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ON A TYPE OF REAL HYPERSURFACES IN
COMPLEX PROJECTIVE SPACE

By

Christos BAIKOUSSIS* and David E. BLAIR

Abstract. We give a classification of real hypersurfaces in
complex projective space under assumptions that the structure vector

$\xi$ is principal, the focal map has constant rank and that $\nabla_{\xi}C=0$ ,

where $C$ is the Weyl conformal curvature tensor of the real
hypersurface.

1. Introduction

Let $M^{n}(c)$ denote an n-dimensional complex space form with constant
holomorphic sectional curvature $c$ . It is well known that a complete and simply
connected complex space form is either complex projective space $PC^{n}$ , complex
Euclidean space $C^{n}$ or complex hyerbolic space $HC^{l1}$ , according as $c>0,$ $c=0$

or $c<0$ .
In this paper we consider a real hypersurface $M$ of $PC^{ll}$ . The induced almost

contact metric structure and the Weyl conformal curvature tensor of the real
hypersurface $M$ in $PC^{n}$ are respectively denoted by $(\varphi, \xi, \eta, g)$ and $C$ . Many
differential geometers have studied $M$ by using the structure $(\varphi, \xi, \eta, g)$ . Typical
examples of real hypersurfaces in complex projective space $PC^{n}$ are
homogeneous ones and one of the first researches is the classification of these by
Takagi [12]. He proved that all homogeneous hypersurfaces of $PC^{n}$ could be
divided into six types which are said to be $A_{1},A_{2},B,C,D$ and $E$ (see Theorem A).

This result was generalized by Kimura [4], who classified real hypersurfaces of
$PC^{n}$ with constant principal curvatures and for which the structure vector $\xi$ is
principal. Now, there exist many studies of real hypersurfaces in $PC^{n}$ Some
hypersurfaces in $PC^{n}$ are characterized by conditions on the shape operator (or

principal curvatures) and one of the structure tensors. On the other hand, some
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studies about the nonexistence of real hypersurfaces under natural linear
conditions imposed on the Ricci tensor $S$ or $\nabla S$ or the Weyl conformal curvature
tensor $C$ or $\nabla C$ have been made by many researchers. Many results for real
hypersurfaces of complex projective space have been obtained by Cecil and Ryan
[1], Kimura [4], [5], Kon [7], S. Maeda [8], [9], Okumura [11], Takagi [12],
[13] and so on (for more details see [8]). In particular, it is well known that there
exist no Einstein real hypersurfaces $M$ in $PC^{n}$ for $n\geq 3$ (cf. [7]). Also
$PC^{\prime l}(n\geq 3)$ does not admit real hypersurfaces $M$ with parallel Ricci tensor $S[2]$ .
Recently S. Maeda [9], classified real hypersurfaces $M$ in $PC^{n}$ satisfying
$\nabla_{\xi}S=0$ (that is the Ricci tensor $S$ is parallel in the direction of the structure
vector $\xi=-JN$ , where $N$ is a unit normal vector field on $M$) under the conditions
that $\xi$ is a principal curvature vector of $M$ and that the focal map has constant
rank on $M$ .

On the other hand U. H. Ki, H. Nakagawa and Y. J. Suh [3] have proved that
$PC^{n}$ does not admit real hypersurfaces $M$ with harmonic Weyl tensor $C$ . So $PC^{n}$

does not admit real hypersurfaces $M$ with parallel Weyl tensor $C$ (that is $\nabla_{X}C=0$

for each vector $X$ tangent to $M$). This is perhaps natural since $\nabla C=0$ is not a
conformal invariant. However one might impose a weaker condition utilizing
some additional structure eventhough one might not have conformal invariance.
Thus we investigate real hypersurfaces $M$ by using the condition $\nabla_{\xi}C=0$ (on the
derivative of $C$) which is weaker than $\nabla C=0$ .

The purpose of this paper is to classify real hypersurfaces $M$ in $PC^{n}$

satisfying $\nabla_{\xi}C=0$ under the condition that $\xi$ is a principal curvature vector of $M$

and that the focal map has constant rank on $M$ .

THEOREM. Let $M$ be a real hypersurface of $PC^{n}(n\geq 3)$ on which $\xi$ is a
principal curvature vector with principal curvature $\alpha=2cot2r$ and the focal map

$\phi_{r}$ has constant rank. If for the Weyl conformal curvature tensor $C$ we have
$\nabla_{\xi}C=0$ , then $M$ is locally congruent to one of the following:

(1) a homogeneous real hypersurface which lies on a tube of radius $r$ over a
totally geodesic $PC^{k}(1\leq k\leq n-1)$ , where $0<r<\pi/2$ ,

(2) a non-homogeneous real hypersurface whch lies on a tube of radius $\pi/4$

over a Kaehler submanifold $\tilde{N}$ with nonzero principal curvature $\neq\pm 1$ .
(3) a non-homogeneous real hypersurface which lies on a tube of radius $r$

over a k-dimensional Kaehler submanifold $\tilde{N}$ on which the rank of each shape

operator is not grea $ter$ than 2 with nonzero principal curvature
$\neq\pm\sqrt{(n-k-1)/(k-1)}$ and $cot^{2}r=(n-k-1)/(k-1)$ , where $k=2,\cdots,n-1$ .
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REMARK 1. Since case (3) in the Theorem is a new example which is
different from case (7) in Maeda’s theorem in [9], it is essential to guarantee the
existence of the Kaehler submanifold $\tilde{N}^{k}(k\geq 2)$ such that the rank of each shape
operator is not greater than 2 in $PC^{n}$ . The following example $\tilde{N}^{n-1}$ is a complex
hypersurface (with singularity) in $PC^{n}$ such that the rank of each shape operator
is not greater than 2 in $PC^{n}$

EXAMPLE. Let $\gamma$ be a non-totally-geodesic complex curve in $PC^{n}$ and let
$\phi_{\pi/2}(\gamma)$ be a tube of radius $\pi/2$ around the curve 7, that is $\phi_{\pi/2}(\gamma)=\bigcup_{x\in\gamma}$

{ $exp_{X}(\pi/2)v,v$ is a unit normal vector of 7 at $x$ }. Then $\phi_{\pi/2}(\gamma)$ is an $(n- 1)-$

dimensional complex hypersurface in $PC^{n}$ (with singularity). Let $\pm cot\theta$ be the
eigenvalues of the shape operator $A_{v}$ with respect to a unit normal vector $v$ of

$\gamma$ . Then the principal curvatures of $\phi_{\pi/2}(\gamma)$ at $exp_{X}(\pi/2)v$ are given by (see

Proposition 3.1 in [1]) $cot(\pi/2+\theta)$ with multiplicity 1, $cot(\pi/2-\theta)$ with
multiplicity 1 and $0$ with multiplicity $2n-4$ .

2. Preliminaries.

First we briefly describe the basic properties of real hypersurfaces of a
complex projective space. Let $M$ be an orientable real hypersurface of
$PC^{n}(n\geq 3)$ with the Fubini-Study metric of constant holomorphic sectional
curvature 4. On a neighborhood of each point of $M$ , we denote by $N$ a local unit
normal vector field of $M$ in $PC^{n}$ It is well known that $M$ admits an almost
contact metric structure induced from the complex structure $J$ on $PC^{n}$ . Namely,
for the Riemannian metric $g$ of $M$ induced from the Fubini-Study metric $\tilde{g}$ of
$PC^{n}$ , we define a tensor field $\varphi$ of type $(1,1)$ , a vector fiels $\xi$ and a l-form $\eta$ on
$M$ by $g(\varphi X, Y)=\tilde{g}(JX, Y),g(\xi,X)=\eta(X)=\tilde{g}(JX,N)$ for any vector fields $X,$ $Y$ on $M$ .
Then we have

(2.1) $\varphi^{2}X=-X+\eta(X)\xi,$ $g(\xi,\xi)=1,$ $\varphi(\xi)=0$ .

The Riemannian connections $\tilde{\nabla}$ of $PC^{n}$ and $\nabla$ of $M$ are related by the following
formulas

(2.2) $\tilde{\nabla}_{X}Y=\nabla_{X}Y+g(AX, Y)N,\tilde{\nabla}_{X}N=-AX$

where $A$ is the shape operator of $M$ in $PC^{n}$

Now it follows from (2.2) that the structure $(\varphi, \xi, \eta, g)$ satisfies

(2.3) $(\nabla_{X}\varphi)Y=\eta(Y)AX-g(AX, Y)\xi,$ $\nabla_{X}\xi=\varphi AX$ .

Let $\tilde{R}$ and $R$ be the curvature tensors of $PC^{n}$ and $M$ , respectively. Since the
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curvature tensor $\tilde{R}$ has a nice form, namely $PC^{\prime}$
’ is of constant holomorphic

sectional curvature 4, the Gauss and Codazzi equations are respectively

$R(X, Y)Z=g(Y,Z)X-g(X,Z)Y+g(\varphi Y,Z)\varphi X-g(\varphi X,Z)\varphi Y$

$-2g(\varphi X, Y)\varphi Z+g(AY,Z)AX-g(AX,Z)AY$,

(2.4)

$(\nabla_{X}A)Y-(\nabla_{Y}A)X=\eta(X)\varphi Y-2g(\varphi X,Y)\xi$

By (2.1), (2.3) and (2.4) we get

(2.5) $QX=(2n+])X-3\eta(X)\xi+hAX-A^{2}X$

where $h=traceA$ and $Q$ denotes the Ricci operator of $M$ defined from the Ricci
tensor $S$ , i.e. $s(x,r)=g(QX,Y)$ . The Weyl conformal curvature tensor $C$ of $M$

is given by

$C(X, Y)Z=R(X, Y)Z+\frac{1}{2n-3}[g(QX,Z)Y-g(QY,Z)X+g(X,Z)QY$

(2.6)

$-g(Y,Z)QX]-\frac{\tau}{2(n-1)(2n-3)}(g(X,Z)Y-g(Y,Z)X)$

where $\tau$ is the scalar curvature of $M$ .
An eigenvector $X$ of the shape operator $A$ is called a principal curvature

vector and an eigenvalue $\lambda$ is called a principal curvature. From now on, we
assume that the structure vector field $\xi$ is principal, and $\alpha$ is the principal
curvature associated with $\xi$ , that is, $ A\xi=\alpha\xi$ . Then it has been shown that $\alpha$ is
constant (see [14]). Also for a principal curvature vector $X$ orthogonal to $\xi$ and
the associated principal curvature $\lambda$ we have (see [10])

(2.7) $AX=\lambda X$ and $A\varphi X=\frac{\alpha\lambda+2}{2\lambda-\alpha}\varphi X$

Now we recall without proof the following in order to prove our Theorem.

THEOREM A ([12]). Let $M$ be a homogeneous real hypersurface of $PC^{n}$

Then $M$ is a tube of radius $r$ over one of the following Kaehler submanifolds:
$(A_{1})$ hyperplane $PC^{n-1}$ , where $0<r<\pi/2$ ,

$(A_{2})$ totally geodesic $PC^{k}(1\leq k\leq n-2)$ , where $0<r<\pi/2$ ,

$(B)$ complex quadric $Q_{n-1}$ , where $0<r<\pi/4$ ,

$(C)$ $PC^{1}\times PC^{(n-1)/2}$ , where $0<r<\pi/4$ and $n(\geq 5)$ is odd,

$(D)$ complex Grasmannian $G_{2,5}(C)$ , where $0<r<\pi/4$ and $n=9$ ,

$(E)$ Hermitian symmetric space $SO(10)/U(5)$ , where $0<r<\pi/4$ and
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$n=15$ .

THEOREM $B$ ([4]). Let $M$ be a real hypersurface of $PC^{n}$ Then $M$ has
constant principal curvatures and $\xi$ is a principal vector if and only if $M$ is
locally congruent to a homogeneous real hypersurface.

THEOREM $C$ ([6]). Let $M$ be a real hypersurface of $PC^{n}$ . If $\nabla_{\xi}A=0$ , then $\xi$

is a principal curvature vector; in addition, except for the null set on which the
focal map $\phi_{r}$ degenerates, $M$ is locally congruent to one of the following:

(i) a homogeneous real hypersurface which lies on a tube of radius $r$ over a
totally geodesic $PC^{k}(1\leq k\leq n-1)$ , where $0<r<\pi/2$ .

(ii) a non-homogeneous real hypersurface which lies on a tube of radius $\pi/4$

over a Kaehler submanifold $N$ with nonzero principal curvatures $\neq\pm 1$ .

THEOREM $D$ ([1]). Let $M$ be a connected orientable real hypersurface (with

unit normal vector $N$) in $PC^{n}$ on which $\xi$ is a principal curvature vector with
principal curvature $\alpha=2cot2r$ and the focal map $\phi_{r}$ has constant rank on $M$ .
Then the following hold:

(i) $M$ is a tube of radius $r$ around a certain Kaehler submanfild $\tilde{N}$ in $PC^{n}$

(ii) For $x\in M$ , let $ cot\theta$ be a principal curvature of the shape operator at
$exp_{X}rN$ of $\tilde{N}$ , $N$ being the inward normal at $x$ . Then the real hypersurface $M$ has
a principal curvature equal to $cot(\theta-r)$ at $x$ .

REMARK 2. For later use, we note that from the Theorem $A$ , the
homogeneous real hypersurfaces $M$ of type $A_{1},A_{2},B,C,D$ , and $E$ have distinct
principal curvatures $\xi_{j}$ with multiplicities $m(\xi_{j})$ which we can read as follows
(cf. [12]).
$A_{1}$ : $\xi_{1}=cotr$, $m(\xi_{1})=2(n-1),$ $\xi_{2}=2cot2r,$ $m(\xi_{2})=1$

$A_{2}$ : $\xi_{1}=cotr$, $m(\xi_{1})=2k,$ $\xi_{2}=$ -tanr, $m(\xi_{2})=2(n-k-1)$ ,

$\xi_{3}=2cot2r$, $m(\xi_{3})=1$

$B$ : $\xi_{1}=cot(r-(\pi/4)),$ $m(\xi_{1})=n-1,$ $\xi_{2}=-tan(r-(\pi/4)),$ $m(\xi_{2})=n-1$ ,

$\xi_{3}=2cot2r$, $m(\xi_{3})=1$

$C$ : $\xi_{j}=cot(r-(\dot{m}/4))(i=1,2,3,4),$ $m(\xi_{j})=n-3$ , for $i=2,4$

and $m(\xi_{j})=2$ , for $i=1,3\xi_{5}=2cot2r,$ $m(\xi_{5})=1$

$D$ : $\xi_{j}=cot(r-(\dot{m}/4)),$ $m(\xi_{j})=4(i=1,2,3,4)$ ,

$\xi_{5}=2cot2r,$ $m(\xi_{5})=1$ and $\dim M=17$

$E$ : $\xi_{j}=cot(r-(\dot{m}/4)),$ $(i=1,2,3,4),$ $m(\xi_{j})=8$ for $i=2,4$ and
$m(\xi_{j})=6$ for $i=1,3,$ $\xi_{5}=2cot2r$ , and $m(\xi_{5})=1$ and $\dim M=29$ .
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It is easy to see that if $\xi$ is a principal curvature vector with principal
curvature $\alpha$ , then

(2.8) $(\nabla_{\xi}A)X=\alpha\varphi AX-A\varphi AX+\varphi X$ .

Indeed, from (2.4) for $Y=\xi$ we have $(\nabla_{\xi}A)X=\alpha\nabla_{X}\xi-A\nabla_{\chi}\xi-\varphi X$ and then using
(2.3) we obtain (2.8).

Finally we complete our preliminaries with the following two lemmas:

LEMMA 1. If $\xi$ is a principal curvature vector and $\nabla_{\xi}C=0$ , then $\xi\tau=0$ .

PROOF. From (2.6) by using (2.4) and (2.5) we get

$C(X,Y)Z=\frac{1}{2n-3}(\frac{\tau}{2(n-1)}-2n-5)(g(Y,Z)X-g(X,Z)Y)+g(\varphi Y,Z)\varphi X$

$-g(\varphi X,Z)\varphi Y-2g(\varphi X, Y)\varphi Z+g(AY,Z)AX-g(AX,Z)AY$

$+\frac{1}{2n-3}[3\eta(Z)(\eta(Y)X-\eta(X)Y)+h(g(AX,Z)Y-g(AY,Z)X)$

$+g(A^{2}Y,Z)X-g(A^{2}X,Z)Y+3(g(Y,Z)\eta(X)-g(X,Z)\eta(Y))\xi$

$+h(g(X,Z)AY-g(Y,Z)AX)+g(Y,Z)A^{2}X-g(X,Z)A^{2}Y]$

We note that the condition $\nabla_{\xi}C=0$ is equivalent to

(2.9) $\nabla_{\xi}(C(X, Y)Z-C(\nabla_{\xi}X, Y)Z-C(X,\nabla_{\xi}C)Z-C(X, Y)\nabla_{\xi}Z=0$ .

Now for simplicity we put

(2.10) $U_{\chi}=\alpha\varphi AX-A\varphi AX+\varphi X$ , $V_{\chi}=U_{AX}+AU_{\chi}$ .

Then by a straightforward calculation and using (2.3) and (2.8) we obtain

$(\nabla_{\xi}C)(X, Y,Z)=\frac{1}{2(n-1)(2n-3)}(\xi\tau)(g(Y,Z)X-g(X,Z)Y)$

(2.11) $+g(U_{Y}, Z)AX-g(U_{\chi},Z)AY+g(AY,Z)U_{\chi}-g(AX,Z)U_{Y}$

$+\frac{1}{2n-3}[h(g(U_{X},Z)Y-g(U_{Y}, Z)X)+g(V_{\gamma},Z)X-g(V_{X},Z)Y$

$+h(g(X,Z)U_{Y}-g(Y,Z)U_{\chi})+g(Y,Z)V_{\chi}-g(X,Z)V_{Y}]$

If we choose $X$ orthogonal to $\xi$ and $AX=\lambda K$ , then

(2.12) $U_{\chi}=(\alpha\lambda-\lambda\mu+1)\varphi X$ , $V_{X}=(\lambda+\mu)(\alpha\lambda-\lambda\mu+1)\varphi X$
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where $\mu=(\alpha\lambda+2)/(2\lambda-\alpha)$ .

Therefore putting $Z=\xi$ in (2.11) we obtain

(2.13) $\frac{1}{2(n-1)(2n-3)}(\xi\tau)\eta(Y)X$

$+(\alpha\lambda-\lambda\mu+1)(\alpha+\frac{1}{2n-3}(\lambda+\mu-h))\eta(Y)\varphi X=0$ .

Thus $\xi\tau=0$ .
We notice that from (2.13) we also have

(2.14) $(\alpha\lambda-\lambda\mu+1)(\alpha+\frac{1}{2n-3}(\lambda+\mu-h))=0$ .

LEMMA 2. If $\xi$ is a principal curvature vector with principal curvature
$\alpha=0$ , then $\xi\tau=0$ and $\nabla_{\xi}C=0$ .

PROOF. From (2.5) we have $\tau=4(n^{2}-1)+h^{2}-trA^{2}$ Thus $\xi\tau=2h(\xi h)$

$-tr\nabla_{\xi}A^{2}$ But from [9. Lemma 2] we know that $\xi h=0$ . Also $\alpha=0$ implies
$\nabla_{\xi}A=0$ (see [9, Lemma 1]). Thus we obtain $\xi\tau=0$ .

Now from (2.10) and (2.8) we get $U_{\xi}=0$ and $U_{X}=0$ for $X$ orthogonal to $\xi$

such that $AX=\lambda X$ . Thus finally we have $U_{X}=V_{X}=0$ for all $X$ . Then from (2.11)

we obtain $\nabla_{\xi}C=0$ .

3. Proof of Theorem:

From the fact that the principal curvature $\alpha$ of the principal curvature vector
$\xi$ is constant, our discussion is divided into two cases:

(i) $\alpha=0$ and (ii) $\alpha\neq 0$ .
(i) $\alpha=0$ .
In this case we have $\nabla_{\xi}A=0$ . Hence by virtue of Theorem $C$ we find that $M$

is locally congruent to a homogeneous real hypersurface which lies on a tube of
radius $\pi/4$ over a totally geodesic $PC^{k}(1\leq k\leq n-1)$ , or congruent to a non-
homogeneous real hypersurface which lies on a tube of radius $\pi/4$ over a
Kaehler submanifold $\tilde{N}$ with nonzero principal curvatures $\neq\pm 1$ . Thus $M$ is of
case (1) with $r=(\pi/4)$ or of case (2) in the Theorem. From Lemma 2 we have
that these examples satisfy $\nabla_{\xi}C=0$ .

(ii) $\alpha\neq 0$ .
We will follow the method of [9] and we will prove that $M$ cannot be
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homogeneous of type $B,$ $C,$ $D$ , or $E$ .
From Lemma 1 and the relations (2.11) and (2.14) we have that for any

principal curvature vector $X$ orthogonal to $\xi$ , the principal curvature $\lambda$ must
satisfy the following equation for $\lambda$

(3.1) $(\lambda^{2}-\alpha\lambda-1)[2\lambda^{2}-2(h-(2n-3)\alpha)\lambda+h\alpha+2-(2n-3)\alpha^{2}]=0$ .

Since $\xi$ is a principal curvature vector and the focal map $\phi_{r}$ has constant rank on
$M$ , our hypersurface $M$ is a tube (of radius r) over a certain (k-dimensional)

Kaehler submanifold $\tilde{N}$ in $PC^{n}$ So we may put $\alpha=2cot2r$($=cotr$ -tanr) (cf.

Theorem D). Now from (3.1) we have $\lambda^{2}-a\lambda-1=0$ which gives $\lambda=cotr$ and
$\lambda=$ -tanr, or

(3.2) $2\lambda^{2}-2(h-(2n-3)a)\lambda+ha+2-(2n-3)\alpha^{2}=0$ .

We denote by $\lambda_{1},\lambda_{2}$ ( $\neq cotr$, -tanr) the solutions of (3.2).

Since

(3.3) $\lambda_{1}+\lambda_{2}=h-(2n-3)\alpha$

we have

(3.4) $\frac{\alpha\lambda_{1}+2}{2\lambda_{1}-\alpha}=\lambda_{2}$

Now denote by $V_{\lambda}$ the eigenspace of $A$ associated with the eigenvalue $\lambda$ and by
$m(\lambda)$ the multiplicity of $\lambda$ . Then by using (2.7) and (3.4) we obtain

$\varphi V_{cotr}=V_{C\theta lr},$ $\varphi V_{-lanr}=V_{-tanr}$ and $\varphi V_{\lambda}=V_{\lambda_{2}}$ .

Thus the real hypersurface $M$ has at most five distinct principal curvatures $2cot2r$

(with multiplicity 1) $cotr$ (with multiplicity $2n-2k-2$ ), -tanr (with multiplicity
$2k-2m),$ $\lambda_{1}$ (with multiplicity $m\geq 0$ ) and $\lambda_{2}$ (with multiplicity $m\geq 0$ ). Hence

(3.5) $h=(2n-2k-1)cotr-(2k-2m+])tanr+m(\lambda_{1}+\lambda_{2})$ .

Using (3.3), (3.4) and (3.5) we obtain

(3.6) $(2n-2k-1)cotr-(2k-2m+1)tanr+(m-1)(\lambda_{1}+\frac{\alpha\lambda_{1}+2}{2\lambda_{1}-\alpha})-(2n-3)\alpha=0$ .

Now for the multiplicity $m$ of the principal curvature $\lambda_{1}$ , namely for the integer
$m=m(\lambda_{1})$ we distinguish three cases: $m=0,$ $m=1$ and $m\geq 2$ .

We shall prove that $m<2$ .
Suppose for the moment that $m\geq 2$ . From (3.6) we have that $\lambda_{1}=$ constant.
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Thus our manifold $M$ is homogeneous (cf. Theorem B) and from the Remark 2
we conclude that $M$ is of type $B,$ $C,$ $D$ or $E$ . We will check one by one that these
cases cannot occur.

Let $M$ be of type $B$ (namely $M$ is a tube of radius $r$). Then $M$ has three
distinct constant principal curvatures $\mu_{1}=(1+x)/(1-x)$ , $\mu_{2}=(x-1)/(x+1)$ ,

$\alpha=(x-1/x)$ , where $x=$ colr, with $m(\mu_{1})=n-1,$ $m(\mu_{2})=n-1$ and $m(\alpha)=1$ .
Thus

$h=(n-1)\frac{4x}{1-x^{2}}+\frac{x^{2}-1}{X}$ .

On the other hand, from (3.3) we have

$h=\frac{4x}{1-x^{2}}+(2n-3)\frac{x^{2}-1}{x}$ .

From the last two relations we obtain

$(n-2)\frac{4x}{1-x^{2}}=2(n-2)\frac{x^{2}-1}{x}$ or $x^{4}+1=0$ , impossible.

Now let $M$ be of type $C$ (which is also a tube of radius $r$). Let $x=cotr$ . Then
$M$ has five distinct constant principal curvatures $\mu \mathfrak{l}=(1+x)/(1-x)$ with
$m(\mu_{1})=2$ , $\mu_{2}=(x-1)/(x+1)$ with $m(\mu_{2})=2$ , $\mu_{3}=x$ with $m(\mu_{3})=n-3$ ,

$\mu_{4}=(-1/x)$ with $m(\mu_{4})=n-3$ and $\alpha=(x-1/x)$ with $m(\alpha)=1$ (cf. Remark 2).

Since $\varphi V_{\mu_{1}}=V_{\mu_{2}},$ $\varphi V_{\mu_{3}}=V_{\mu_{3}}$ and $\varphi V_{\mu_{4}}=V_{\mu_{4}}$ , the condition $\nabla_{\xi}C=0$ is equivalent to
$ h=\mu_{1}+\mu_{2}+(2n-3)\alpha$ . Then from this we obtain

$\frac{1+x}{1-x}+\frac{x-1}{x+1}+(n-2)(x-\frac{1}{x})=(2n-3)\frac{x^{2}-1}{x}$

or
$(n-1)x^{4}-2(n-3)x^{2}+n-1=0$ .

But this is impossible because the discriminant of this equation is negative.
Let $M$ be of type $D$ (which is a tube of radius $r$). Then $M$ has five distinct constant

principal curvatures $\mu_{1}=(1+x)/(1-x)$ with $m(\mu_{1})=4$ , $\mu_{2}=(x-1)/(x+1)$ with
$m(\mu_{2})=4,$ $\mu_{3}=x$ with $m(\mu_{3})=4,$ $\mu_{4}=-1/x$ with $m(\mu_{4})=4$ and $\alpha=(x-1/x)$

with $m(\alpha)=1$ , where $x=cotr$ and $\dim M=17$ (cf. Remark 2). We have again as
in case of type $C$ , that $\varphi V_{\mu_{1}}=V_{\mu_{2}},$ $\varphi V_{\mu_{3}}=V_{\mu_{3}}$ and $\varphi V_{\mu_{4}}=V_{\mu_{4}}$ . Thus the condition
$\nabla_{\xi}C=0$ is equivalent to $ h=\mu_{1}+\mu_{2}+(2n-3)\alpha$ . This becomes
$(n-4)x^{4}-2(n-7)x^{2}+n-4=0$ . From this we get $n\leq 5$ or equivalently $M\leq 9$ , a
contradiction.
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Finally, let $M$ be of type $E$ (which is a tube of radius $r$). Then as above $M$ has
the same five distinct constant principal curvatures $\mu_{1},\mu_{2},\mu_{3},\mu_{4}$ and $\alpha$ but with
multiplicity $m(\mu_{1})=m(\mu_{2})=6,$ $m(\mu_{\tau})=m(\mu_{4})=8$ and $m(a)=1$ (cf. Remark 2). By
virtue of the discussion in cases of type $C$ or $D$ we have only to solve the equation
$h-\mu_{1}-\mu_{2}-(2n-3)\alpha=0$ . Namely we have the equation $(n-6)x^{4}-2(n-11)x^{2}$

$+(n-6)=0$ . But in our case $\dim M=29$ , or equivalently $n=15$ . Thus we have
$9x^{4}-8x^{2}+9=0$ , which is impossible. This completes the proof of the assertion
that $m<2$ .

We will examine now the cases $m=0$ and $m=1$ separately. Let $m=0$ . Our
real hypersurface $M$ has three distinct principal curvatures and it is of case (1)

with $0<r(\neq\pi/4)<\pi/2$ in the Theorem. Now let $m=1$ . Our real hypersurface
$M$ has at most five distinct principal curvatures $2cor2r$ with $m(2cot2r)=1$ , cotr
with $m(cotr)=2n-2k-2,$ -tanr with $m$(-tanr) $=2k-2,$ $\lambda_{1}$ with $m(\lambda_{1})=1$ and $\lambda_{2}$

with $m(\lambda_{2})=1$ . Since the multiplicities of the principal curvatures of $M$ do not
match with the multiplicities of any homogeneous real hypersurface (cf. Remark
2), the manifold $M$ is not homogeneous. Hence both $\lambda_{1}$ and $\lambda_{2}$ are not constant
(cf. Theorem B). Moreover, Theorem $D$ shows that $\lambda_{1}$ and $\lambda_{2}$ can be expressed
as: $\lambda_{1}=cot(r-\theta)$ and $\lambda_{2}=cot(r+\theta)$ , where $ cot\theta$ is a principal curvature of the
Kaehler submanifold $\tilde{N}$ . In addition equation (3.6) yields that $cot^{2}r=$

$(n-k-1)/(k-1)$ . Hence the manifold $M$ is of case (3) in the Theorem.
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