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Abstract. We study a two-point free boundary problem for a quasilinear parabolic
equation. This problem arises in the model of flame propagation in combustion theory.
It also arises in the study of the motion of interface moving with curvature in which
the studied problem is confined in the conical region bounded by two straight lines and
the interface has prescribed touching angles with these two straight lines. Depending
on these two touching angles, there are three different cases, namely, area-expanding,
area-preserving, and area-shrinking cases. We first give a proof of the global existence
in the expanding and preserving cases. Then the convergence to a line in the preserving
case is derived. Finally, in the shrinking case, we show the finite-time vanishing and the
convergence of the solution to a self-similar solution.

1. Introduction. We consider the following two-point free boundary problem (FBP):

ut = [a(ux)]x, −ξ1(t) < x < ξ2(t), t > 0, (1.1)

ux(−ξ1(t), t) = tanα1, ux(ξ2(t), t) = tanα2, t > 0, (1.2)

u(−ξ1(t), t) = ξ1(t) tanβ1, u(ξ2(t), t) = ξ2(t) tanβ2, t > 0, (1.3)

u(x, 0) = u0(x), −ξ1(0) ≤ x ≤ ξ2(0), ξ1(0) = ξ01, ξ2(0) = ξ02, (1.4)

where we assume that

a ∈ C2(−∞,∞), a(0) = 0, a′(s) > 0 for s ∈ (−∞,∞), (1.5)

βi and αi are given constants satisfying

βi ∈ (0, π/2), i = 1, 2, α1 ∈ (−β1, π/2), α2 ∈ (−π/2, β2), (1.6)
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Fig. 1. θ1 = α1 + β1 > 0, θ2 = β2 − α2 > 0

and ξ01 and ξ02 are positive constants such that

u0 ∈ C1+α[−ξ01, ξ02], u0(−ξ01) = ξ01 tanβ1, u0(ξ02) = ξ01 tanβ2, (1.7)

u0(x) > 0 for ξ01 < x < ξ02. (1.8)

In this problem, u, ξ1, ξ2 are unknown functions to be found.
Figure 1 shows the configuration of our problem, where Γ(t) represents the surface

z = u(x, t), and the free boundaries are located at x = −ξ1(t) and x = ξ2(t).
This type of free boundary problem arises in various applications. For example, when

a(s) = s (the case of the heat equation), (FBP) arises in the model of flame propagation in
combustion theory (cf. [1, 9, 12] and the references cited therein). When a(s) = arctan(s)
(the case of the curvature flow equation), (FBP) arises in the study of the motion of the
interface moving with curvature in which the studied problem is confined in the conical
region bounded by two straight lines and the interface has prescribed touching angles
with these two straight lines (cf. [4] and the references cited therein).

There has been much interesting work on the so-called one-point free boundary prob-
lem (when β1 = 0 and β2 = π/2). For the case with α1 = π/4 and α2 = 0, we refer the
readers to [10, 2, 12, 6]. We note that, by a reflection, this case is the symmetric case of
our two-point free boundary problem with β1 = β2 = 0 and −α2 = α1 = π/4. For the
case with α1, α2 ∈ (0, π/2), we refer the readers to [11].

We now consider the general case (1.1)–(1.4). The local (in time) existence and unique-
ness of a classical solution is proved in [3]:

Proposition 1.1 ([3]). Let the assumptions (1.5)–(1.8) be in force. Then
(i) there exists a T > 0 such that the classical solution exists and is unique in the

interval [0, T ), where T depends on the C1+α norm of the initial data u0;
(ii) if ξ1(t) + ξ2(t) ≥ δ > 0 for 0 < t < T , ‖u(·, t)‖C1+α[−ξ1(t),ξ2(t)] ≤ C for 0 < t < T ,

and the limit limt→T−0 ξi(t) := ξi(T ) (i = 1, 2) exists, then there exists a T ′ > 0 such that
the classical solution obtained in (i) can be uniquely extended to the interval [0, T +T ′);
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(iii) furthermore, for any c0 > 0, the solution obtained in (i) satisfies (u, ξ1, ξ2) ∈
C2+α,1+α/2{(x, t);−ξ1(t) ≤ x ≤ ξ2(t), c0 ≤ t < T} × C1+α/2[c0, T ) × C1+α/2[c0, T ).

The regularity does not extend to t = 0, because only C1+α initial data is assumed
in [3]. If we assume initial data to be in the class C2+α, then the argument in [3] shows
that the regularity also extends to t = 0.

Notice that if ξ′i(t) (i = 1, 2) are bounded on [0, T ), then limt→T−0 ξi(t) = ξi(T ) exists.
It is also clear that W 2,∞ estimates imply C1+α estimates.

In view of Proposition 1.1 and the discussion above, the following a priori estimates

ξ1(t) + ξ2(t) > δ for t ∈ [0, T ), (δ > 0), (1.9)

|ξ′1(t)| + |ξ′2(t)| ≤ C for t ∈ [c0, T ), (1.10)

‖u(·, t)‖W 2,∞[−ξ1(t),ξ2(t)] ≤ C for t ∈ [c0, T ) (1.11)

will be sufficient for us to derive the existence and uniqueness of a classical solution for
the system (1.1)–(1.4) in the interval [0, T ) and extend the solution to [0, T + T ′) for
some T ′ > 0.

Set γ1 = tan α1 and γ2 = tanα2. If ξ1(t) > 0 and ξ2(t) > 0 for t ∈ [0, τ ], then by the
maximum principle u(x, t) > 0 for t ∈ [0, τ ]; in this case, we can apply the maximum
principle in the regions {(x, t); −ξ1(t) < x < 0} and {(x, t); 0 < x < ξ2(t)} respectively
to obtain

u(x, t) ≥ max[(tan β2)x,−(tanβ1)x], t ∈ [0, τ ]. (1.12)

This is shown in Figure 1. Clearly, the area D(t) of the region enclosed by the interface
and the two given straight lines is given by (see Figure 1):

D(t) =
∫ ξ2(t)

−ξ1(t)

u(y, t)dy − 1
2
ξ2
1(t) tanβ1 −

1
2
ξ2
2(t) tanβ2. (1.13)

A simple computation shows that, for t > 0 (notice that ξi(t) (i = 1, 2) is continuously
differentiable for t > 0, by Proposition 1.1),

D′(t) = a(γ2) − a(γ1); (1.14)

thus the area D(t) is expanding in the case γ1 < γ2, preserved in the case γ1 = γ2, and
shrinking in the case γ1 > γ2.

In the case γ1 < γ2, the area is expanding. In this area-expanding case, it is proved
in [3] that

(i) there exists a unique solution to the system (1.1)–(1.4) for all 0 < t < ∞;
(ii) under the assumption that β1, β2 ∈ [0, π/2), −β1 < α1 < π/2 and α1 < α2 < β2,

there exists a unique forward self-similar solution to the system (1.1)–(1.3) of the form

u(x, t) =
√

2(t + 1)ϕ(
x√

2(t + 1)
); (1.15)

(iii) in this expanding case, with appropriate assumptions on the data, the solution of
(1.1)–(1.4) will converge to the forward self-similar solution; this is done in [3] through
explicit and delicate comparison.
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If a(s) ≡ s, then we have the heat equation. In this case, various properties of self-
similar solutions are discussed in [9]. In particular,

(i) the exact forward self-similar solutions to the system (1.1)–(1.3) of the form (1.15)
are studied in the expanding case;

(ii) the exact backward self-similar solutions to the system (1.1)–(1.3) of the form

u(x, t) =
√

2(T − t)ϕ(
x√

2(T − t)
)

are studied in the shrinking case. For a certain range of data, the uniqueness of the
backward self-similar solutions is not valid.

The question of asymptotic behavior of the solution to the system (1.1)–(1.4) in the
area-preserving and area-shrinking cases is not studied, even for the case of the heat
equation (a(s) ≡ s). The goal of this paper is to study these two cases. We begin with
the following global existence of the classical solution in the expanding and preserving
cases. Note that the global existence for the expanding case has been established in [3];
however, our global existence proof covers both the area-preserving and area-expanding
cases.

Theorem 1.2. Consider the expanding and preserving cases γ1 ≤ γ2. Let the assump-
tions (1.5)–(1.8) be in force. Assume also that u0 ∈ C1+α for some α > 0. Then there
exists a unique classical solution for 0 < t < ∞.

In the case γ1 = γ2, the area is preserved. We have the following result for the
asymptotic behavior (the result is new even for the heat equation case).

Theorem 1.3. Consider the area-preserving case γ1 = γ2. Let the assumptions (1.5)–
(1.8) be in force. Then there exists d1 > 0, determined uniquely by the initial data, such
that

u(x, t) → γx + d1 (1.16)

uniformly in x as t → ∞.

In the shrinking case when γ1 > γ2, the area should vanish in finite time. We shall
establish the asymptotic behavior in this case (Theorems 1.4 and 1.5). The result is new
even for the heat equation case.

Theorem 1.4. Consider the area-shrinking cases γ1 > γ2. Let the assumptions (1.5)–
(1.8) be in force. We further assume

−β1 ≤ α2 < α1 ≤ β2. (1.17)

Then
(i) there exists a unique classical solution (u(x, t), ξ1(t), ξ2(t)) to the system (1.1)–(1.4)

for 0 ≤ t < T with T given by

T = D(0)/[a(γ1) − a(γ2)], (1.18)

where

D(0) =
∫ ξ20

−ξ10

u0(x)dx − 1
2
ξ2
10 tan β1 −

1
2
ξ2
20 tanβ1.
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(ii) u ∈ C2+α,1+α/2(ΩT )∩C0+1,1/2(ΩT ) and ξ1, ξ2 ∈ C1+α/2(0, T )∩C1/2[0, T ], where
ΩT = {(x, t); −ξ1(t) ≤ x ≤ ξ2(t), 0 < t < T}.

(iii) limt→T−0 ‖u(·, t)‖L∞ = 0 and ξ1(T ) = ξ2(T ) = 0.

To study the asymptotic behavior at the vanishing time T , we make a change of
variables and define (v(y, s), p(s), q(s)) by

u(x, t) =
√

2(T − t) v(y, s), y =
x√

2(T − t)
, T − t = e−2s,

ξ1(t) =
√

2(T − t) p(s), ξ2(t) =
√

2(T − t) q(s).

Then

vs = [a(vy)]y − yvy + v, −p(s) < y < q(s), s > s0 := − ln(T )/2, (1.19)

vy(−p(s), s) = γ1, vy(q(s), s) = γ2, s > s0, (1.20)

v(−p(s), s) = p(s) tanβ1, v(q(s), s) = q(s) tanβ2, s > s0. (1.21)

The steady-state solutions (ϕ, p, q) of (1.19)–(1.21) are given by

[a(ϕ′)]′ − yϕ′ + ϕ = 0, −p < y < q, p > 0, q > 0, (1.22)

ϕ′(−p) = γ1, ϕ′(q) = γ2, (1.23)

ϕ(−p) = p tanβ1, ϕ(q) = q tan β2. (1.24)

Theorem 1.5. Let the assumptions (1.5)–(1.8) be in force. We further assume

−β1 < α2 < α1 < β2. (1.25)

Let T be given as in (1.18) and (v, p, q) be defined as above. Then
(i) for any initial data in C1+α, the corresponding ω-limit set is not empty;
(ii) any ω-limit is a solution to (1.22)–(1.24);
(ii) if we further assume a(s) to be analytic, then v(y, s) will converge to one of the

ω-limits as s → ∞.

Remark 1.1. The backward self-similar solutions in the case a(s) ≡ s were extensively
studied in [9], where existence and nonuniqueness as well as the properties of solutions
were discussed. In the case of general a(s), Theorem 1.5 establishes the existence of such
a backward self-similar solution under the additional assumption (1.25).

This paper is organized as follows. In section 2, we derive some a priori estimates for
solutions of (FBP). Also, we give a proof of the global existence of solutions of (FBP)
in the area-preserving and area-expanding cases (Theorem 1.2). We then give a proof
for the convergence of the solution to a line in the area-preserving case in section 3
(Theorem 1.3). In section 4, we turn to the shrinking case and give some preliminary
results, where we also prove the existence result as well as the finite-time vanishing result
(Theorem 1.4). Finally, we study in section 5 the asymptotic behavior of the solution of
(FBP) in the shrinking case and prove Theorem 1.5. The convergence result in section 5
depends also on the properties of the backward self-similar solutions derived in section 6.
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2. Some a priori estimates. In this section we derive some a priori estimates for
solutions of (FBP). For the estimates in this section, we shall always assume (1.5)–(1.8).
Note that under these assumptions, the free boundaries x = ξi(t) (i = 1, 2) and their
first-order derivatives are Hölder continuous for t > 0 (Proposition 1.1). These regularity
properties of the free boundary should be used throughout this paper.

We first get the L∞ bounds on ux, which is a simple application of the comparison
principle. We assume that the classical solution exists on [0, τ ), for some 0 < τ ≤ +∞.

Lemma 2.1.
|ux(x, t)| ≤ C1 for 0 < t < τ, (2.1)

where
C1 = max(|γ1|, |γ2|, ‖(u0)x‖L∞). (2.2)

Note that Lemma 2.1 implies that a′(ux(x, t)) is uniformly bounded from above and
bounded from below by a positive constant. Thus the equation (1.1) becomes uniformly
parabolic.

We next derive half-sided estimates for uxx.

Lemma 2.2. For any c0 > 0, there exists a constant C such that

uxx ≤ C for − ξ1(t) < x < ξ2(t), c0 < t < τ. (2.3)

Proof. Differentiating boundary conditions (1.2), (1.3) at x = ξ2(t) in t, we obtain

uxx(ξ2(t), t)ξ′2(t)+uxt(ξ2(t), t) = 0, ux(ξ2(t), t)ξ′2(t)+ut(ξ2(t), t) = ξ′2(t) tanβ2. (2.4)

Using the equation (1.1) and the boundary condition (1.2), we now get

utx(ξ2(t), t) = −uxx(ξ2(t), t)ξ′2(t)

= − ut(ξ2(t), t)
a′(ux(ξ2(t), t))

ξ′2(t)

= − ut(ξ2(t), t)
a′(ux(ξ2(t), t))

( ut(ξ2(t), t)
tan β2 − ux(ξ2(t), t)

)
= − 1

(tanβ2 − γ2)a′(γ2)
u2

t (ξ2(t), t) ≤ 0.

Similarly,

−utx(−ξ1(t), t) = − 1
(tanβ1 + γ1)a′(γ1)

u2
t (ξ1(t), t) ≤ 0.

It is clear that ut satisfies

utt = a′(ux)utxx + a′′(ux)utx.

It is proved in [3] that uxx(x, t) is bounded for t = c0 for small c0 > 0, provided we
assume u0 ∈ C1+α for some α ∈ (0, 1). It follows that ut = a′(ux)uxx is bounded for
t = c0. Thus we can apply the maximum principle to ut to conclude that ut is bounded
from above. This implies that uxx = ut/a′(ux) is bounded from above. �

Remark 2.1. If u0 ∈ C2 and satisfies the second-order compatibility condition at the
boundary, then we can take c0 = 0 in the above lemma.

We next derive the lower bound for uxx.
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Lemma 2.3. If

u(0, t) ≥ m for 0 < t < τ, (2.5)

for some m > 0, then for any c0 > 0, there exists C independent of m such that

uxx ≥ −C

m
for − ξ1(t) < x < ξ2(t), c0 < t < τ. (2.6)

Proof. By changing the value of a(p) outside |p| > C1 (where C1 is from (2.2) in
Lemma 2.1) if necessary, we may assume without loss of generality that l < a′(p) < 1/l

for all p ∈ (−∞,∞) for some l > 0 and a ∈ C2. This implies that the inverse function of
a−1(·) is well defined on (−∞,∞).

We choose w such that

a(w) =
C

m
(u − x tanβ2) + a(γ2).

If we take C such that C + a(γ2) ≥ a(C1), then ux(0, t) ≤ w(0, t), ux(ξ2(t), t) = γ2 =
w(ξ2(t), t) for 0 < t < τ . Since uxx is bounded for t = c0 and tanβ2 − ux(ξ2(c0), c0) =
tanβ2 − γ2 > 0, there exists ε > 0 such that tanβ2 − ux(x, c0) > (tanβ2 − γ2)/2 for
x ∈ [ξ2(c0) − ε, ξ2(c0)]. Using the bounds on uxx and ux, we can choose C large enough
so that

uxx(x, c0) > − Cl

2m
(tanβ2 − γ2)

≥ − C

ma′(w)
(tanβ2 − ux(x, c0))

= wx(x, c0) for x ∈ [ξ2(c0) − ε, ξ2(c0)].

Integrating this inequality over the interval [x, ξ2(c0)], using also the boundary condition
ux(ξ2(c0), c0) = w(ξ2(c0), c0) = γ2, we find that

ux(x, c0) ≤ w(x, c0) for ξ2(c0) − ε ≤ x ≤ ξ2(c0).

Since u − x tanβ2 is positive on the interval x ∈ [0, ξ2(c0) − ε], it is clear that the above
inequality is valid for 0 < x < ξ2(c0) − ε if we choose the constant C in the definition of
w to be large enough.

Now that the constant C in w is fixed. We can finally define the uniformly parabolic
operator L (in the definition we fix on ux, uxx and w) by

L[ϕ] = ϕt − [a(ϕ)]xx − C

ma′(w)
uxx[a′(ux) − a′(ϕ)].

Clearly

L[ux] = uxt − [a(ux)]xx − C

ma′(w)
uxx[a′(ux) − a′(ux)] = 0
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and

L[w] = wt − [a(w)]xx − C

ma′(w)
uxx[a′(ux) − a′(w)]

=
C

m

( 1
a′(w)

ut − uxx

)
− C

ma′(w)
uxx[a′(ux) − a′(w)]

=
C

m

( 1
a′(w)

a′(ux)uxx − uxx

)
− C

ma′(w)
uxx[a′(ux) − a′(w)]

= 0.

Thus by comparison

ux < w for 0 < x < ξ2(t), c0 < t < τ.

Thus

uxx(ξ2(t), t) ≥ wx(ξ2(t), t) ≥ − C

ml
(tanβ2 − γ2) for c0 < t < τ.

One can similarly show that

ux > a−1
(
− C

m
(u + x tanβ1) + a(γ1)

)
for − ξ1(t) < x < 0, c0 < t < τ

and obtain
uxx(−ξ1(t), t) ≥ − C

ml
(γ1 + tanβ1) for c0 < t < τ.

These estimates imply that (by using the equation)

ut(x, t) ≥ −C∗

m
for x = −ξ1(t), x = ξ2(t), c0 < t < τ. (2.7)

Differentiating the equation (1.1) in t and applying the maximum principle to ut, we
obtain

ut ≥ −C∗

m
for − ξ1(t) < x < ξ2(t), c0 < t < τ.

Using the equation (1.1) again, we conclude the lemma. �
These estimates imply the classical global existence in the area-preserving and area-

expanding cases as claimed in Theorem 1.2.
Proof of Theorem 1.2. We can choose any γ ∈ [γ1, γ2] and d > 0 such that u0(x) ≥

γx + d for x ∈ [−ξ1(0), ξ2(0)]. Then by comparison, we immediately get

u(x, t) ≥ γx + d for − ξ1(t) < x < ξ2(t). (2.8)

By Lemma 2.1, ux is uniformly bounded by C1. By (2.8), u(0, t) ≥ d. Thus if we choose
m = d in Lemma 2.3, then uxx is also uniformly bounded for t > c0, which in turn
implies that ut is bounded for t > c0 by using the equation (1.1). The estimate (2.8) also
implies

min[ξ1(t), ξ2(t)] ≥ δ (2.9)

for some δ > 0. From (2.4), (1.2) and the uniform bound on ut, we conclude that

ξ′2(t) =
ut(ξ2(t), t)
tan β2 − γ2

(2.10)

is uniformly bounded for t > t0. Similarly, ξ′2(t) is also bounded for t > c0. Therefore
ξi(t) (i = 1, 2) are bounded by Ct + C and u(x, t) is therefore also bounded by Ct + C.
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Using these bounds in Proposition 1.1, we find that the solution can be extended to
all t. �

Remark 2.2. We proved that for the case γ1 ≤ γ2, the solution is global, and

sup
c0<t<∞

{‖u(·, t)‖W 2,∞[−ξ1(t),ξ2(t)]+‖ut(·, t)‖L∞[−ξ1(t),ξ2(t)]+|ξ′1(t)|+|ξ′2(t)|} ≤ C. (2.11)

This estimate is useful in the asymptotic study for the area-preserving case.

3. Asymptotic limit for the area-preserving case. For the case γ1 ≥ γ2, we can
choose any γ ∈ [γ2, γ1] and D > 0 such that u0(x) ≤ γx + D for x ∈ [−ξ1(0), ξ2(0)].
Then by comparison, we immediately get

u(x, t) ≤ γx + D for − ξ1(t) < x < ξ2(t). (3.1)

Choosing γ = γ1 and γ = γ2 respectively, using also (1.3), we obtain

ξ1(t) ≤
D

tanβ1 + γ1
, ξ2(t) ≤

D

tan β2 − γ2
. (3.2)

In particular, if γ1 = γ2 := γ, then we can combine (2.8) and (3.1):

γx + d ≤ u(x, t) ≤ γx + D for − ξ1(t) < x < ξ2(t), 0 < t < ∞. (3.3)

By (2.11), we also have uniform bounds on ux, uxx, ξ′i(t) (i = 1, 2) for t ∈ [c0,∞).
Proof of Theorem 1.3. For

A(s) :=
∫ s

0

a(y)dy

and

J(t) =
∫ ξ2(t)

−ξ1(t)

A(ux(x, t))dx,

we have (using the boundary conditions)

J ′(t) =
∫ ξ2(t)

−ξ1(t)

a(ux)uxtdx + A(γ)ξ′2(t) + A(γ)ξ′1(t)

= −
∫ ξ2(t)

−ξ1(t)

[a(ux)]xutdx + a(ux)ut

∣∣∣ξ2(t)

−ξ1(t)
+ A(γ)ξ′2(t) + A(γ)ξ′1(t)

= −
∫ ξ2(t)

−ξ1(t)

u2
t dx + [a(γ)(tanβ2 − γ) + A(γ)]ξ′2(t)

+[−a(γ)(tanβ1 + γ) + A(γ)]ξ′1(t).

Thus

J(t) +
∫ t

c0

∫ ξ2(t)

−ξ1(t)

u2
t dx ≤ J(c0) + C(‖ξ1‖L∞[c0,∞) + ‖ξ2‖L∞[c0,∞)).

The right-hand side of the above equality is uniformly bounded. Thus∫ ∞

c0

∫ ξ2(t)

−ξ1(t)

u2
t dx < ∞. (3.4)

This estimate, together with the compactness of the solution as t → ∞ (subsequence of
u(x, t+tj) converges in C1+α in x up to the boundary and C2 in the interior, ξi(tj) → ξi∞
(i = 1, 2)), we immediately obtain the convergence on the subsequence. By following the
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standard argument as in [7], we find that the subsequential limit function must be a
solution to the steady state equation [a(ux)]x = 0 with the boundary conditions (1.2),
(1.3). It is clear that the only solutions to the steady state are lines of the type γx + d1

for some d1.
With the D(t) defined in (1.6), it is clear that D′(t) = 0 in the area-preserving case.

In particular, D(t) ≡ D(0) for all t > 0. If we pass to the limit along the convergent
subsequence, we find∫ ξ2∞

−ξ1∞

(γx + d1)dx − 1
2
ξ2
1∞ tanβ1 −

1
2
ξ2
2∞ tanβ2 = D(0). (3.5)

From (1.3), we also have

−γξ1∞ + d1 = ξ1∞ tanβ1, γξ2∞ + d1 = ξ2∞ tanβ2. (3.6)

It is clear that (3.5) and (3.6) uniquely determine d1, ξ1∞ and ξ2∞. As in [7], the
uniqueness of the limit (d1, ξ1∞, ξ2∞) implies that u(x, t), ξi(t) (i = 1, 2) all converge
uniformly as t → ∞. �

Remark 3.1. Let b = limt→∞[ξ1(t)+ξ2(t)]. The convergence theorem of the standard
parabolic theory gives the exponential convergence rate up to the first eigenvalue (see
[5]; the convergence rate for the linearized problem, the uniform convergence of the non-
linear problem, together with the convergence rate for the linearized problem, imply the
convergence rate for the nonlinear problem). More precisely, for any λ ∈ (0, a′(γ)π2/b2),
limt→∞ eλt|u(x, t) − γx − d1| = 0.

4. Preliminary for the shrinking case. The assumption γ1 > γ2 means that there
is a negative total heat flux through the boundary and therefore u should decrease overall.

Notice that the estimates (3.1) and (3.2) were proved for both the area-preserving and
area-shrinking cases. These bounds are valid as long as the solution exists:

u(x, t) ≤ γx + D, ξ1(t) ≤ C, ξ2(t) ≤ C.

In this section we assume that [0, T ) is the maximal existence interval for a classical
solution. In the Lemmas 4.1–4.4 in this section, we only need to assume that the initial
data u0 is C1+α and we do not need the condition (1.17).

We first prove the Hölder estimates for u(x, t) in the t direction. We extend u(x, t) to
all x ∈ (−∞,∞) by defining

u(x, t) =
{

−x tanβ1 for x < −ξ1(t),
x tanβ2 for x > ξ2(t).

Lemma 4.1. The extended function u(x, t) satisfies, for any t1, t2 ∈ [0, T ),

|u(x, t1) − u(x, t2)| ≤ C|t1 − t2|1/2. (4.1)

Proof. The extended function satisfies the equation (1.1) both inside and outside the
region {(x, t), x ∈ (−ξ1(t), ξ2(t))}. There is a jump in the first-order x-derivative
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across the boundary, but |ux| is uniformly bounded by max{C1, tan β1, tanβ2} for all
x ∈ (−∞,∞), and u satisfies in the distribution sense the equation

ut =
∂

∂x

[
a(ux) + {a(γ2) − a(tanβ2)}H(x − ξ2(t))− {a(γ1) − a(− tanβ1)}H(x + ξ1(t))

]
,

where H(t) is the Heaviside function. It follows that, for any x1, x2 and t1 < t2,∣∣∣ ∫ x2

x1

(
u(x, t1) − u(x, t2)

)
dx

∣∣∣ ≤ ∫ t2

t1

∣∣∣ ∫ x2

x1

ut(x, τ)dx
∣∣∣dτ ≤ C|t1 − t2|.

For any given x∗ and t1, t2, we choose x1, x2 such that x1 < x∗ < x2 and |x1 − x2| =
|t1 − t2|1/2. Then

|u(x∗, t1) − u(x∗, t2)|

≤ 1
|x1 − x2|

∣∣∣ ∫ x2

x1

(
u(x, t1) − u(x, t2)

)
dx

∣∣∣ + ‖ux‖L∞ |x1 − x2|

≤ C|t1 − t2|1/2.

This completes the proof. �
If we replace the positiveness assumption on u(0, t) by certain assumptions on u(x0, t),

we can repeat the proof of Lemma 2.3 to conclude :

Lemma 4.2. If

u(x0, t) − max[(tanβ2)x0,−(tanβ1)x0] > m for 0 < t < τ,

for some m > 0, then for any c0 > 0, there exists C independent of m such that

uxx ≥ −C

m
for − ξ1(t) < x < ξ2(t), c0 < t < τ. (4.2)

For a positive solution, we have

Lemma 4.3. If u(x, t) > 0 for t ∈ [0, τ ], then

u(x, t) > max[(tanβ2)x,−(tanβ1)x], x ∈ (−ξ1(t), ξ2(t)), ξ1(t) > 0, ξ2(t) > 0

for t ∈ [0, τ ].

Proof. Using the boundary condition, we can compare the solution with the functions
(tanβ2)x and −(tanβ1)x respectively to conclude the result. �

We now prove that the positive solution must vanish at t = T .

Lemma 4.4. Suppose that [0, T ) is the maximal existence interval for the classical solution
and T < ∞. If u(x, t) remains positive on {(x, t), −ξ1(t) < x < ξ2(t), 0 < t < T}, then

lim
t→T−

ξ1(t) = 0, lim
t→T−

ξ2(t) = 0. (4.3)

Proof. Since ut is bounded above by Lemma 2.2, ξ′i(t) ≤ C (i = 1, 2) (cf. (2.10)); the
function ξi(t)− Ct is therefore monotonically decreasing and the limit lim

t→T−
(ξi(t) − Ct)

exists. Therefore the limit lim
t→T−

ξi(t) exists, and we define it to be ξi(T ). With this

definition, it is clear that ξi(t) is continuous on [0, T ]. If ξ1(T ) + ξ2(T ) > 0, then for
x0 = [ξ1(T ) + ξ2(T )]/2, we have u(x0, T ) > max[(tanβ2)x0,−(tanβ1)x0], by Lemma 4.3
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and the strong maximum principle. Now we can apply Lemma 4.2 to conclude that uxx

remains bounded near t = T and therefore the classical solution can be further extended
beyond t = T . This contradicts our assumption that [0, T ) is the maximal existence
interval. Thus we must have ξ1(T ) + ξ2(T ) = 0 and the lemma is proved. �

Next we give a sufficient condition for the solution u to remain positive.
If we have the additional assumption (1.17), then we claim that u is always positive

as follows.

Lemma 4.5. Suppose that [0, T ) is the maximal existence interval for the classical solution
and T < ∞. Under the additional assumption (1.17), we have u(x, t) > 0 for 0 ≤ t < T .
In particular, Lemma 4.4 implies that ξ1(T ) = ξ2(T ) = 0 and u(0, T ) = 0.

Proof. Let [0, T ∗) be the maximal interval on which u(x, t) remains positive. Then
both ξ1 and ξ2 are positive on this interval. We claim that T ∗ = T . In fact, if T ∗ < T ,
then u(x, t) is C2 for t ∈ [0, T ∗] and ξ1(T ∗)+ξ2(T ∗) > 0. Lemma 4.3 implies that u(x, T ∗)
is positive for x 	= 0. Therefore we must have u(0, T ∗) = 0. If −ξ1(T ∗) < 0 < ξ2(T ∗), then
u(x, t) reaches the minimum at an interior point (0, T ∗) and therefore u ≡ 0 and we get a
contradiction. If ξ1(T ∗) = 0, then ξ2(T ∗) > 0. Using Lemma 4.3 and applying the strong
maximum principle to u−(tanβ2)x, we obtain ux(0, T ∗)−tanβ2 > 0, i.e., tan α1 > tan β2.
This contradicts (1.17). We can similarly get a contradiction if ξ2(T ∗) = 0. Thus we
proved T ∗ = T , and u(x, t) > 0 for 0 ≤ t < T . �

We are now ready to prove Theorem 1.4.
Proof of Theorem 1.4. In view of Lemmas 4.1–4.5, the parts (ii) and (iii) of Theo-

rem 1.4 are already established if we can establish (i), namely, for the maximal existence
interval [0, T ), T is finite and is given in (1.18). Let us denote the right-hand side of
(1.18) to be T ∗, i.e., T ∗ = D(0)/[a(γ1)− a(γ2)] and we want to show T = T ∗. It is clear
from (1.14) that T ∗ is the unique time such that

D(t) > 0 for 0 < t < T ∗, D(T ∗) = 0. (4.4)

By Lemma 4.5, u(x, t) > 0 on the maximal existence interval [0, T ). Then using
Lemma 4.3, we find that the D(t) defined in (1.13) satisfies

D(t) > 0 for 0 ≤ t < T.

By Lemma 4.4, D(T ) = 0. By comparing this with (4.4), we conclude that T = T ∗. This
finishes the proof. �

The rest of this section will be devoted to deriving additional estimates needed for the
proof of the asymptotic expansion. If we replace (1.17) with (1.25), we can also derive
the estimate on ξj(t), j = 1, 2.

Lemma 4.6. Suppose that [0, T ) is the maximal existence interval for the classical solu-
tion, where T is given by (1.18). Under the further assumption (1.25),

0 < ξj(t) < C
√

T − t for j = 1, 2, t < T. (4.5)

Proof. First, it follows from Lemmas 4.3 and 4.5 that ξj(t) > 0 for j = 1, 2, t < T .
Integrating the inequality (2.3), we obtain

γ2 − C(ξ2(t) − x) ≤ ux(x, t) ≤ γ1 + C(x + ξ1(t)) for − ξ1(t) < x < ξ2(t), t < T.
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Integrating this inequality again, we get

u(x, t) ≤

⎧⎨
⎩

u(0, t) + γ1x + C
(

1
2x2 + xξ1(t)

)
for 0 < x < ξ2(t),

u(0, t) + γ2x + C
(

1
2x2 − xξ2(t)

)
for − ξ1(t) < x < 0.

(4.6)

Thus∫ ξ2(t)

−ξ1(t)

u(x, t)dx ≤ [ξ1(t) + ξ2(t)]u(0, t) +
γ1

2
ξ2
2(t) − γ2

2
ξ2
1(t) + C̃[ξ3

1(t) + ξ3
2(t)]. (4.7)

Substituting this estimate into the expression for D(t) in (1.13), we derive

D(t) + 1
2 (tanβ1 + γ2)ξ2

1(t) + 1
2 (tanβ2 − γ1)ξ2

2(t)
≤ [ξ1(t) + ξ2(t)]u(0, t) + C̃[ξ3

1(t) + ξ3
2(t)].

(4.8)

Notice that the assumption (1.25) implies that the coefficients (tanβ1+γ2) and (tanβ2−
γ1) are positive. Since D(t) > 0 for t < T , (4.8) implies, for r(t) =

√
ξ2
1(t) + ξ2

2(t),

r2(t)[1 − C∗r(t)] ≤ Cr(t)u(0, t).

Choosing t to be sufficiently close to T such that 1 − C∗r(t) ≤ 1/2, we then obtain

r(t) ≤ Cu(0, t) ≤ C
√

T − t.

The last inequality was obtained from the Hölder continuity in t for u(0, t) (Lemma 4.1).
This completes the proof. �

We finally prove

Lemma 4.7. Under the assumptions of Lemma 4.6, there exists c > 0 such that

u(0, t) ≥ c
√

T − t. (4.9)

Proof. Using Lemma 4.6 in (4.8), we obtain

[a(γ1) − a(γ2)](T − t) = D(t) ≤ C
√

T − t u(0, t) + C(T − t)3/2,

from which the lemma follows. �

5. Asymptotic behavior for the shrinking case. In this section we want to study
the asymptotic behavior as t → T . Throughout this section we shall assume that (1.25)
is satisfied. Let

u(x, t) =
√

2(T − t) v(y, s), y =
x√

2(T − t)
, T − t = e−2s,

ξ1(t) =
√

2(T − t) p(s), ξ2(t) =
√

2(T − t) q(s).

Then

vs = [a(vy)]y − yvy + v, −p(s) < y < q(s), s > s0 := − ln(T )/2, (5.1)

vy(−p(s), s) = γ1, vy(q(s), s) = γ2, s > s0, (5.2)

v(−p(s), s) = p(s) tanβ1, v(q(s), s) = q(s) tanβ2, s > s0. (5.3)

Under the assumption (1.25), it is proved in section 4 that u is positive. It is clear
that

p(s) > 0, q(s) > 0.
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Combining the lemmas from section 4, we have

Lemma 5.1. For a positive solution, we have

max[(tan β2)y,−(tanβ1)y] ≤ v(y, s) ≤ C, |vy(y, s)| ≤ C, (5.4)

and
0 < p(s) ≤ C, 0 < q(s) ≤ C. (5.5)

Proof. (5.5) is an immediate result from Lemma 4.6. The gradient bound is an imme-
diate result from the gradient bound for u. Lemma 4.3 gives the lower bound estimates
for v(y, s).

The estimate u(0, t) ≤ C
√

T − t implies that v(0, s) ≤ C. Since p(s), q(s) are bounded,

v(y, s) ≤ v(0, s) + ‖vy‖L∞ ≤ C.

The lemma is proved. �
Next, we prove the following nondegeneracy lemma.

Lemma 5.2. There exists c > 0 such that

p(s) > c, q(s) > c. (5.6)

Proof. Using Lemma 4.7, we obtain, for some c1 > 0,

v(0, s) ≥ c1.

Using this estimate and the gradient bounds on v, we obtain

v(y, s) ≥ c1

2
for |y| < c2,

for some c2 > 0. Now the lemma follows from the boundary condition. �
Using Lemma 5.2 and interior parabolic estimates, all derivatives of v(y, s) are bounded

at y = 0. We now derive the following estimate for the second-order derivative.

Lemma 5.3. There exists a constant C such that

−C ≤ vyy(y, s) ≤ Ce−s for − p(s) ≤ y ≤ q(s), s0 < s < ∞. (5.7)

Proof. If we rewrite the estimate in Lemma 2.3, we obtain

vyy ≤
√

2Ce−s.

Using Lemmas 2.3 and 4.7, we get

uxx(x, t) ≥ − C√
T − t

.

Rewriting this in the y variable, we get vyy ≥ −C. �
Combining these lemmas and using the boundary conditions, we obtain

Lemma 5.4.
|p′(s)| + |q′(s)| ≤ C for s0 < s < ∞. (5.8)

Proof. Since vs is bounded, we use the boundary condition to write p′(s) and q′(s) in
terms of vs to conclude the lemma. �
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If we let

D∗(s) =
∫ q(s)

−p(s)

v(y, s)dy − 1
2
p2
1(s) tanβ1 −

1
2
p2
2(s) tanβ2,

then
D∗(s) =

1
2(T − t)

D(t) =
1
2
[a(γ1) − a(γ2)] for s0 < s < ∞. (5.9)

We next derive energy estimates.
Following [13] (see also [8]), we define

E(s) =
∫ q(s)

−p(s)

Φ
(
y, v(y, s), vy(y, s)

)
dy, (5.10)

where Φ = Φ(y, v, w) is to be determined. Then
d

ds
E(s) = J0 + J1 + J2, (5.11)

where

J0 = −
∫ q(s)

−p(s)

1
a′(vy(y, s))

Φww(y, v(y, s), vy(y, s))|vs|2(y, s)dy,

J1 = Φ(q(s), q(s) tanβ2, γ2)q′(s) + Φ(−p(s), p(s) tanβ1, γ1)p′(s)

+Φw(q(s), q(s) tanβ2, γ2)(tanβ2 − γ2)q′(s)

−Φw(−p(s), p(s) tanβ1, γ1)(tanβ1 + γ1)p′(s),

J2 =
∫ q(s)

−p(s)

{
Φv − Φwy − Φwvvy − Φww

[
yvy − v

a′(vy)

]}
vs(y, s)dy

≡
∫ q(s)

−p(s)

K
(
y, v(y, s), vy(y, s)

)
vs(y, s)dy.

Let

Φ(y, v, w) =
∫ w

0

(w − σ)P (y, v, σ)dσ −
∫ v

0

µ

a′(0)
P (y, µ, 0)dµ.

Then

Φww(y, v, w) = P (y, v, w)

and

K(y, v, w) =
∫ w

0

{
− σ

∂P

∂v
(y, v, σ) − ∂P

∂y
(y, v, σ) − ∂

∂σ

[
P (y, v, σ)

yσ − v

a′(σ)

]}
dσ.

We want to construct P so that the braces {· · · } in the above vanish. Let P (y, v, w) =
exp(Q(y, v, w)). Then this is equivalent to

wQv(y, v, w) + Qy(y, v, w) +
yw − v

a′(w)
Qw(y, v, w) +

∂

∂w

{yw − v

a′(w)

}
= 0. (5.12)

This linear PDE is solved through characteristics.
We let ψ(η; y, v, w) be defined as the solution of the conjugate problem with the ter-

minal condition:

a′(ψη)ψηη − ηψη + ψ = 0, η ∈ (−C∗, y), y ≤ C∗, (5.13)

ψ(y; y, v, w) = v, ψη(y; y, v, w) = w, (5.14)
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where we assume that p(s) ≤ C∗, q(s) ≤ C∗ for all s > s0. Since a′(s) ∈ (l, 1/l) for some
l > 0, the solution of this ODE is well defined. It is clear that for bounded v and w, the
solution ψ and its derivative ψη are uniformly bounded.

Differentiating (5.14) in y, we obtain ψη(y; y, v, w) + ψy(y; y, v, w) = 0, and hence

ψy(y; y, v, w) = −ψη(y; y, v, w) = −w.

Similarly, since ψηη(y; y, v, w) + ψηy(y; y, v, w) = 0,

ψyη(y; y, v, w) = −ψηη(y; y, v, w)

=
−yψη(y; y, v, w) + ψ(y; y, v, w)

a′(ψη(y; y, v, w))
=

−yw + v

a′(w)
.

Next, differentiating (5.14) in v and w, respectively, we find that

ψv(y; y, v, w) = 1, ψvη(y; y, v, w) = 0, ψw(y; y, v, w) = 0, ψwη(y; y, v, w) = 1.

Thus the functions ψy(η; y, v, w) and −wψv(η; y, v, w)+
−yw + v

a′(w)
ψw(η; y, v, w) and their

first derivatives in η agree at η = y.
Differentiating (5.13) with respect to the parameters y, v and w, using also the unique-

ness of the solution of the corresponding ODE, we derive

ψy(η; y, v, w) = −wψv(η; y, v, w) +
−yw + v

a′(w)
ψw(ξ; y, v, w). (5.15)

Let R(y, v, w) =
∂

∂w

{yw − v

a′(w)

}
and define

Q(y, v, w) = −
∫ y

0

R(η, ψ(η, y, v, w), ψη(η, y, v, w))dη. (5.16)

Then a direct computation shows that (using also (5.15))

wQv(y, v, w) + Qy(y, v, w) +
yw − v

a′(w)
Qw(y, v, w) +

∂

∂w

{yw − v

a′(w)

}

= wQv(y, v, w) +
yw − v

a′(w)
Qw(y, v, w) −

∫ y

0

(Rvψy + Rwψηy)dη

= −
∫ y

0

{
w(Rvψv + Rwψηv) +

yw − v

a′(w)
(Rvψw + Rwψηw)

+(Rvψy + Rwψηy)
}
dη

= −
∫ y

0

{
Rv ·

[
wψv +

yw − v

a′(w)
ψw + ψy

]}
dη

−
∫ y

0

{
Rw ·

[
wψηv +

yw − v

a′(w)
ψηw + ψηy

]}
dη.

The first term of the above expressions vanishes by (5.15), and the second term also
vanishes by differentiating (5.15) in η.

Substituting this equality into the expression for K, we get

K(y, v, w) ≡ 0,
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and hence

J2 = 0.

Using the bounds on p(s) and q(s), we obtain that

sup
s0<s<∞

∣∣∣ ∫ s

s0

J1(τ )dτ
∣∣∣ ≤ C < ∞. (5.17)

Thus we proved:

Theorem 5.5.∫ ∞

s0

∫ q(s)

−p(s)

1
a′(vy(y, s))

P (y, v(y, s), vy(y, s))|vs|2(y, s)ds < ∞. (5.18)

It is clear that l ≤ a′(s) ≤ 1/l for some l > 0, and therefore

c0 ≤ P (y, v(y, s), vy(y, s))
a′(vy(y, s))

≤ C for s0 < s < ∞

for some 0 < c0 < C < ∞.
Proof of Theorem 1.5 (i) (ii). We follow the standard procedure in [7], which was

already used in the proof of Theorem 1.3.
Theorem 5.5, together with the estimates on the derivatives of the solution established

in sections 4 and 5, immediately imply that a subsequence will convergence to the ω-
limit which is a stationary solution of (5.1). The vyy estimates ensure that the boundary
conditions remain in force after taking the limit. �

We call a stationary solution of (5.1)–(5.3) a backward self-similar solution. Note
that in general we do not have the uniqueness of backward self-similar solutions. For
example, in the heat equation case, there are at least two backward self-similar solutions
if tan−1 Gc < α2 < −β1 < α1 ≤ β2, where Gc < − tanβ1 is a constant depending only
on α1 and β1. Also, there is at least one backward self-similar solution if (1.25) holds
(cf. Theorem 4.1 in [9]).

Although the ODE solution may not be unique in general, there can only be finitely
many solutions in the case that a(s) is analytic. We will prove this fact in section 6. This
fact will enable us to establish the following theorem.

Proof of Theorem 1.5 (iii). Suppose that both ϕ1 and ϕ2 are the ω-limit. The es-
timates in the previous sections imply that ϕi (i = 1, 2) are well-defined in a small
neighborhood of 0. If ϕ1 ≡ ϕ2 in a small neighborhood of 0, then it is clear that ϕ1 ≡ ϕ2

everywhere, by uniqueness of the ODE. Thus if the ω-limit is not unique, then there
must exists a small δ such that ϕ1(δ) 	= ϕ2(δ). For any number η between ϕ1(δ) and
ϕ2(δ), we can choose sj → ∞ such that v(δ, sj) = η. Using the compactness and the
Lyapunov function we find that v(y, s + sj) will converge to the ODE solution which is
an ω-limit with value η at y = δ. Thus we obtain a continuum of ω-limits, which is a
contradiction to the result in the next section. �

6. The backward self-similar solution. The backward self-similar solution in the
case of the heat equation (a(s) ≡ s) has been studied in [9].
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For the general case, the limit ϕ will satisfy:

[a(ϕ′)]′ − yϕ′ + ϕ = 0,−p < y < q, p > 0, q > 0, (6.1)

ϕ′(−p) = γ1, ϕ′(q) = γ2, (6.2)

ϕ(−p) = p tanβ1, ϕ(q) = q tan β2. (6.3)

Lemma 6.1. Under the assumption (1.25), there exists ε0 > 0 such that (6.1)–(6.3) has
no solution for p ∈ [0, ε0].

Proof. We let ϕ(y, p) be the solution of

[a(ϕy)]y − yϕy + ϕ = 0, y > −p, (6.4)

ϕy(y, p) = γ1 for y = −p, (6.5)

ϕ(y, p) = p tanβ1 for y = −p. (6.6)

It is clear that if p = 0, then ϕ(y, 0) = γ1y is the unique solution of (6.4)–(6.6) and
therefore the second equality in (6.2) cannot be satisfied. For p > 0, let G(y, p) =
yϕy(y, p) − ϕ(y, p). Then

Gy =
y

a′(ϕy(y, p))
G, G(−p, p) = −p(γ1 + tanβ1).

Thus

G(y, p) = −p(γ1 + tanβ1) exp
∫ y

−p

τ

a′(ϕy(τ, p))
dτ < 0 (6.7)

and
lim

y→+∞
G(y, p) = −∞. (6.8)

In particular, ϕyy(y, p) = G/a′(ϕy) < 0, and ϕy(y, p) < γ1 for y > −p. Thus if a solution
of (6.1)–(6.3) exists, then

q tanβ2 = ϕ(q, p) ≤ ϕ(−p, p) + γ1(q + p) = p tanβ1 + γ1(q + p),

which implies that q(tanβ2 − γ1) ≤ p(tanβ1 + γ1). From (6.7) and the relationship
ϕyy(y, p) = G/a′(ϕy), we also obtain the estimates for ϕyy. Combining all these esti-
mates, we obtain

γ1 − γ2 = −
∫ q

−p

ϕyy(τ, p)dτ ≤ (p + q) max
τ∈[−p,q]

(−ϕyy(τ, p)) ≤ Cε2
0 for p ∈ (0, ε0].

This is a contradiction if ε0 is small. �
We next prove:

Lemma 6.2. In addition to the assumption (1.25), we assume that a(s) is analytic in
s for s ∈ [γ2, γ1]. Then there are at most finitely many solutions of (p, q) satisfying
(6.1)–(6.3).

Proof. For p > ε0, the −ϕyy(y, p) is bounded from below by a positive constant. Thus
we can uniquely solve q = q(p) > −p such that

ϕy(q(p), p) ≡ γ2.
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The estimates (6.8) imply that q(p) is bounded from above. It is also clear that γ2 ≤
ϕy ≤ γ1 for −p ≤ p ≤ q(p).

Define, for p ≥ ε0,
K(p) := ϕ(q(p), p)− q(p) tanβ2. (6.9)

The above discussion implies that K(p) is well defined for all p ≥ ε0.
If p0 is a zero for K(p), we want to show p0 is an isolated zero for K.
If a(s) is analytic for s ∈ [γ2, γ1], then K is analytic. Therefore the zeros of K cannot

have a limit point unless K(p) is identically zero. Thus if p0 is not an isolated zero for
K, then K(p) ≡ 0 for p ≥ ε0. However, Lemma 6.1 implies that K(ε0) 	= 0. Thus we
obtain a contradiction and we proved that the zeros of K are isolated.

If p is sufficiently large, then it is clear from (6.7) that q(p) < 0 and thus K(p) > 0.
Since K(p) can only have finitely many isolated zeros on a bounded interval, the lemma
is proved. �
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