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Abstract. In this paper we show how Rate Transition Systems (RTSs)
can be used as a unifying framework for the definition of the semantics of
stochastic process algebras. RTSs facilitate the compositional definition
of such semantics exploiting operators on the next state functions which
are the functional counterpart of classical process algebra operators. We
apply this framework to representative fragments of major stochastic
process calculi namely TIPP , PEPA and IML and show how they
solve the issue of transition multiplicity in a simple and elegant way.
We, moreover, show how RTSs help describing different languages, their
differences and their similarities. For each calculus, we also show the
formal correspondence between the RTSs semantics and the standard
SOS one.

1 Introduction

Several stochastic, and in particular Markovian, process algebras have been
proposed in the recent past. An overview can be found in [16]. Examples in-
clude TIPP [13,17], PEPA [19], EMPA [3], stochastic π-calculus [24] and,
more recently, calculi for Mobile and Service Oriented Computing [10,6,7,23,4,8].
The main aim has been the integration of qualitative behavioural descriptions
with non-functional ones, e.g. performance, in a single mathematical framework,
namely that of process algebras. This has lead to the combination of two very
successful approaches to concurrent systems modelling and analysis, namely La-
beled Transition Systems (LTSs), widely used in the framework of process alge-
bra, and Continuous Time Markov Chains (CTMCs), one of the most successful
approaches to modelling and analysing system performance. The common fea-
ture of the most prominent stochastic process algebra proposals, including all the
above mentioned ones, is that the actions used to label transitions are enriched
with rates of exponentially distributed random variables (r.v.) characterising
their duration1. Although all these languages relay on the same class of r.v., the
underlying models and notions are significantly different, in particular with re-
gards to the issue of the correct representation of the race condition principle for
� Research partially funded by EU IP SENSORIA (contract n. 016004), CNR-RSTL

project XXL, FIRB-MUR project TOCAI.IT and by PRIN-MIUR PACO.
1 Sometimes actions are assumed to have zero duration; then the associated r.v. is

interpreted as a delay, before the action takes place.
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the choice operator, inherited from the theory of CTMCs. This principle implies
that an expression like (α, λ).P +(α, λ).P , where there are two different ways of
executing α, both with (exponentially distributed duration with) rate λ should
model the same behavior as (α, 2 · λ).P , and not as (α, λ).P , as it would be the
case if one would look at the term as a standard process algebra one. Several,
significantly different, approaches have been proposed for addressing the issue of
transition multiplicity raised by the race condition principle ranging, e.g. from
multi relations [19], to proved transition systems [24,13], to LTS with numbered
transitions [16], to unique rate names [10,6]. A different approach has been taken
in [15] for IML, a language for Interactive Markov Chains, IMCs, where actions
are de-coupled from rates and interaction transitions, labelled with actions, are
kept separated from Markovian ones, labelled by rates. Multi-relations are used
for Markovian transitions. It should also be noted that some of the most success-
ful approaches, e.g. [19,15] suffer from technical imprecision in that they define
the relevant transition multi-relation as the least multi-relation satisfying a set of
Structured Operational Semantics (SOS) axioms and rules. Unfortunately, such
a least multi-relation turns out to be a relation, thus failing to formally repre-
senting transition multiplicity. In [20] a variant of LTSs, namely Rated Transition
Systems (RdTS) has been proposed as a model for the definition of the seman-
tics of Markovian process calculi by relying on the general framework of SGSOS.
Moreover, in [20] conditions are put forward for guaranteeing associativity of
the parallel composition operator in the SGSOS framework. It is then proved
that one cannot guarantee associativity of the parallel composition operator up
to stochastic bisimilarity when the synchronisation paradigm of CCS is used
in combination with the synchronisation rate computation based on apparent
rates [19]. This implies for instance that parallel composition of the Stochastic
π-calculus is not associative.

In the present paper, we use Rate Transition Systems (RTS) a variant of
RdTS where the transition relation � associates to a given process P and a
given transition label α a next state function, say P, mapping each term into a
non-negative real number. The transition P

α� P has the following meaning: if
P(Q) = v, (with v �= 0), then Q is reachable from P by executing α, the dura-
tion of such execution being exponentially distributed with rate v; if P(Q) = 0,
then Q is not reachable from P via α. The approach is somewhat reminiscent of
that of Deng et al. [12] where probabilistic process algebra terms are associated
to a discrete probability distribution over such terms. RTSs are similar to Con-
tinuous Time Markov Decision Processes (CTMDPs) as defined, e.g., in [18,2]
or Continuous Time Probabilistic Automata (CPA) (see [21,22,5]), as we shall
discuss in more detail in Sect. 2. A distinguishing feature of our approach is
compositionality, which, as in [20], is a direct consequence of a structured ap-
proach to semantics; furthermore, in our approach, next state functions are com-
posed and manipulated using operators which are in one to one correspondence
with those of process calculi. A pleasant side-effect of the resulting framework
is a simple and elegant solution to the transition multiplicity problem. Further-
more, RTSs make it relatively easy to define associative parallel composition
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operators for calculi based on the CCS interaction paradigm. Finally, the possi-
bility of defining different stochastic process languages within a single, uniform
framework facilitates reasoning about them; their similarities and their major
differences. In this paper we will consider only a small number of stochastic
process calculi, due to space limitations. Moreover, we will focus only on the
fragment of each calculus which is relevant for the stochastic extension. For the
sake of conciseness, we will introduce the operators in an incremental fashion,
pointing out the relative differences, avoiding repeating the relevant definitions
for each language. We will not deal with behavioural relations and we will focus
only on language definition: that is why in the title we mention process lan-
guages and not calculi. The reader interested in process equivalencies is referred
to [8,9] for some initial results. The rest of the paper is organised as follows: in
Sect. 2 some preliminary notions and definitions are recalled. Sect. 3 introduces
the RTS semantics for a simple language for CTMCs. Sect. 4 shows the RTS se-
mantics of significant fragments of major Markovian Process Calculi. Emphasis
is put on calculi based on the multi-party CSP interaction paradigm, like TIPP
and PEPA. A brief discussion of other calculi, based on the binary, CCS, in-
teraction paradigm is also provided. The RTS semantics of a language based
on the Interactive Markov Chain principle of separating actions from rates is
presented in Sect.5. Irrelevance of self-loops for transient analysis of CTMCs is
proved in the appendix; for all other proofs concerning results presented in this
paper the interested reader is referred to [11], where the EMPA calculus is dealt
with as well; results are proved by induction either on the structure of terms or
on the length of the derivation in the relevant semantics deduction system. Basic
knowledge of prominent stochastic process calculi is assumed in the rest of the
paper.

2 Preliminaries

We let IN≥0 (IR≥0, respectively) denote the set {n ∈ IN | n ≥ 0} ({x ∈ IR |
x ≥ 0}, respectively) and, similarly, IN>0 (IR>0, respectively) denote the set
{n ∈ IN | n > 0} ({x ∈ IR | x > 0}, respectively). For set S we let 2S denote the
power-set of S and 2S

fin the set of finite subsets of S. In function definitions as
well as application Currying will be used whenever convenient.

Definition 1 (Negative Exponential Distributions). A random variable X
has a negative exponential distribution with rate λ if and only if IP{X ≤ t} =
1 − eλ·t for t > 0 and 0 otherwise. •

The expected value of an exponentially distributed r.v. with rate λ is λ−1

while its variance is λ−2. The min of exponentially distributed independent r.v.
X1, . . . , Xn with rates λ1, . . . , λn respectively is an exponentially distributed r.v.
with rate λ1 + . . . + λn while the probability that Xj is the min is λj

λ1+...+λn
.

The max of exponentially distributed r.v. is not exponentially distributed. For
the purpose of the present paper, CTMCs are defined as follows:
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Definition 2 (Continuous Time Markov Chains). A Continuous Time
Markov Chain (CTMC) is a tuple (S,R) where S is a countable non-empty
set of states, and R : S → S → IR≥0 is the rate matrix, where for all s ∈ S
there exists Ks < ∞ such that

∑
s′∈S R s s′ = Ks. •

We will often use the matrix notation R[s, s′] for R s s′. R[s, s′] > 0 means that
a transition from s to s′ can be taken. The sojourn time at state s before taking
a transition is an exponentially distributed r.v. with rate

∑
s′∈S R[s, s′] and the

probability that the transition from s to s′ is taken is R[s, s′]/
∑

s′′∈S R[s, s′′].
Notice that the above definition allows R[s, s] > 0, i.e. self-loops are allowed,

which is not the case in traditional definitions of CTMCs. The following propo-
sition, proved in Appendix A, shows that, as long as traditional measures of
CTMCs like transient (and consequently steady state) probabilities are con-
cerned, this more liberal definition does not affect the meaning of the CTMC
and, in fact, self-loops can be removed (i.e. R[s, s] set to zero) or added without
affecting transient and steady state probability analysis results.

Proposition 1. The transient behaviour of CTMC C = (S,R) with R[s̄, s̄] > 0
for some s̄ ∈ S coincides with that of CTMC C̃ = (S, R̃), such that R̃[s, s′] =def

0, if s = s′, and R̃[s, s′] =def R[s, s′] otherwise. �

As a consequence of the above result, the infinitesimal generator matrix repre-
sentation of CTMCs, traditionally used for CTMCs without self-loops, can be
safely used also for those with such loops.

For countable non-empty set S, we consider the set S → IR≥0 of total functions
from S to IR≥0. We let P, Q, R, . . . range over S → IR≥0. We let [] denote the
0 constant function in S → IR≥0, i.e. [] s =def 0 for all s ∈ S; moreover
given s1, . . . , sn ∈ S and, λ1, . . . , λn ∈ IR>0 we let [s1 �→ λ1, . . . , sn �→ λn]
denote the function in S → IR≥0 which maps s1 to λ1, . . . , sn to λn and any
s ∈ S \ {s1, . . . , sn} to 0. The following definition characterises Rate Transition
Systems [8,9].

Definition 3 (Rate Transition Systems). A Rate Transition System (RTS)
is a tuple (S, A, �) where S is a countable non-empty set of states, A is a
countable non-empty set of labels and �⊆ S ×A× (S → IR≥0) is the transition
relation.

In the sequel RTSs will be denoted by R, R1, R′,. . . As usual, we let s
α� P

denote (s, α, P) ∈�. Intuitively, s1
α� P and (P s2) = λ �= 0 means that s2

is reachable from s1 via the execution of α and that the duration of such an
execution is characterised by a random variable whose distribution function is
negative exponential with rate λ. On the other hand, (P s2) = 0 means that s2

is not reachable from s1 via α.

Definition 4 (ΣS). ΣS denotes the subset of S → IR≥0 including only all func-
tions expressed using the [. . .] notation, i.e. P ∈ ΣS if and only if P = [] or
there exist n > 0, s1, . . . , sn ∈ S and λ1, . . . , λn ∈ IR>0 such that P = [s1 �→
λ1, . . . , sn �→ λn] •
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We equip ΣS with a few useful operations, i.e. + : ΣS × ΣS → (S → IR≥0)
with (P + Q) s =def (P s) + (Q s) and

⊕
: ΣS → 2S → IR≥0 with⊕

P C =def

∑
s∈C(Ps), for C ⊆ S, and we use the shorthand ⊕P for⊕

P S. The proposition below trivially follows from the relevant definitions:

Proposition 2. (i) All functions in ΣS yield zero almost everywhere, i.e. for
all P ∈ ΣS the set {s ∈ S | (P s) �= 0} is finite; (ii) ΣS is closed under +, i.e.
+ : ΣS → ΣS → ΣS. �

Proposition 2(i) above guarantees that
⊕

is well defined.

Definition 5. Let R = (S, A, �) be an RTS , then: (i) R is total if for all
s ∈ S and α ∈ A there exists P ∈ (S → IR≥0) such that s

α� P; (ii) R
is functional2 if for all s ∈ S, α ∈ A, and P, Q ∈ (S → IR≥0) we have:
s

α� P, s
α� Q =⇒ P = Q; (iii) R is well formed if �⊆ S × A × ΣS. •

Discussion
It is worth noting that RTSs are a slight generalization of Continuous Time
Markov Decision Processes (CTMDPs) as defined by Hermanns and Johr [18]
and Continuous Time Probabilistic Automata, as defined in [22]. In [18,22], in
fact, the transition relation is a subset of S×A×(S → IR≥0), i.e. it is not required
to be a function in S×A → (S → IR≥0), but sets S and A are required to be finite
and in [18] an initial state is assumed as well. There is also a direct relationship
between RTSs and Continuous Time Probabilistic Automata proposed by Knast
in [21], although the latter are studied in a language theoretic framework: the
element ai,j(x) of the infinitesimal matrix used in [21] coincides with (P j) for
i

x� P. Finally, the Continuous Time Probabilistic Automata used by Dang
Van Hung and Zhou Chaochen in [5] are based on standard automata, where
transitions are elements of S×S and have a rate and no label associated. In [20]
Rated Transition Systems (RdTSs) are proposed by Klin and Sassone. RdTSs
coincide with the class of functional RTS : the transition relation is required to
be a function in S × A × S → IR≥0 = S × A → (S → IR≥0). In [2], Baier et
al. define CTMDPs as tuples (S, A, �) where S and A are finite sets and � is
a function in S × A × S → IR≥0, while we allow also infinite sets and relations
over S × A × (S → IR≥0). Finally, we point out that RTSs can be used also to
model (passive) action weights, e.g. in EMPA or PEPA as well as interactive
transitions of Interactive Markov Chains in a natural way.

In the rest of the present paper we will consider only well-formed RTSs, since
they are powerful enough to provide a semantic model for the stochastic process
calculi we are interested in.

Definition 6 (Derivatives). Let R = (S, A, �) be an RTS ; for sets S′ ⊆ S
and A′ ⊆ A, the set of derivatives of S′ through A′, denoted Der(S′, A′), is
the smallest set such that: (i) S′ ⊆ Der(S′, A′), and (ii) if s ∈ Der(S′, A′) and
there exists α ∈ A′ and Q ∈ ΣS such that s

α� Q then {s′ ∈ S | Q(s′) �= 0} ⊆
Der(S′, A′). •
2 Fully-stochastic according to the terminology used in [9].
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Definition 7 (Derived CTMC). Let R = (S, A, �) be a functional RTS ;
for S′ ⊆ S, the CTMC of S′, when one considers only labels in finite set A′ ⊆
A is defined as CTMC[S′, A′] =def (Der(S′, A′),R) where, for all s1, s2 ∈
Der(S′, A′), R[s1, s2] =def

∑
α∈A′,s1

α�P
P(s2). •

We write Der(s, A′) and CTMC[s, A′] when S′ = {s}.
The semantics of stochastic process calculi are often defined in the litera-

ture by means of Structured Operational Semantics (SOS) which characterize
transition systems or multi-transition systems, i.e. transition systems where the
transition relation is instead a multi-relation. Such (multi-)transitions are usu-
ally labelled by rates λ ∈ IR>0, but sometimes they are also labelled with actions
drawn from some set A. In such LTSs there may be two or more transitions with
(the same action label and) different rates from a state to another one; in case of
multi-transition systems such distinct transitions may even have the same rate.
Henceforth we let rt(s1, s2) and rta(s1, s2) denote the cumulative rate over all
transitions from s1 to s2 and the cumulative rate over all a-labelled transitions
from s1 to s2 as defined below, where we use {| |} as a notation for multi-sets,
and λ−−→ ( a,λ−−−→ , respectively) for a generic transition (a-labelled transition,
respectively):

Definition 8. The cumulative rates rt(s1, s2) and rta(s1, s2) are defined as fol-
lows: rt(s1, s2) =def

∑{|λ|s1
λ−−→ s2|} and rta(s1, s2) =def

∑{|λ|s1
a,λ−−−→ s2|},

with
∑{||} =def 0. •

3 A Language for CTMCs

In this section we define a simple language for CTMCs, in a similar way as
in [16]. The set PCTMC of CTMC terms includes inaction, rate-prefix-, choice-,
and constant-terms as defined by the following grammar:

P ::= nil
∣
∣
∣
∣ λ.P

∣
∣
∣
∣ P + P

∣
∣
∣
∣ X

where λ ∈ IR>0 and X is a constant defined by means of an equation of the form
X

Δ= P where constants X, X1, X
′, . . . may occur only guarded, i.e. under the

scope of a prefix λ. , in defining body P .
In order to give an RTS semantics to the calculus we first of all choose the set

ACTMC =def {√} as labels set; transitions have no action labels in standard
CTMCs. The transition relation �, is defined in Fig. 1, where α =

√
is assumed.

Intuitively, from Fig. 1 it is clear that there is no transition from nil to any
other state, while there is a single transition from λ.P to P and λ is the rate
associated to such a transition. The rule for choice postulates that if there is a
transition from P to a state, say R, with rate (PR) and a transition from Q
to the same state R, with rate (QR), then there is a transition from P + Q to
R with rate (PR) + (QR). Notice that, for term P + Q, if there is a transition
only from P to R (i.e. not from Q to R) then (QR) = 0. Similarly, (PR) = 0 if
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(NIL)
nil

α� []
(PRF)

λ.P
α� [P �→λ]

(CHO)
P

α� P, Q
α� Q

P+Q
α� P+Q

(CNT)
P

α� P, X
Δ=P

X
α� P

Fig. 1. Semantics Rules for the CTMC Language

there is only a transition from Q to R. If, instead, there is both a transition from
P to R (i.e. (PR) > 0) and a transition from Q to R (i.e. (QR) > 0), then the
cumulative rate (PR) + (QR) will be associated directly to the transition from
P + Q to R. The use of RTSs, in particular in the rule for choice, incorporates
the race condition principle and solves the related transition multiplicity issue in

a simple and elegant way. In fact, from Fig. 1, for R1 �= R2 we get λ.R1+μ.R2

√
�

[R1 �→ λ, R2 �→ μ] where ⊕[R1 �→ λ, R2 �→ μ] = λ + μ is the exit rate of state
λ.R1 +μ.R2 while λ/(λ+μ) and μ/(λ+μ) are the probabilities of moving to R1

and R2, respectively. If R1 = R2 = R then we get λ.R+μ.R

√
� [R �→ λ+μ] and

if, moreover, λ = μ, we get λ.R + λ.R

√
� [R �→ 2λ]. The following proposition

ensures that the semantics are closed w.r.t. ΣPCT MC .

Proposition 3. For all P ∈ PCTMC and P ∈ PCTMC → IR≥0, if P � P can
be derived from the rules of Fig. 1, then P ∈ ΣPCT MC . �

Definition 9 (Formal semantics of the Language for CTMCs). The
formal semantics of the calculus for CTMCs is the RTS RCTMC =def

(PCTMC ,ACTMC , �) where �⊆ PCTMC ×ACTMC × ΣPCT MC is the least re-
lation satisfying the rules of Fig. 1. •
The following theorem characterises the structure of RCTMC .

Theorem 1. RCTMC is total and functional. �

The CTMC associated to a given term P ∈ PCTMC , CTMC[P, {√}] is generated

according to Def. 7. As a corollary of Theorem 1 we get that whenever P

√
�

P, the exit rate of P is given by ⊕P and P is the row of the rate matrix
corresponding to P .

4 Fully Markovian Stochastic Process Calculi

We first introduce some additional notation. Let S and A be countable non-
empty sets. We define function χ : S → S → IR≥0 as χ s =def [s �→ 1]. Let,
moreover, ⊗ : 2A

fin → S → S → S be a total function and let us define, with
a little bit of overloading, function ⊗ : 2A

fin → (S → IR≥0) → (S → IR≥0) →
(S → IR≥0) as follows:

(P ⊗L Q) s =def

⎧
⎨

⎩

(P s1) · (Q s2) , if ∃s1, s2 ∈ S. s = s1 ⊗L s2

0 , otherwise
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(PRF1)
(α,λ).P

α� [P �→λ]
(PRF2)

α�=β

(α,λ).P
β
� []

(PAR1)
α �∈L, P

α�P, Q
α�Q

P ||LQ
α� (P||L(χ Q))+((χ P )||LQ)

(PAR2)
α∈L, P

α�P, Q
α�Q

P ||LQ
α�P||LQ

Fig. 2. Additional Semantics Rules for TIPPk

We also define function · / : (S → IR≥0) → IR≥0 → IR≥0 → S → IR≥0 as
follows:

(P · x

y
) s =def

⎧
⎨

⎩

(P s) · x
y , if y �= 0

0 , otherwise

The proposition below trivially follows from the relevant definitions:

Proposition 4. ΣS is closed under the operations χ, ( ⊗ ), and · / , i.e.
χ : S → ΣS, ( ⊗ ) : 2A

fin → ΣS → ΣS → ΣS, and · / : ΣS → IR≥0 →
IR≥0 → ΣS. �

4.1 TIPPk

Here we consider a kernel language TIPPk of the version3 of TIPP presented
in [17]. Let ATIPPk

be a countable set of actions, τ �∈ ATIPPk
, and Aτ

TIPPk
=def

ATIPPk
∪{τ}, with τ representing the internal action. The set PTIPPk

of TIPP
terms we consider includes inaction, choice-, and constant-terms, defined as in
Sect. 3; moreover, PTIPPk

includes action-prefix (which replaces rate-prefix) and
parallel composition, as defined by the following grammar4:

P ::= (α, λ).P
∣
∣
∣
∣ P ||LP

where α ∈ Aτ
TIPPk

, λ ∈ IR>0, and finite synchronisation set L ∈ 2
AT IP Pk

fin .
Constants X, X1, X

′, . . . may only occur guarded, i.e. under the scope of a prefix
(α, λ). , in defining bodies.

The transition relation � for TIPPk is characterised by the set of rules
RLSTIPPk

defined below:

Definition 10 (RLSTIPPk
). Set RLSTIPPk

is the least set of semantics rules
including the rules in Fig. 2 plus rules (NIL), (CHO), (CNT) of Fig. 1, where
terms P, Q, X are assumed to range over PTIPPk

and α, β ∈ Aτ
TIPPk

. •
3 In [17] the synchronisation rate is defined as the product of those of the synchronising

actions, as opposed to the original definition of TIPP , given in [13], where, instead,
such rate is the max of the component rates.

4 In TIPP the notation stop, i, [] and P |[L]|P is used instead of nil, τ , +, and P ||LP .
Here we prefer to use a standard notation for the sake of uniformity.



On a Uniform Framework for the Definition of Stochastic Process Languages 17

In the rules, the generic functions χ and ⊗ on S are instantiated with specific
functions for PTIPPk

. In particular the specific function || is used in place of the
generic function ⊗; the specific function || : 2

ATIP Pk

fin → PTIPPk
→ PTIPPk

→
PTIPPk

is just the syntactical constructor for parallel composition on TIPP
terms. Rule (PAR1) ensures that all interesting continuations of P ||L Q are of
the form R ||L Q where P

α� P and (P R) > 0, for some P and α �∈ L, or of
the form P ||L R where Q

α� Q and (Q R) > 0, for some Q and α �∈ L. Rule
(PAR2), instead, formalizes the rate multiplication principle of TIPP : if α ∈ L,
P

α� P, Q
α� Q, (P RP ) = λP > 0, and (Q RQ) = λQ > 0, then P ||L Q

evolves, via α, to RP ||L RQ with rate λP · λQ.
The following proposition ensures that the semantics are closed w.r.t.

ΣPTIP Pk
.

Proposition 5. For all P ∈ PTIPPk
, α ∈ Aτ

TIPPk
and P ∈ PTIPPk

→ IR≥0,

if P
α� P can be derived using only the rules in set RLSTIPPk

of Def. 10, then
P ∈ ΣPT IPPk

. �

Definition 11 (Formal semantics of TIPPk). The formal semantics of
TIPPk is the RTS RTIPPk

=def (PTIPPk
,Aτ

TIPPk
, �) where �⊆ PTIPPk

×
Aτ

TIPPk
× ΣPTIP Pk

is the least relation satisfying the rules of set RLSTIPPk

(Def. 10). •
The following theorem characterises the structure of RTIPPk

.

Theorem 2. RTIPPk
is total and functional.

Corollary 1. For all P ∈ PTIPPk
, α ∈ Aτ

TIPPk
there exists a unique P such

that P
α� P.

The following theorem establishes the formal correspondence between the RTS
semantics of TIPPk and the semantics definition given in [17].

Theorem 3. For all P, Q ∈ PTIPPk
, α ∈ Aτ

TIPPk
, and unique P ∈ ΣPTIP Pk

such that P
α� P the following holds: (P Q) = rtα(P, Q) �

4.2 PEPAk

The RTS semantics of the full PEPA [19] calculus can be found in [9]. Here we
confine our presentation to the kernel language PEPAk. Let APEPAk

, ranged
over by α, α′, . . . be a countable set of actions. The set PPEPAk

of PEPA terms
we consider includes choice- and constant-terms, defined as in Sect. 3, and action-
prefix and parallel composition, defined as in Sect. 4.1, but with synchronisation
set5 L ∈ 2

APEPAk

fin . Constants X, X1, X
′, . . . may occur only guarded, i.e. under

the scope of a prefix (α, λ). , in defining bodies.
The transition relation � for PEPAk is characterised by the set of rules

RLSPEPAk
defined below:

5 In PEPA the notation P��LP is used instead of P ||LP . Here we prefer to use a
standard notation for the sake of uniformity.
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(
PAR
PEPA

) α∈L, P
α�P, Q

α�Q

P ||LQ
α� P||LQ·min{⊕P,⊕Q}

⊕P·⊕Q

Fig. 3. Additional Semantics Rule for PEPAk

Definition 12 (RLSPEPAk
). Set RLSPEPAk

is the least set of semantics rules
including the rule in Fig.3 plus rules (CHO), (CNT) of Fig. 1 and Rules (PRF1),
(PRF2), and (PAR1) of Fig. 2. In all the above rules terms P, Q, X are assumed
to range over PPEPAk

and α ∈ APEPAk
. •

In the rules, the generic functions χ and ⊗ on S are instantiated with specific
functions on PPEPAk

. In particular the specific function || is used in place of
the generic function ⊗; the specific function || : 2

APEPAk

fin → PPEPAk
→

PPEPAk
→ PPEPAk

is just the syntactical constructor for co-operation on
PEPA terms. The rule for interleaving ensures that all continuations of P ||L Q

are of the form R ||L Q where P
α� P and (P R) > 0, for some α and

P or of the form P ||L R where Q
α� Q and (Q R) > 0, for some α and

Q. The rule for co-operation, instead, implements the apparent rate princi-
ple of PEPA (see corollary of Theorem 4): if α ∈ L, P

α� P, Q
α� Q,

(P RP ) = λP > 0, and (Q RQ) = λQ > 0, then P ||L Q evolves to RP ||L RQ

with rate λP

⊕P · λQ

⊕Q · min{⊕P,⊕Q}.
The following proposition ensures that the semantics are closed w.r.t.

ΣPPEP Ak
.

Proposition 6. For all P ∈ PPEPAk
, α ∈ APEPAk

and P ∈ PPEPAk
→ IR≥0,

if P
α� P can be derived from the rules of Fig. 3, then P ∈ ΣPPEP Ak

. �

Definition 13 (Formal semantics of PEPAk). The formal semantics of
PEPAk is the RTS RPEPAk

=def (PPEPAk
,APEPAk

, �) where �⊆
PPEPAk

× APEPAk
× ΣPP EPAk

is the least relation satisfying the rules of set
RLSPEPAk

(Def. 12). •
Theorem 4. RPEPAk

is total and functional.

As a corollary of Theorem 4 we get that whenever P
α� P the apparent rate of

α in P—namely the exit rate of P relative to α, denoted by rα(P ) in [19]—is
given by ⊕P. In [9] it is shown that the RTS semantics of PEPA coincides
with the original one.

We close this section by observing that PEPA passive actions [19] can be
easily dealt with in the RTS approach. One has to consider total functions in
PPEPAk

→ (IR≥0 ∪ {w · � | w ∈ IN>0}) and define Σ�
PPEPAk

by restricting only
to functions expressed using the [. . .] notation; all definitions involving ΣPP EPAk

must be extended to Σ�
PPEPAk

accordingly and taking into account the equations
for � introduced in [19]. The following is an example resulting from the related
derivation using the extended definitions:
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(α,
√

2).P ||{α}((α, 2�).Q + (α, 4�).R)
α� [P ||{α}Q �→

√
2

3
, P ||{α}R �→ 2 · √2

3
]

4.3 CCS-Based Stochastic Process Calculi

Our RTS approach has been successfully applied to several CCS-based calculi
including Stochastic CCS [20], Stochastic π-calculus [24] and calculi for modeling
Service Oriented Computing [8]. The main issue is the treatment of the CCS one-
to-one synchronisation paradigm, as opposed to the CSP multicast one adopted
by TIPP , PEPA and EMPA. RTS semantics allows for an adequate and
elegant calculation of normalisation factors which make it possible to preserve
nice properties of the original calculi, like associativity of parallel composition,
which is not possible using other approaches, as discussed in e.g. [20]. Due to
space limitations we do not show the RTS semantics of Stochastic CCS and
SOC calculi here and we refer to [8,9].

5 A Language of Interactive Markov Chains

In this section we show an RTS semantics of Hermanns’ Language of Interac-
tive Markov Chains (IML). The definition of Interactive Markov Chains (IMC)
follows [15]:

Definition 14. An Interactive Markov Chain is a tuple (S, A,→, ���, s0) where
S is a nonempty, finite set of states, A a finite set of actions, →⊆ S×A×S the
set of interactive transitions, ���⊆ S × IR>0 × S the set of Markov transitions,
and s0 ∈ S the initial state. •
Also for IMCs we let the cumulative transition rate from s to s′ be denoted by
rt(s, s′). For the sake of simplicity and due to space limitations, in this section
we consider a kernel subset IMLk of the language IML defined in [15], which
is anyway sufficient for showing how RTSs can be used as a semantic model
for IML. Let AIMLk

be a countable set of actions. The set PIMLk
of IMLk

terms we consider includes inaction, rate-prefix-, choice-, and constant-terms,
defined as in Sect. 3, and action-prefix- and parallel composition-terms, defined
as in Sect. 4.1, but with α ∈ AIMLk

and L ∈ 2
AIMLk

fin as synchronisation set6.
Constants X, X1, X

′, . . . may occur only guarded, i.e. under the scope of a prefix
λ. or α. , in defining bodies.

In order to give interactive transitions a “first-class objects” status, we con-
sider a slight extension of RTS . We point out here that, technically, such an
extension is not necessary, as we shall briefly discuss later on. We use it only
because it makes our framework closer to the original model of IMCs. The exten-
sion of interest, namely RTSι, differs from RTS only because, instead of using
functions in PIMLk

→ IR≥0, we consider those in PIMLk
→ IRι

≥0, where IRι
≥0

6 In IMLk the notation 0 and P |[L]|P is used instead of nil and P ||LP . Here we
prefer to use a standard notation for the sake of uniformity.
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+ι 0 ι v2

0 0 ι v2

ι ι ι ι

v1 v1 ι v1 + v2

·ι 0 ι v2

0 0 0 0

ι 0 ι ι

v1 0 ι v1 · v2

Fig. 4. Definition of +ι and ·ι

denotes IR≥0∪{ι}, with ι a distinguished value such that ι �∈ IR≥0. Markov tran-
sitions are modeled as in Sect. 3, using the special element

√ �∈ AIMLk
as a label

and defining the label set of the relevant RTSι as A
√
IMLk

=def AIMLk
∪ {√},

ranged over by α, α1, α
′, . . .. We define Σι

PIMLk
as expected:

Definition 15 (Σι
PIMLk

). Σι
PIMLk

denotes the subset of PIMLk
→ IRι

≥0 in-
cluding only all functions expressed using the [. . .] notation, i.e. P ∈ Σι

PIMLk

if and only if P = [] or P = [P1 �→ v1, . . . , Pn �→ vn] for n ∈ IN>0,
P1, . . . , Pn ∈ PIMLk

and v1, . . . , vn ∈ IR>0 ∪ {ι}, with ([] P ) =def 0 and
[P1 �→ v1, . . . , Pn �→ vn] P yielding vj if P = Pj for 1 ≤ j ≤ n and 0 other-
wise. •

We extend operations + and · to +ι, ·ι : IRι
≥0 → IRι

≥0 → IRι
≥0 as in Fig. 4,

where we assume that v1, v2 �∈ {0, ι}. We lift +ι : IRι
≥0 → IRι

≥0 → IRι
≥0 to

+ι : Σι
PIMLk

→ Σι
PIMLk

→ PIMLk
→ IRι

≥0; we moreover define ||L : Σι
PIMLk

→
Σι

PIMLk
→ PIMLk

→ IRι
≥0 by instantiating ⊗L on the syntactical constructor

for parallel composition on IMLk terms and using ·ι instead of ·. In the sequel
we refrain from using the superscript ι in +ι and ·ι when it is clear from the
context that we are using the extended operators. The following proposition
trivially follows from the relevant definitions.

Proposition 7. (i) All functions in Σι
PIMLk

yield zero almost everywhere, i.e.
for all P ∈ Σι

PIMLk
the set {P ∈ PIMLk

| P P �= 0} is finite; (ii)Σι
PIMLk

is closed under the extended operators, namely +, ||L : Σι
PIMLk

→ Σι
PIMLk

→
Σι

PIMLk
. �

We finally extend the notion of Derived CTMC (see Def. 7) to IMCs in the
obvious way:

Definition 16 (Derived IMC). Let R = (S, A, �) be a functional RTSι;
for s0 ∈ S, the IMC of s0, when one considers only labels in finite set A′ ⊆ A
is defined as IMC[{s0}, A′] =def (Der({s0}, A′), A′,→, ���, s0) where for all
s1, s2 ∈ Der({s0}, A′), α ∈ A′ such that s1

α� P: (i) s1
α→ s2 iff (P s2) = ι,

and (ii) s1
λ��� s2 iff (P s2) = λ > 0. •

The transition relation � for IMLk is characterised by the set of rules RLSIMLk

defined below:
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λ.P

√
� [P �→λ]

α �=√

λ.P
α� []

α �=√

α.P
α� [P �→ι]

√ �= α �=β

α.P
β
� []

Fig. 5. Additional Semantics Rules for the IMLk

Definition 17 (RLSIMLk
). Set RLSIMLk

is the least set of semantics rules
including the rules in Fig.5 plus rules (NIL), (CHO), (CNT) of Fig. 1, and
rules (PAR1) and (PAR2) of Fig. 2. In all the above rules, terms P, Q, X are
assumed to range over PIMLk

and α, β ∈ A
√
IMLk

. •
The rule for choice allows for the integration of Markov transitions with inter-

action ones; as usual, if P

√
� P and (P Q) = λ then λ is the cumulative rate

for reaching Q from P , i.e. λ = rt(P, Q). For instance, for

P
Δ= (λ1.P1 + α.P2) + (α.P2 + λ2.P1)

we have P

√
� [P1 �→ λ1 + λ2] and P

α� [P2 �→ ι] with, moreover, P
α′
� []

for all α′ �∈ {α,
√}. The rule for interleaving ensures that all continuations of

P ||L Q are of the form R ||L Q where P

√
� P and (P R) > 0 or P

α� P

and (P R) = ι for some P and α, or of the form P ||L R where Q

√
� Q and

(Q R) > 0 or Q
α� Q and (Q R) = ι, for α �∈ L. The rule for synchronisation,

instead, applies only in the case of interactive transitions and postulates that the
only terms which can be reached from P ||L Q, via α ∈ L are those of the form
P ′ ||L Q′ with (P P ′) = (Q Q′) = ι, where P

α� P and Q
α� Q. It is worth

noting that we could have chosen to use standard ΣPIMLk
instead of its extension

Σι
PIMLk

by replacing axiom α.P
α� [P �→ ι] with α.P

α� [P �→ 1]. In particular,

whenever P
α� P the number of different (interaction) α-transitions from P to

Q would be given by (P Q). We preferred the first alternative because we are
not interested in counting such transition and we think that keeping different
types for the range of the two kinds of transitions makes the framework more
clear and closer to the original model of IMCs. We note also a clean separation
between internal non-determinism, represented within functions, and external
non-determinism, represented by different transitions. For instance, assuming
P1, P2 and P3 all different terms, the term

P
Δ= α.P1 + β.P2 + α.P3

has the following transitions: P
α� [P1 �→ ι, P3 �→ ι], P

β
� [P2 �→ ι], and P

α′
� []

for all α′ �∈ {α, β}
Proposition 8. For all P ∈ PIMLk

, α ∈ A
√
IMLk

and P ∈ PIMLk
→ IRι

≥0,

if P
α� P can be derived from the rules in set RLSIMLk

of Def. 17, then
P ∈ Σι

PIMC
. �
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Proposition 9. For all P ∈ PIMLk
, α ∈ A

√
IMLk

and P ∈ Σι
PIMC

such that

P
α� P can be derived from the rules in set RLSIMLk

of Def. 17, the following
holds: (i) if α ∈ AIMLk

and P �= [] then (range P) = {0, ι}, (ii) if α =
√

then
ι �∈ (rangeP). �.

Definition 18 (Formal semantics of IMLk). The formal semantics of IMLk

is the RTSι RIMLk
=def (PIMLk

,A
√
IMLk

, �) where �⊆ PIMLk
× A

√
IMLk

×
Σι

PIMLk
is the least relation satisfying the rules in set RLSIMLk

of Def. 17. •
Theorem 5. RIMLk

is total and functional.

Corollary 2. For all P ∈ PIMLk
, α ∈ A

√
IMLk

there exists a unique P such

that P
α� P.

The following theorem establishes the formal correspondence between the RTSι

semantics of IMLk and the semantics definition given in [15]. Notice that in
this case the cumulative rate must be computed over all copies of all transitions
from P to Q in the multi-relation ��� defined in [15].

Theorem 6. For all P, Q ∈ PIMLk
, α ∈ AIMLk

, and unique functions P, P ′ ∈
ΣPIMLk

such that P
α� P and P

√
� P ′ the following holds: (i) (P Q) = ι if

and only if P
α→ Q; (ii) (P ′ Q) = rt(P, Q). �

6 Conclusions

In this paper we introduced Rate Transition Systems and we showed how they
can be used as a unifying framework for the definition of the semantics of stochas-
tic process algebras. RTSs facilitate the compositional definition of such seman-
tics exploiting operators on the next state functions which are the functional
counterpart of classical process algebra operators. We applied this framework
to representative fragments of major stochastic process calculi including TIPP ,
PEPA and IML and showed how they solve the issue of transition multiplic-
ity in a simple and elegant way7. Moreover, we showed how RTSs throw light
on differences and similarities of different languages. For each calculus, we also
proved the formal correspondence between its RTS semantics and its standard
SOS one. It turned out that, in all cases we considered here, it is sufficient to use
functional RTSs, i.e. RTS where the transition relation is indeed a function.
General RTSs are however useful in translations of Interactive Markov Chains
to Continuous Time Markov Decision Processes [18], or in the definition of the
RTS semantics for the Stochastic π-calculus (see [9]). Future work includes the
investigation of the nature and actual usefulness of general RTSs, and in par-
ticular their explicit representation of non-determinism, also in the context of
behavioural relations, along the lines of [22].
7 The approach has been applied also to EMPA but is not reported here due to space

limitations. The details can be found in [11].
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A Proof of Proposition 1

Proposition 1. The transient behaviour of CTMC C = (S,R) with R[s̄, s̄] > 0
for some s̄ ∈ S coincides with that of CTMC C̃ = (S, R̃), such that

R̃[s, s′] =def

{
0 if s = s′

R[s, s′] otherwise

�

Proof. Suppose R[s̄, s̄] > 0 and let (π s̄ t) be the probability that C is in state
s̄ at time t, IP{C(t) = s̄}. For h small enough, the evolution of C in the period
[t, t + h) can be captured using (π s̄ t) as shown below, letting ps̄ denote the
probability that no transition from s̄ is taken during the period [t, t + h) and
ps,s̄ denote the probability that a transition from s to s̄ takes place during the
period [t, t + h)8:

8 Notice that, we do not require s �= s̄, as usually found in the literature (see, e.g.
[14]).
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π s̄ (t + h)

= {Probability Theory; Definition of ps̄ and ps,s̄; h small}
(π s̄ t) · (1 − ∑

s∈S R[s̄, s] · h)
+

∑
s∈S(π s t) · R[s, s̄] · h + o(t)

= {Algebra}
(π s̄ t) − (π s̄ t) · ∑s∈S\{s̄} R[s̄, s] · h − (π s̄ t) ·R[s̄, s̄] · h +
∑

s∈S\{s̄}(π s t) ·R[s, s̄] · h + (π s̄ t) ·R[s̄, s̄] · h + o(t)

= {Algebra}
(π s̄ t) − (π s̄ t) · ∑s∈S\{s̄} R[s̄, s] · h +

∑
s∈S\{s̄}(π s t) · R[s, s̄] · h + o(t)

Thus the evolution of C in the period [t, t + h) does not depend on R[s̄, s̄]. And
in fact, letting

QR[s, s′] =def

⎧
⎨

⎩

R[s, s′], if s �= s′

−∑
s′′∈S\{s} R[s, s′′], if s = s′

we get π s̄ (t + h) = (π s̄ t)+
(∑

s∈S(π s t) · QR[s, s̄]
) ·h + o(t) from which we get

d(π s̄ t)
dt

= limh→0
(π s̄ (t + h)) − (π s̄ t)

h
=

∑

s∈S

QR[s, s̄] · (π s t)

The vector ((π s t))s∈S of the transient probabilities for C is thus characterised
as the solution of the equation

(
d(π s t)

dt

)

s∈S

= ((π s t))s∈SQR given ((π s 0))s∈S

which clearly coincides with the equation for the transient probabilities of C̃
observing that QR = QR̃.
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