n satistying
max; ; ROZDN + h(A )/n < p. Such a solution is
guaranteed to exist since R € int(#(N')) implies that
there exists a (\,R) — S(N\) solution for any A\ > 0.
Fix a (\,R) — S(N) solution. To avoid confusion be-
tween the target rate R and the solution’s higher rate
R, let W3 and W=7 denote the messages and
their reconstructions at rate R(U—7). The messages and
reconstructions at the target rate are U“=9) and U(—9),
Let code S(N) be the solution achieved by applying
the (\, R) — S(N) solution independently in each layer
of N'. Then (W=7 (¢), W= (), ¢ € {1,...,N},
constitutes N uses of a discrete memoryless channel from
1 to j. When the input is uniformly distributed, the mutual
information between the channel input and the channel
output satisfies I(W =9 (£); W9 (0)) > nRU—3) —
(AnRU=7) 4 h(\)) by Fano’s inequality. For each (i, j)
we now apply a uniform, random (2¥NE"77) N).
channel code across the N uses of this channel. The chan-
nel code’s encoder maps U~ to WU—9) . Since the
code’s rate n R~ is strictly less than the channel’s mu-
tual information, precisely I(W =7 (0); W=7 (7)) —
nRO=) > np — (AR 4+ h()\) > 0. Applying
the strong coding theorem gives an error probability less
than 2~N°, where ¢ is an increasing function of the gap
ming ;[I(W 0= (£); WG9 (£)) —nRE—7)). m

We henceforth restrict our attention to solutions S(N)
that first channel code messages and then apply the same
solution S(N) independently in each layer of A. By
Theorem 1, there is no loss of generality in this restric-
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tion. This and the i.i.d. uniform choice of codewords
in the channel code design maintains the desired i.i.d.
structure across layers. Our argument employs random
coding at multiple junctures, choosing the instances only
once all codes are in place. (See Theorem 3.)

We now focus on the first factor in (1), temporarily
dropping superscripts (i,s) and (j,r) and referring to
random variables X,Y and their realizations z,y for
brevity.

Consider a (27V9 R)-S(A\) solution that applies the
same solution S(N) in each layer of N. Let p;(z,y) =
pi(z)p(y|z) be the distribution imposed by S(N) across
the channel p(y|x) at time ¢. Let Ag be the correspond-
ing Jomtly typical set. Define B(N)()\)dﬁf{(xN,yN) €
AL PrUa W WD) (XY =
(zN,yN)) > A}. The probability in B( V) (N) results
from the operation of S(A') on A.

Lemma 2 If there exists of a (279, R)-S(N) solution
for a stacked network N, then for N sufficiently large?

B /ALY | < (m27V0729) /(1 = 9)A).

}. Then
227N5

~ (a—b

Proof. Let E = Uayb{ﬂ(a_)b) # E( )

Pr(BYY (NNE) < Pr(AY) nE) < Pr(E) <m

by the union bound and lemma assumption. (The assump-
tion is valid for rates R of interest by Theorem 1.) Thus

m22- N > pr(BBY V) Pr(BY (V)

> )\|B(N)( )|2—N(H(XY te) et | |A |
AT

Then |A%) |2~ NU(X1¥)=9) > pr(A®)) > 1

large N by the AEP gives the desired result. B

— ¢ for

The input X, to channel p(y|z) in A usually results in
a jointly typical output Y,. We argue in Theorem 3 that
the functionality of A/ remains unchanged if we replace
p(y|z) by any other means to pick a jointly typical Y,.

Theorem 3 Let networks N and N be defined as
N = (Xu.,l) X ann X

p(yUm)|z9) H p(yV2(@) |z (Vale)y,
c€E\{e}

x YU 5

X(ivs) X . X X(mde\lt(m))7

PO o % y(m,din(m)))

2We use |A| to denote cardinality or volume depending on the
alphabet of A. We assume entropy H(X,Y) < oo in both cases.



N = (xm X oo x B s g madon(m)
5@ — g0y T py D2,

c€E\{}
YO s PUT) L x y(m,din<m>>) 7

where (X (%) §(205) — ) YGr)) s a bit pipe that
noiselessly maps R > e IED ST I(X ),y ()
bits from its input to its output at each time step. Then

RAN) C RN).

Proof. Let N and /\l be the stacked networks for N
and N. Since Z(N') = Z(N) and Z(N') = Z(N) by
Theorem 1, it suffices to prove Z(N') C Z(N). For any
R € int(#(N)) and any A > 0, there exists a (A, R)-

S(N) solution for network . We prove that there also
exists a (A, R)-S(N) solution for all A > 0.

By Theorem 1, R € int(%#(N)) implies that there exists
a (27N9 R)-S(N) solution for N that applies the same
solution S(N') in every layer of N. Let p;(z™,y") =
Hévzl pe(2¢,y¢) be the distribution of (X(*), YU:m))
using solution S(N)) on N. Let n be the blocklength
of S(N). For each t € {1,...,n}, randomly design
a source code (ay , ﬁN ¢) with 2N% codewords drawn
i.i.d. according to pi(y") = > nepn pe(zV,yN) and
an encoder oy that maps each x** to an index k for
which (2N, By« (k) € A\ B (X) ifavailable.

We now run S(N) on N by mapping X %), to Mt =
o, (X G:9),) before transmission by node i and mapping
YU, 1o Y(J "), = Bn.(Y9),) after receipt by node .

We offer the following analysis for the error probability.
The expectation is over all random code designs.

E Pr (U(a,b){W(a_)b) 74 W(a—d))})

> EPr((X, y0,) ¢ AT

t=1
(X0, YUD,) € AR\ BED (). v < 1)
+F Pr(U(a’b){W (a—b) # W aéb)}

i,5 j, T N N
(09, ¥00,) € AR\ B ()ve < ).

\ BN,

2

Let Ky(zN,yN) = 1if (2N, yV) e AU\ B (V)
and 0 otherwise. Note that (1—ab)k <1—a+e P
and pt( Ny > p(y"Ia:”)2—N<1<X§”’“%Yt“‘”>+3€> for all
(N, yN) € A, [10, Lemmas 10.5.2, 10.5.3], where

(N
1(x5). v 9 < € is the mutual information for
)

pt(x y) = pt(x)p(y|z). Then term t in the sum is at most
> Ep(™) 1 =Y KN g7
zNexnN yN

Ky, y™)

< Zﬁt 1*2? N|=T
N

oN(R—T(X (T S),Y(J'7))—3€)

+e” )

where p;(x’V) is the probability of z™ at time t in
the given solution. The exponential goes to zero since
R > C'. The remaining difference goes to zero by the
AEP if N has no cycles and by analysis of the probability
that X (%), is atypical when (X ), YU ) € A( \

Be(ﬁ[,)(/\) for all t' < t otherwise. We bound the Iast
term in (2) by 26N\ /(1 — €)™ by first bounding the
distribution p; (y™ |z™) for each random source code.

Since the expected error probability with respect to the
Jjoint distribution over all codes can be made arbitrarily
small, there exists a single instance of the collection of
codes that does at least as well. B

Remark 2 By Theorem 3, when R < C, we can run any
solution S(N) on N by source coding across the layers;
thus Z(N') C Z(N') when R < C by Theorem 1. By
Shannon’s channel coding theorem, when R > C, we
can run any solution S(A) on A by channel coding
across the layers; thus Z(N) O Z(N) when R > C
by Theorem 1. Together, these results give the desired
equivalence. As usual, point R = C remains ambiguous.
Repeating this argument for each ¢ € F relates a
network of channels to a network of noiseless bit pipes.
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