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A three-dimensional, steady flow configuration intended to mimic the baker’s map is studied by

means of numerical simulation. The Poincaré sections computed from a finite element solution of

the velocity field show that the behavior is dominated by chaotic advection. The value obtained for

the Lyapunov exponent is very close to the theoretical value of ln 2 predicted by the baker’s map.

© 2007 American Institute of Physics. fDOI: 10.1063/1.2804959g

The baker’s map is probably one of the most famous

mathematical transformations in the theory of conservative

dynamical systems. It is a classical reference example in

books and introductory articles on the subject.
1–3

Recall that

the baker’s map is obtained by iterating the elementary trans-

formation S defined on the unit square by

Ssx,yd = Hs2x,
1

2yd mod 1, if 0 ø x ,
1

2 ,

s2x,
1

2 sy + 1dd mod 1, if
1

2 ø x , 1.
J s1d

Heuristically, the specific behavior of the map appears when

considering how the upper and lower half of the square are

mapped when the transformation S is repeatedly applied. As

sketched in Fig. 1, successively squeezing in the y direction

while stretching in the x direction, cutting in two and then

stacking the right half above the left, causes what is initially

a two-strip domain to become four strips after one iteration.

Repeating the iteration n times produces successively

8 ,16,32, . . . ,2n alternating strips of depth 1 /2n. The baker’s

map is a mixing transformation since, in the limit n→`, the

“unit square becomes completely filled with an infinite num-

ber of alternating red and yellow lines”
3
and thus any infini-

tesimal region of the square contains the same proportion of

red and yellow.

As emphasized by Wiggins and Ottino,
3
the baker’s map

is not only a didactic introductory example, it also possesses

very interesting properties; in particular, the facts that the

stretching and contraction directions are constant and uni-

form over the domain and that cutting and stacking is

thought to be better than stretching and folding.
3
Trying to

reproduce exactly this transformation by some fluid flows

requires the introduction of a spatially discontinuous flow

field whose physical relevance is doubtful. Nevertheless,

some practical mixing systems have been proposed in the

literature which make use of the separation/stacking mecha-

nism, the key underlying concept in the baker’s map. A way

to implement this mechanism is to consider appropriately

designed three-dimensional s3-Dd flows. For instance, the

well-known Kenics mixer is thought to approach such be-

havior and several other systems have also been proposed,

especially in the context of microfluidics.
4–8

However, three-

dimensionality adds a degree of complexity to the analysis

and the exact flow field inside these mixers is not known,

making analytical approaches a hard task. In addition, ex-

perimental investigations are rather complicated, especially

for micromixers,
7,8

as are numerical simulations,
9–11

so that,

while some quantitative results are available, they neither

allow a clear characterization of chaotic mixing nor compari-

sons between the theoretical model sthe baker’s mapd and the

practical system sthe real mixerd. In particular, being able to

determine the presence and size of nonchaotic regions is es-

sential. Here, a three-dimensional stationary continuous

mixer configuration, which is intended to approach closely

the transformation Sn, is considered. Its working principle is

sketched in the bottom part of Fig. 1 so as to allow a com-

parison with the baker’s map; a view of a three-element con-

figuration is shown in Fig. 2. A basic element of the system

is composed of a converging “T” followed by a diverging

“T” at right angles, the two outlets of the diverging “T” are

then connected to the converging “T” of the next element via

two opposite ducts. The converging “T” plays the role of the

“stretching/squeezing” step while the diverging one plays the

role of the “cutting” step. The outer ducts, appropriately de-

signed so that red and yellow regions are inverted in each of

them, ensure the “stacking” step. If red and yellow colored

fluid entering the first element forms a “two-strip” domain in

the first “T,” it should form a “four-strip” domain in the

converging “T” of the second element, just as in the baker’s

transformation. The same reasoning applied to the second

element leads to “eight strips” at the entrance of the third

element, and so on. The system of Fig. 1 has clear similari-

ties with the one proposed by Gray et al.
7
However, in the

present work, a symmetric design is used so as to avoid any

additional side effects when comparing with the mathemati-

cal transformation Sn. Indeed, the real fluid flow which take

place in a such a system does not follow exactly the scheme

of principle and this already influences sgreatly?d the mixing

properties, a point which requires a refined study.

In this paper, the emphasis is put on the academic view-

point, so that the study is restricted to creeping flows sStokes
approximationd, a fairly usual approach in chaotic advection.

In addition, the geometry is designed to make numerical

simulation as simple—and accurate—as possible, but realis-

tic. Nevertheless, it must be noted that practical realization of

the system is possible. A macroscale system would not be

much more complicated to manufacture than the twisted
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pipes mixer
12 ssee Ref. 13 for a realistic prototyped. Even

downsizing to microfluidic devices, while less straightfor-

ward, is not intractable by means of either multiple super-

posed layers sfor polydimethylsiloxane systemsd or double

sided sfor glass systemsd manufacturing; such techniques

have been successfully applied in Refs. 7 and 8. Regarding

the state-of-the-art in microfluidics,
14

still there is a need for

investigating such micromixer concepts even if interesting,

different ones have already been proposed in the

literature;
15–19

there is also a need for clearer characteriza-

tions of such mixers. A salient feature of the present type of

system is that the mixing process is induced by the primary

flow, while many other ones
13,15,16

are based on a secondary

flow action, which can have limited amplitude. This system

has the potential to produce larger stretching rates for the

same energy cost. Another feature of this system is that, as a

channel or pipe flow, it offers a large surface-to-volume ratio

and is therefore expected to be a very efficient heat ex-

changer sas is the twisted pipe mixerd.
Studying the system of Fig. 2 beyond a qualitative analy-

sis requires knowledge of the corresponding velocity field. In

the following, we consider a pressure driven flow with the

no-slip condition along the walls. Since the system is com-

posed of a succession of identical elements, the velocity field

may be assumed spatially periodic when neglecting inlet and

outlet effects. Therefore, the determination of the flow field

may be restricted to a single element with the velocity field

satisfying periodic conditions between the inlet and the out-

let and the pressure field being also periodic up to an additive

constant sthe mean pressure difference between the inlet and

the outletd. Due to computational considerations, a quite

equivalent problem involving a closed rather than opened

geometry was solved instead. For this, as is clear from the

plot of the mesh in Fig. 3, the design of the outer ducts has

been modified in a symmetric manner so that they are now

connected to the inlet ports of the same element.

In this closed configuration, the driving pressure of the

open system has been replaced by a volume force f, which is

constant inside each of the plane-parallel subdomains V− and

V+ fmarked in red sdark grayd in Fig. 3g located on both

sides of the inlet of the double “T.” Since imposing a con-

stant volume force in part of a straight pipe leads to the same

velocity field as in the purely pressure driven case, here it is

expected that the generated flow does not depart much from

its counterpart in the open system. In the Stokes approxima-

tion, with u and p the nondimensional velocity and pressure,

respectively, the momentum equation reduces to

− ¹2
u = − =p + f s2d

with f given by fsxd= ± f±ey for x in V± and 0 elsewhere,

where f− and f+ are two constants to be specified. Note that,

since we are interested in the characterization of the “line

mixer” properties, any time dependence have been neglected

in Eq. s2d. All quantities are assumed to be nondimensional-
ized using the width w of the pipe as the length scale and

mF−1w−1 as the time scale, with m the dynamic viscosity of

the fluid and F the characteristic magnitude of the volume

forcing. Numerical solutions of Eq. s2d, together with the

continuity constraint and no-slip boundary conditions, have

been obtained using a finite element method similar to the

one used in Ref. 20, but with quadratic approximation for u.

Fluid particle trajectories and their associated Lyapunov ex-

ponents are computed as presented in Ref. 21.

As usual, the Lagrangian properties of the flow are char-

acterized by means of Poincaré sections and Lyapunov ex-

ponents. For this purpose, the section plane at x=1.5, corre-

sponding to the middle of the “double-T,” is considered. Two

typical choices of parameters, i.e., f− and f+, have been con-

FIG. 1. sColor onlined Top: baker’s transformation of the unit square after

two iterations. Bottom: sketch of mixing action of the present flow after two

elements.

FIG. 2. The present mixing system in a three basic elements configuration.

FIG. 3. sColor onlined The computational mesh corresponding to the

“closed” configuration used to simulate the flow field in a basic element of

the system of Fig. 2. In red sdark grayd, the location of the subdomains

where a constant, volume force is imposed.
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sidered: f+= f− corresponds to the desired induced motion

where the flow rates inside each outer duct are the same;

f+=3f−, has been adopted to investigate the sensitivity of the

mixing process to the presence of some kind of imperfection

inducing different flow rates inside a real system. Figure 4

reveals that, as expected, chaotic advection is effectively

generated by the flow. The behavior of fluid particle trajec-

tories is dominated mainly by the central chaotic region, cov-

ering most of the section even in the “unfavorable” case:

f+=3f−. The key result is obtained when determining the

Lyapunov exponent associated with the chaotic region in the

two cases. Their convergence with the number of iterations

of the Poincaré map is shown in Fig. 5, where we also show

that the Lyapunov exponent associated with nonchaotic re-

gions converges to a reasonably small value. To facilitate the

comparison, the straight line corresponding to the value ln 2

sthe value of the Lyapunov exponent of the baker’s mapd has
been plotted. Clearly, the value of the Lyapunov exponent

obtained in the favorable case f+= f− sabout 0.68d is very

close to ln 2, so that the present system clearly succeeds in

reproducing, at least in the mean, the same global stretching

rate as expected from the baker’s transformation. In the un-

favorable case, the Lyapunov exponent sabout 0.45d clearly
departs from ln 2. Thus, while the essential qualitative fea-

tures of the fluid motion are similar in the two cases, after

only three elements a typical material line is only half as

long in the unfavorable case as in the favorable case. This

point must be kept in mind for applications where symme-

tries of the flow are not easy to preserve.

As far as stretching rate is concerned, for most fluid

particles and asymptotically in time, the effect of the present

system is thus very similar to the one of the baker’s map Sn.

However, there are two regions, located at opposite corners,

which exhibit nonchaotic behavior. fThe reader may have

noted that the nonchaotic regions in fact exhibit slowly

converging/diverging orbits, a signature of numerical ap-

proximation of the velocity field swhose divergence depends
on the mesh sized, a behavior we did not observed in previ-
ous works sRefs. 18 and 21d. Here, investigations with dif-

ferent meshes indicated that it is probably related to the pres-

ence of re-entrant corners sespecially in the “double-T,” but
also all along the ductd where the pressure problem is ill-

conditioned accounting to our formulation.g Even if they are
rather small, the presence of such nonchaotic regions is not

satisfactory since they are well known to be barriers to

mixing.
22–24

We numerically checked that increasing the dis-

tance between the two “T” junctions does not significantly

change the presence of these islands. Now, noting that the

location of these islands follows from the symmetry of the

system suggests that it would probably be better for succes-

sive elements to be inverted sone time the upward duct on

the left, one time on the right, etc.d. However, this requires a
different computational domain than the one used here ssince
the spatial period is now two elementsd, so this investigation
is postponed to future work. In addition, the appearance of

islands may very well be related to the square cross section

used in the present system and studying different cross-

section shapes would be useful.

Another issue of interest is that, from the mechanical

engineering viewpoint, characterizing the chaotic behavior

by means of l̂ is insufficiently informative since no charac-

teristic time scale is involved. Rather, one has to return back

to the time Lyapunov exponent l which, following Ref. 25,

is related to l̂ by l̂=lt̄, with t̄ the mean time between two

successive Poincaré section points. A first estimate of a char-

acteristic mixing time can then be obtained, but it remains

necessary to account for the energy consumption of the sys-

tem. For a stationary flow, the power supply P due to the

forcing term is dissipated by the action of viscous forces,

implying the dot product of the rate of deformation tensor s

by itself. Now, s is also the origin of stretching, thus intro-

ducing the nondimensional number

Nl = lS 1

VV
E

V

s:sdVD−1/2

= lS P

2mVV

D−1/2

, s3d

with VV the volume of V, gives a measure of the mixing

system’s “efficiency.” Here, we find Nl=0.016 36 when f+
= f−, and Nl=0.009 817 when f+=3f−. As a basis for com-

parison, for the “academic” 3-D flow we studied in Refs. 22

and 23, we found Nl=0.0711 sfor the most efficient flowd;
this latter finding is a significantly better result but the free-

slip boundary condition for the academic flow probably fa-

vors a minimal energy loss. However, this suggests a basis

for a comparison exercise from an optimization viewpoint

FIG. 4. sColor onlined Poincaré sections at x=1.5. On the left, f+= f−; on the

right, f+=3f−.

FIG. 5. sColor onlined Convergence of the maximum Lyapunov exponent l̂

with the number of iterations snd of the spatial mapping for solid line: f+
= f− sleft plot of Fig. 4d; dashed line: f+=3f− sright plot of Fig. 4d. Horizon-

tal dot-dashed line is for l̂=ln 2.

118110-3 On a 3-D implementation of the baker’s transformation Phys. Fluids 19, 118110 ~2007!

Downloaded 15 Jun 2012 to 156.18.40.173. Redistribution subject to AIP license or copyright; see http://pof.aip.org/about/rights_and_permissions



concerning existing devices both of the present kind and of

different underlying concepts.

The author would like to gratefully acknowledge Benoît

Pier for his help and suggestions, and one of the anonymous

referees for his proofreading of the manuscript.
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