
HAL Id: hal-01518592
https://hal.archives-ouvertes.fr/hal-01518592

Submitted on 5 May 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution| 4.0 International License

On a virtual work consistent three-dimensional
Reissner–Simo beam formulation using the quaternion

algebra
Eva Zupan, Miran Saje, Dejan Zupan

To cite this version:
Eva Zupan, Miran Saje, Dejan Zupan. On a virtual work consistent three-dimensional Reissner–Simo
beam formulation using the quaternion algebra. Acta Mechanica, Springer Verlag, 2013, 224 (8),
pp.1709-1729. �10.1007/s00707-013-0824-3�. �hal-01518592�

https://hal.archives-ouvertes.fr/hal-01518592
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Eva Zupan · Miran Saje · Dejan Zupan

On a virtual work consistent three-dimensional
Reissner–Simo beam formulation using the quaternion
algebra

Abstract In the paper, we present the Reissner–Simo beam theory in which the rotations are represented
by quaternions. From the generalized virtual work principle, where the unity constraint of the rotational
quaternion is properly considered and the consistent energy complements of the rotational quaternions are
employed, we derive the weak kinematic equations in the quaternion-based description. These equations are
then employed in the extended virtual work principle to obtain the consistent governing equations of the
three-dimensional beam in terms of the quaternion algebra. The quaternion moment equilibrium equation
is analyzed, discussed, and interpreted. In numerical implementation, the standard Galerkin discretization is
used to obtain the quaternion-based finite-element formulation. Various examples prove the suitability of the
formulation.

1 Introduction

Three-dimensional rotations seem to be crucial and unavoidable in many engineering fields. Several mathe-
matical models have been developed to describe the physical rotations in mathematical terms. Among them,
the Euler angles, the rotation matrix, and the rotational vector seem to be most popular. In some engineering
fields, an alternative description with rotational quaternions is also well recognized. The application of qua-
ternions can be found in diverse fields such as the navigation in aerospace technologies [18,20,31], robotics
[8,39], animating rotations in computer graphics [9,30], dynamics of rigid bodies [14,37], and flexible beams
[15,17]. From the above-mentioned publications, it is clear that the use of the quaternion algebra brings several
advantages when dealing with the rotations in three dimensions.
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The rotational quaternions have only recently been studied extensively in the analysis of the three-
dimensional beams [10,12,15,45]. Our recent works in the quaternion-based beam formulations for
static and dynamic analyses [44,45] introduced the quaternions by substituting pure quaternions for
vector-like quantities, while the unity of rotational quaternions is preserved only by the update pro-
cedure. Such an approach is efficient and proves that the quaternion algebra is a suitable tool for
describing the three-dimensional rotations in the beam formulations even though the formulations in
[44,45] are non-standard and differ considerably from the standard finite-element approaches such as
[12,32]. The choice of the parametrization of rotations has a strong impact on both the formula-
tion of the problem and the numerical implementation, see, e.g., [5,6,11,27,43]. It should be noted
that, in the field of nonlinear mechanics, we should properly consider the linearization in multipli-
cative configuration spaces and the effects of the chosen parametrization on the energy principles.
These two important aspects of the rotational quaternion-based approach will be discussed in the
present paper.

The finite-element formulation of the three-dimensional beam employing the quaternion algebra has already
been considered by Bottasso [7]. His paper is mainly focused on the choice of the appropriate constraining
equation for the quaternion parameters when used in the generalized virtual work principle. Our paper extends
the work of Bottasso [7] in the way that the virtual work principle becomes consistent with the quater-
nion unknowns. The similar problem of energy-consistent moments has been discussed by Ritto-Corrêa and
Camotim [26] when using various rotational parameters. They distinguish between the rotational moment,
which is the energy complement to the classical variation of the rotational vector, and several other moments,
belonging to different variations of other vector-like parametrizations of rotations. Their concepts will here be
applied in the four-parameter quaternion description.

In the present work, the quaternion-based governing equations of the beam are derived through the energy-
consistent approach. We present the consistent generalized virtual work principle which is then used for the
derivation of the weak kinematic equations in the quaternion description. Next, we derive the equilibrium
equations of the beam consisting of the standard equilibrium vector equation for forces and the modified
equilibrium vector equation for moments. This is in a sharp contrast to the direct approach used in [45] where
the standard equilibrium equations for moments were preserved. The quaternion moment as the energy com-
plement to the rotational quaternion is defined in accordance with [26]. The present approach introduces an
additional unknown of the problem by enforcing the weak form of the unity constraint to be satisfied in accord
with the method of Lagrangian multipliers. We thus obtain different continuous governing equations as in [45].
The differences are carefully analyzed and the equivalence of the continuous governing equations is shown.
Based on the present form of the governing equations, a numerical implementation is proposed. In contrast to
[45], the numerical implementation is carried out in a standard way. The Galerkin discretization of the gov-
erning equations is made and the finite-element quaternion-based formulation is presented. A speciality of the
present approach is in the treatment of the Lagrangian multiplier as the additional unknown of the discretized
system, which means that the weak form of the unity constraint becomes a part equal member of the govern-
ing equations. It is important to observe that a larger number of degrees of freedom in the present approach
does not increase the complexity of the numerical method. On the contrary, the finite-element formulation is
rather simple and very easy to implement. Various examples prove the suitability and the efficiency of the
formulation.

2 Geometry of the three-dimensional beam

The three-dimensional beam is modeled by the position vector
⇀
r (x) of the line of centroids (the beam axis)

and by the family of orthonormal base vectors BG =
{

⇀

G1 (x) ,
⇀

G2 (x) ,
⇀

G3 (x)

}
, where

⇀

G2 and
⇀

G3 are span-

ning the planes of cross-sections A (x), and
⇀

G1 = ⇀

G2 × ⇀

G3, see Fig. 1. Together with the reference point
x on the beam axis, the basis defines the local coordinate system (ξ, η, ζ ). In general, the beam quantities
depend on the arc-length x ∈ [0, L] of the line of centroids in the initial configuration. We further introduce

a fixed orthonormal triad Bg =
{

⇀
g 1,

⇀
g 2,

⇀
g 3

}
which, together with the reference point O, defines the global

coordinate system (X, Y, Z). We assume that the cross-sections are rigid, but not necessarily perpendicular
to the deformed beam axis. The relation between the local and the global base vectors is determined by the
rotations.
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Fig. 1 Model of the three-dimensional beam

3 Rotations and quaternions

The rotations and their parametrizations are well known and a widely studied subject in structural mechanics,

see, e.g., [1,2,25]. The rotation R
(
ϑ,

⇀
n

)
is a linear operator in IR3 which rotates vectors for an angle ϑ about

the axis of rotation described with a unit vector
⇀
n . In the matrix representation and with respect to an arbitrary

basis, the rotation of vector
⇀
x into vector

⇀
y takes the following form:

y = x + sin ϑ(n × x) + (1 − cos ϑ)n × (n × x) = Rx, (1)

where R is the matrix representation of the rotational operator R, and n is a (one-column) matrix representation

of vector
⇀
n . Furthermore, the rotation matrix also determines the transformation between the local and the

global matrix descriptions of the same vector:

x = R xG and xG = RT x, (2)

where x and xG represent the description of vector
⇀
x with respect to the global and the local bases, respec-

tively, and the superscript T denotes the transpose of a matrix. Note that the rotational operator R has an equal
matrix representation R in the two bases.

The comprehensive presentation of the quaternion algebra can be found in textbook [38]. A detailed applica-
tion of the quaternion representation of rotations in structural mechanics was presented in Zupan et al. [43,45].

The quaternion algebra (IH, +, ·, ◦), for IH =
{̂

a = a0 + ⇀
a , a0 ∈ IR,

⇀
a ∈ IR3

}
, is a four-dimensional linear

space
(
IR4, +, ·) with an additional non-commutative binary operation

â ◦ b̂ =
(

a0b0 − ⇀
a · ⇀

b

)
+

(
b0

⇀
a + a0

⇀

b + ⇀
a × ⇀

b

)
,

for â = a0 + ⇀
a , b̂ = b0 + ⇀

b ∈ IH , called the quaternion multiplication. a0 is called the scalar part

and
⇀
a the vector part of quaternion â. As IR3 is a linear sub-space in IH , it is straightforward to extend

any basis in the three-dimensional Euclidean space Bg = {ĝ1, ĝ2, ĝ3} into the basis of the quaternion space

B̂g = {ĝ0, ĝ1, ĝ2, ĝ3}, using the rule ĝ0 = 1+⇀

0 and ĝi = 0+⇀
g i , i = 1, 2, 3. Let â = a0+a = [a0 a1 a2 a3]T

and b̂ = b0 + b = [b0 b1 b2 b3]T be two arbitrary quaternions in the component matrix form. Then, the qua-
ternion multiplication can also be expressed by the matrix products as

â ◦ b̂ = φL
(̂
a
)

b̂ =
⎡
⎢⎣

a0 −a1 −a2 −a3
a1 a0 −a3 a2
a2 a3 a0 −a1
a3 −a2 a1 a0

⎤
⎥⎦

⎡
⎢⎣

b0
b1
b2
b3

⎤
⎥⎦ (3)

and

â ◦ ̂b = φR

(
̂b
)

â =
⎡
⎢⎣

b0 −b1 −b2 −b3
b1 b0 b3 −b2
b2 −b3 b0 b1
b3 b2 −b1 b0

⎤
⎥⎦

⎡
⎢⎣

a0
a1
a2
a3

⎤
⎥⎦. (4)
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We further introduce the conjugation of a quaternion, â ∗, which only alters the sign of the vector part of the

quaternion, â ∗ = a0 − ⇀
a .

In the quaternion description, Eqs. (1)–(2) take the form

ŷ = q̂ ◦ x̂ ◦ q̂∗ = φL (̂q)φR
(̂
q∗) x̂ (5)

and

x̂ = q̂ ◦ x̂G ◦ q̂∗ = φL (̂q)φR
(̂
q∗) x̂G, (6)

x̂G = q̂∗ ◦ x̂ ◦ q̂ = φL
(̂
q∗) φR (̂q) x̂, (7)

where q̂ represents the rotational quaternion that belongs to the same rotational operator R as matrix R from
Eq. (1). The rotational quaternion is defined as:

q̂ = cos
ϑ

2
+ n sin

ϑ

2
= exp

(
ϑn
2

)
. (8)

The three-dimensional vector quantities, x and y, are in (5)–(7) replaced with pure quaternions x̂ = 0 + x
and ŷ = 0 + y. Note that the matrix representation of the left and the right quaternion multiplication when
defined by the rotational quaternion, φL

(
q̂
)

and φR
(
q̂
)
, satisfy the orthogonality conditions, φS

(
q̂
)
φT

S

(
q̂
) =

φT
S

(
q̂
)
φS

(
q̂
) = I , for S = R, L , and thus, each represents a rotation in the four-dimensional Euclidean space

IR4. Note also from Eq. (8) that the norm of any rotational quaternion q̂ is equal to one,

|̂q| = √
q̂ · q̂ = 1 ⇐⇒ q̂ · q̂ = 1, (9)

which also implies

q̂ ◦ q̂∗ = 1̂ = 1 + ⇀

0 . (10)

It is found suitable to introduce the cross-vector product of pure quaternions. It is a pure quaternion with its
vector part equal to the standard cross-vector product,

â × b̂ = 0 + a × b = ̂a × b, (11)

where â = 0+ a and b̂ = 0+ b. Next, we will need some properties of the scalar product and adjoint operators
to rearrange the terms in the virtual work principle. In every finite dimensional linear space IRn (n ∈ IN ) with
the scalar product defined as

a · b =
n∑

i=1

ai · bi , a, b ∈ IRn,

for a = [ai ]i=1,2,...,n and b = [bi ]i=1,2,...,n , the following holds true [28]:

(Fa) · b = a ·
(

FT b
)

, (12)

where F is the matrix representation of the linear operator F : IRn → IRn . It is important to observe that

(
φL ( ĉ )

)T = φL
(

ĉ ∗) and
(
φR ( ĉ )

)T = φR
(

ĉ ∗) , (13)

which follows directly from (3)–(4). After applying (12)–(13) to arbitrary quaternions â, b̂, and ĉ, we have

( ĉ ◦ â ) · b̂ = â · (
ĉ ∗ ◦ b̂

)
, (14)

( â ◦ ĉ ) · b̂ = â · (
b̂ ◦ ĉ ∗) . (15)

Note that the identities (14)–(15) are essential for the rearrangement of the extended virtual work principle in
terms of quaternions.
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3.1 Derivative and variation of a rotational quaternion

The derivative of the rotational quaternion and its relation to the rotational strain vector as well as its linear-
ization and the relation between the variation of the rotational quaternion and the variation of the rotational
vector were derived and discussed in [45]. Here, we present only the results needed in the sequel.

Let rotation R map the global basis Bg onto the local basis BG and let q̂ be its rotational quaternion with
respect to the global basis. Then, we have

κ̂ = 2̂q ′ ◦ q̂∗ κ̂G = 2̂q∗ ◦ q̂ ′, (16)

where κ̂ and κ̂G are descriptions of κ̂ = 0 + ⇀
κ with respect to the global and the local bases, respectively, and

⇀
κ is the rotational strain vector. Analogously, we can find that

2δq̂ ◦ q̂∗ = 0 + δϑ = δϑ̂, (17)

where δϑ denotes the variation of the rotational vector ϑ = ϑn represented in the global basis. The derivative
of the conjugated quaternion, q̂∗′, is obtained by the differentiation of Eq. (10) and is expressed as

q̂∗′ = −q̂∗ ◦ q̂ ′ ◦ q̂∗. (18)

4 The generalized virtual work principle

Following the approach of Reissner [23,24], we assume the principle of virtual work in the form

L∫
0

[
NG (x) · (

δγ G (x)
)

rel + MG (x) · (δκG (x))rel
]
dx =

L∫
0

[n (x) · δr (x) + m (x) · δϑ (x)] dx

+[
F (x) · δr (x) + P (x) · δϑ (x)

]L
0 , (19)

where NG and MG are the stress-resultant force and moment vectors of the cross-section, and
(
δγ G (x)

)
rel

and (δκG (x))rel are virtual strains with respect to the local basis; n (x) and m (x) are external distributed force
and moment vectors per unit of the initial length; δr and δϑ are the virtual displacement vector and the virtual
rotational vector, respectively, and F (0), P (0), F (L), P (L) are the external point forces and moments at
the two boundaries, x = 0 and x = L , all written with respect to the global basis.

For simplicity and clearness of the notation, the dependency on x will be dropped. The quantities at the
two boundaries will be denoted by an upper index, e.g., P (L) = P L .

Now we will replace the three-parameter rotational vector by the four-parameter rotational quaternion
using Eq. (17). In replacing the rotational vector with quaternions, we must consider the fact that the four
variations of the rotational quaternion components, δqi , i = 0, 1, 2, 3, are mutually dependent; their relation
can be derived through the variation of Eq. (9). This relation is accounted for by the method of Lagrangian
multipliers [36]. The constraining equation (9) is first varied and then multiplied by an arbitrary unknown
scalar function λ (x), independent on the primary unknowns. The product is then integrated along the length
of the beam

L∫
0

2λδq̂ · q̂ dx,

and added to the virtual work principle (19). The presence of quaternions in the virtual work principle extends the
configuration space of the problem into the fourth dimension, which requires that some of the three-dimensional
quantities are extended to four dimensions as pure quaternions, e.g., M̂ = 0 + M. Next we recall that
m · δϑ = m̂ · δϑ̂ , where m̂ = 0 + m, and, likewise, P · δϑ = P̂ · δϑ̂ , where P̂ = 0 + P . Equation (19) can
thus be further rearranged by using Eqs. (15) and (17), so that the generalized virtual work principle using the
quaternion representation of rotation reads:
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L∫
0

[
NG · (

δγ G

)
rel + MG · (δκG)rel

]
dx =

L∫
0

[
n · δr + 2 (m̂ ◦ q̂) · δq̂

]
dx

−
L∫

0

2λq̂ · δq̂ dx + [
F · δr + 2

(
P̂ ◦ q̂

) · δq̂
]L

0 . (20)

4.1 The kinematic equations

In the spirit of Reissner’s works [23,24], we now derive the kinematic equations from Eq. (20), which assures
us that the obtained relationships between the displacements, the quaternions, and the strains will be fully con-
sistent with the virtual work principle. The well-known local equilibrium equations of the three-dimensional
beam are first rewritten in the quaternion form:

n = −N ′ = − (R NG)′

= −
[(̂

q ◦ N̂G ◦ q̂∗)′]
IR3

, (21)

m = −M ′ − r ′ × N = − (R MG)′ − r ′ × (R NG)

=
[
− (̂

q ◦ M̂G ◦ q̂∗)′ − r̂ ′ × (̂
q ◦ N̂G ◦ q̂∗)]

IR3
. (22)

Here, [ .̂ ]IR3 indicates the vector part of a quaternion.
The generalized virtual work principle given in (20) holds true for an arbitrary part of the beam, bounded

by the cross-sections at x = x1 and x = x2. Considering an arbitrary integration region, [x1, x2], in Eq. (20),
inserting n and m from Eqs. (21)–(22), applying the integration by parts, collecting the terms around force
NG , moment MG , and Lagrangian multiplier λ, respectively, yields

x2∫
x1

NG ·
[(

δγ G

)
rel − [̂

q∗ ◦ δ̂r ′ ◦ q̂
]

IR3 − 2
[̂
q∗ ◦ (̂

r ′ × (
δq̂ ◦ q̂∗)) ◦ q̂

]
IR3

]
dx

+
x2∫

x1

MG ·
[
(δκG)rel −

[
2̂q∗ ◦ (

δq̂ ◦ q̂∗)′ ◦ q̂
]

IR3

]
dx +

L∫
0

2 λ q̂ · δq̂ dx

+
[

NG · [̂
q∗ ◦ δ̂r ◦ q̂

]
IR3

]x2

x1

+
[

MG · 2
[̂
q∗ ◦ δq̂

]
IR3

]x2

x1

−
[

F · δr + P · 2
[
δq̂ ◦ q̂∗]

IR3

]x2

x1

= 0. (23)

Recalling that NG, MG and λ are arbitrary and mutually independent quantities and invoking the fundamental
lemma of calculus of variations that the functions at the independent quantities are zero yields the relations
between the virtual strains, the virtual displacements, and the virtual rotational quaternions as(

δγ G

)
rel = [(̂

q∗ ◦ δ̂r ′ ◦ q̂
) + 2̂q∗ ◦ (̂

r ′ × (
δq̂ ◦ q̂∗)) ◦ q̂

]
IR3 , (24)

(δκG)rel =
[
2̂q∗ ◦ (

δq̂ ◦ q̂∗)′ ◦ q̂
]

IR3
, (25)

0 = 2̂q · δq̂. (26)

Equations (24)–(25) represent the linearized kinematic equations in the quaternion description and are equal
to those obtained directly by converting the kinematic equations of the three-dimensional Reissner beam to
the quaternion form, see [45] for details. The third kinematic equation (26) relates the rotational quaternion
with its variation and implies that q̂ and its variation, δq̂, are orthogonal. Note that Eq. (26) is an exact var-
iation of Eq. (9). Equations (24)–(26) represent a system of seven differential-algebraic equations for seven
kinematic unknowns, i.e., three components of the virtual displacement vector and four components of the
virtual rotational quaternion.

The integration of the linearized kinematic equations becomes nontrivial in three dimensions. In contrast
to Reissner [23] who proposed a simplification of rotations, Simo [32] derived the exact strong form of kine-
matic equations. Here, the strong kinematic equations in terms of rotational quaternions are obtained directly
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from the weak form (24)–(25) employing a similar procedure as introduced in [32] for the integration of the
kinematic equations when expressed in terms of the rotational vector. As the details of the derivation are given
in [45], only the final result is displayed here:

γ̂ G = q̂ ∗ ◦ r ′ ◦ q̂ + ĉG (27)

κ̂G = 2̂q ∗ ◦ q̂ ′ + d̂G . (28)

Here ĉG = 0 + cG and d̂G = 0 + dG denote the variational constants, which are uniquely determined from
the known initial configuration of the beam. Note that the variational constants are generally functions of x .
In the simplest yet a most common case, when the beam is straight in the undeformed configuration, we have
ĉG = Ĝ1 and d̂G = 0̂.

4.2 The equilibrium equations

We insert the above derived kinematic equations (24)–(25) into Eq. (20) and transform the equilibrium forces
and moments into the global basis description. Then the terms are rearranged with the help of (14)–(15), (18),
and the integration by parts is used to obtain

[
N̂ · δ̂r

]L
0 −

L∫
0

N̂
′ · δ̂r dx −

L∫
0

[
2

((̂
r ′ × N̂

) ◦ q̂
) · δq̂

]
dx

+ [(
2M̂ ◦ q̂

) · δq̂
]L

0 +
L∫

0

2
(
M̂ ◦ q̂

)′ · δq̂ dx +
L∫

0

2
(
M̂ ◦ q̂ ′) · δq̂ dx

− [
F · δr + 2

(
P̂ ◦ q̂

) · δq̂
]L

0 −
L∫

0

[n · δr + 2 (m̂ ◦ q̂) · δq̂] dx +
L∫

0

2λq̂ · δq̂ dx = 0. (29)

Equation (29) represents the generalized principle of virtual work in which all components of δ̂r and δq̂ are
arbitrary and mutually independent unknown functions. Collecting the terms around δr and δq̂ and invoking
the fundamental lemma of calculus of variations give the equilibrium equations on [0, L]:

N ′ + n = 0 (30)[
M̂

′ + r̂ ′ × N̂ + m̂ − λ̂1
]

◦ q̂ = 0̂ (31)

and the boundary conditions:

N0 − F0 = 0 (32)(
M̂

0 − P̂
0
)

◦ q̂0 = 0̂ (33)

N L − FL = 0 (34)(
M̂

L − P̂
L
)

◦ q̂L = 0̂. (35)

Equation (30) coincides with the standard equilibrium equation for forces, which does not depend on the
rotation. In contrast, the equilibrium equation (31) for moments differs from the standard one. If we use the
notation M for the standard form of the moment equilibrium equation

M = M ′ + r ′ × N + m = 0, (36)

and insert (36) into (31), we obtain [M̂ − λ̂1
] ◦ q̂ = 0̂. (37)

Now the difference between the two expressions becomes evident. The result shows how the quaternion-based
moment equilibrium equation (31) is related to the one based on the rotational vector.
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Equations (30)–(31) represent a system of seven differential equations for seven unknown functions—three
components of forces, three components of moments, and the Lagrangian multiplier. Equations (24)–(26) and
(30)–(31) represent a set of fourteen equations of the geometrically exact beams, if described with the quater-
nion-based representation of rotations.

4.2.1 The quaternion moment and the interpretation of the Lagrangian multiplier

From (20) we can observe that the virtual work of the external distributed moments
∫ L

0 m (x) · δϑ (x) dx now

takes the equivalent form
∫ L

0 2 (m̂ ◦ q̂)·δq̂ dx . Thus, the definition of the energy-consistent quaternion moment
in the sense of the work by Ritto-Corrêa and Camotim [26] is evident. Let Mϑ be the rotational moment as
defined by Ritto-Corrêa and Camotim [26]. Then, the quaternion moment M̂q can be defined as

M̂q = 2M̂ϑ ◦ q̂, (38)

where M̂ϑ = 0+Mϑ . Please observe that the quaternion moment M̂q is configuration dependent, as it depends
on q̂. It is conservative when Mϑ is conservative.

It is interesting to explain the meaning of the Lagrangian multiplier λ. From Eq. (37), we can see that λ is the
scalar component of the standard moment (vector) equation representing the proper extension of the moment
equilibrium equation to the quaternion space. Equation (37) is now multiplied by q̂∗ using right quaternion
multiplication, which yields

M̂ − λ̂1 = 0̂

or, equivalently,

λ = 0 (39)

M = 0. (40)

Equation (37) is equivalent to the system of equations (39)–(40) and (9). From Eq. (39), it is obvious that λ = 0
is an exact analytical solution of Eq. (37), and it could be eliminated from the quaternion moment equilibrium
equation (31) or (37) after the unity requirement of the rotational quaternion has been satisfied. In this case,
Eq. (31) would be replaced by the standard moment equilibrium equation (40). This kind of approach has been
followed in our previous work, see [45].

Note that Eq. (39) holds true only for a continuous system where Eq. (9) is identically satisfied for any x .
In the numerical solution method, this is not the case and it is found suitable to consider λ as an additional
unknown quantity, as we show next.

4.3 The discrete governing equations

The Galerkin finite-element approach is applied to obtain the discrete equilibrium equations fully consistent
with the quaternion representation of rotations. The quaternion-based formulation introduces seven scalar kine-
matic unknowns, three components of the displacement vector and four rotational quaternion components. To
consider the Lagrangian multiplier, λ, as independent primary unknown, we further extend the generalized
virtual work principle (20) by adding the term

L∫
0

δλ (̂q · q̂ − 1) dx . (41)

Such a generalization of the virtual work principle is fully equivalent to the original one, (20), when dealing
with the continuous unknowns, see [36, pp. 129–130].

8



The variations of the primary unknowns are interpolated in a standard manner:

δr (x) =
∑

i

Pi (x) δr i , δr i = δr (xi ) , (42)

δq̂ (x) =
∑

i

Pi (x) δq̂i , δq̂i = δq̂ (xi ) , (43)

δλ (x) =
∑

i

Pi (x) δλi , δλi = δλ (xi ) , (44)

where xi ∈ [0, L], i = 0, 1, 2, . . . , N + 1, with x0 = 0 and xN+1 = L , are the discretization points and
Pi (x) are interpolation functions. Note that an equal order of the interpolation has also been used for the
Lagrangian multiplier. Such a choice needs some comments. It is important to observe the special role of the
Lagrangian multiplier in the present formulation. The derivative of λ with respect to x does not occur in any
of the governing equations. Numerical studies revealed that the iteration procedure diverges if the order of
interpolation for δλ is lower than for δq̂. If we take the order of the interpolation for δλ higher than for δq̂,
the tangent stiffness matrix becomes singular. Similarly, we observe severe singularity problems, if we release
the continuity condition for λ. Only for the same order of the interpolation and the full continuity conditions
imposed at the nodes the method becomes numerically stable and computationally efficient. Later on it will
also be shown that the present approach performs very well even for high-order interpolations. When inserting
the kinematic equations (24)–(25) into the extended principle of virtual work (20), applying (42)–(44) and
after some rearrangement of the terms, we obtain the following discretized generalized virtual work principle:

∑
i

{ L∫
0

(
N P ′

i − n Pi
)

dx − [
F Pi

]L
0

}
· δr i +

∑
i

{ L∫
0

(− (
M̂ ◦ κ̂ ◦ q̂

)
Pi − 2

((
r̂ ′ × N̂

) ◦ q̂
)

Pi

−2 (m̂ ◦ q̂) Pi + 2λq̂ Pi + 2
(
M̂ ◦ q̂

)
P ′

i

)
dx− [

2
(

P̂ ◦ q̂
)

Pi
]L

0

}
· δq̂i

+
∑

i

{ L∫
0

(̂q · q̂ − 1) Pi dx

}
δλi = 0. (45)

Note that the same result can also be obtained by adding the integrated unit length constraint (41) to Eq. (29).
In (45) δr i , δq̂i and δλi are independent and arbitrary unknown discrete values. From the fundamental lemma
of calculus of variations, we have:

F (1−3)
i :

L∫
0

(
N P ′

i dx − n Pi
)

dx + δi0 F0 − δi L FL = 0, (46)

F (4−7)
i :

L∫
0

(
2M̂ ◦ q̂ P ′

i − (
M̂ ◦ κ̂ + 2̂r ′ × N̂ + 2m̂ − 2λ̂1

) ◦ q̂ Pi
)

dx

+ 2δi0 P̂
0 ◦ q̂0 − 2δi L P̂

L ◦ q̂L = 0̂, (47)

F (8)
i :

L∫
0

(̂
q · q̂ − 1

)
Pi dx = 0, (48)

for i = 0, 1, . . . , N + 1. Here,

δi0 =
{

1, for i = 0
0, otherwise δi L =

{
1, for i = N + 1
0, otherwise .

Equations (46)–(48) represent a system of 8 (N + 2) discrete algebraic equations for as many discrete unknown
quantities r i , q̂i and λi , i = 0, 1, . . . , N + 1.
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5 Numerical implementation

In the present numerical implementation, the Lagrangian polynomials are used for the interpolation. The
integrals are evaluated numerically.

We use a classical numerical integration where an integral is replaced by a weighted sum

L∫
0

f (x) dx →
IN∑
j=0

w j f
(
x j

)
.

The values of the weights, wq , and the locations of the points, xq , are dependent on their number IN + 1
and on the chosen numerical integration method. Because of its high accuracy, the Gaussian integration is
implemented. A typical property of standard displacement-based beam finite elements of a low order is the
possible occurrence of shear locking. To avoid shear locking in such elements, several solutions have been
proposed. One of the widely used is the reduced integration, see, e.g., [33] and the references therein. The
quaternion approach seems to inherit this inconvenience of standard discretizations. In [45], the shear locking
phenomenon was resolved by imposing the consistency conditions (see also [40]). For simplicity, we will
here employ a standard approach which uses the reduced integration (IN = N ) for the terms consisting of
the extensional and shear-strain components for the linear (N = 0) and the quadratic (N = 1) elements.
For higher-order elements (N ≥ 2), a full integration (IN = N + 1) is used in all the terms. Note that the
solution employed in [45] is fully applicable in the present approach, yet it would demand a generalized virtual
work principle augmented with two additional terms. See also [19,22] for further details on the shear locking
phenomenon.

The solution of the system of nonlinear algebraic equations (46)–(48) is obtained by the Newton method.
The method requires the linearization of the discrete nonlinear equations and an update of the vector of
unknowns with their corrections δ y = (δr i , δq̂i , δλi ) must be made in each iteration. The corrections are
obtained by the solution of the system of linear algebraic equations

K [n]δ y = − f [n], for n = 0, 1, 2, . . . ,

obtained by the linearization of Eqs. (46)–(48). Here, K [n] is the global tangent matrix, and f [n] is the residual
vector in iteration n. In linear vector spaces, new, improved solutions are obtained by summing the current
iterative value and its correction:

y[n+1] = y[n] + δ y.

For the displacements and the Lagrangian multiplier such an additive update is adequate:

r [n+1] = r [n] + δr,
λ[n+1] = λ[n] + δλ.

This kind of update is not admissible for the rotational quantities. The quaternion representation of rotations
conserves the multiplicative nature of rotations, so that the resultant rotational quaternion must be obtained by
the quaternion product of the two subsequent rotational quaternions. Having the correction of the rotational
quaternion δq̂, we must first obtain the multiplicative incremental rotational quaternion 
q̂ that, subsequently,
is combined with the current rotational quaternion q̂[n]. From Eq. (17), it follows that 2δq̂ ◦ q̂∗ is a more
suitable measure for the variation of rotations than only δq̂. The term 2δq̂ ◦ q̂∗ is also analogous to the standard
definitions of rotational strain in statics and angular velocity in dynamics. The advantage of considering the
more sophisticated measure for the variation of rotations is that its natural projection from the tangent space
onto the set of rotational quaternions follows directly from Eq. (8).

The consistent update of the rotational quaternions hence takes the following form:

q̂[n+1] = 
q̂ ◦ q̂[n], where 
q̂ = exp
(
δq̂ ◦ (̂

q[n])∗)
. (49)

The update procedures for the derivatives of the rotational quaternions need to consider that only the variation
of rotational quaternion has been interpolated. Thus, we first obtain 
q̂ ′ by the differentiation of 
q̂ with
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respect to x employing Eq. (49) and then express the incremental strain using Eq. (28). The update of the rota-
tional strains can then be carried out by taking into account their additive nature. When written with respect
to the suitably chosen bases, it takes the following form:

κ̂
[n+1]
G[n+1] = κ̂

[n]
G[n] + 
κ̂G[n+1], where 
κ̂G[n+1] = q̂[n+1]∗ ◦ (

2
q̂ ′ ◦ 
q̂∗) ◦ q̂[n+1] .

Details are given in [45].
In the present paper, we limit our studies to the linear elastic material of the beam. A simple linear relation

between stress resultants and strain vectors is thus assumed in the following form:

NG =
⎡
⎣ E A1 0 0

0 G A2 0
0 0 G A3

⎤
⎦ γ G = C N γ G, (50)

MG =
⎡
⎣ G J1 0 0

0 E J2 0
0 0 E J3

⎤
⎦ κG = C MκG . (51)

E and G denote the elastic and the shear moduli of material; A1 is the cross-sectional area; J1 is the torsional
inertial moment of the cross-section; A2 and A3 are the effective shear areas in the principal inertial directions
⇀

G2 and
⇀

G3 of the cross-section; J2 and J3 are the corresponding principal bending inertial moments of the
cross-section.

The strain vectors in (50)–(51) are expressed with the displacements and the rotational quaternions by the
strong form of kinematic equations (27)–(28). Once (50)–(51) and (27)–(28) are accounted for, the system
of the governing equations is complete, thus enabling us to solve the equations with respect to the unknown
nodal values of displacements, rotational quaternions and Lagrangian multipliers.

5.1 The linearization of the discrete governing equations

When the rotational quaternions are used, the linearization is substantially more simple when compared to the
rotational vector-based formulations. Moreover, the derivatives of variations follow directly from (42)–(43),
e.g.,

δr ′ =
∑

i

P ′
i δr i and δq̂ ′ =

∑
i

P ′
i δq̂i .

Following the rules of variational calculus, Eq. (46) is linearized as

δF (1−3)
i =

L∫
0

δN P ′
i dx

=
∑

j

L∫
0

∂ N
∂γ G

∂γ G

∂ r ′ P ′
i P ′

j dx δr j +
∑

j

L∫
0

[
∂ N
∂γ G

∂γ G

∂ q̂
+ ∂ N

∂ q̂

]
P ′

i Pj dx δq̂ j . (52)

In the linearization of Eq. (47), it is suitable to introduce the notations

F̂m1 = −2
(̂
r ′ × N̂

) ◦ q̂,

F̂m2 = −2M̂ ◦ q̂,

F̂m3 = −M̂ ◦ κ̂ ◦ q̂,

F̂m4 = −2m̂ ◦ q̂.

11



The linearization then takes the form:

δF (4−7)
i =

L∫
0

∂ F̂m1

∂ r ′ Pi dx δr ′ +
L∫

0

∂ F̂m2

∂ q̂
P ′

i δq̂ dx

+
L∫

0

(
∂ F̂m1

∂ q̂
+ ∂ F̂m3

∂ q̂
+ ∂ F̂m4

∂ q̂

)
Piδq̂ dx

+
L∫

0

∂ F̂m2

∂ q̂ ′ P ′
i δq̂ ′ dx +

L∫
0

∂ F̂m3

∂ q̂ ′ Piδq̂ ′ dx + 2δi0φL

(
P̂

0
)

δq̂0

− 2δi LφL

(
P̂

L
)

δq̂L + 2

L∫
0

q̂ Piδλ dx + 2

L∫
0

λPiδq̂ dx

=
∑

j

{ L∫
0

∂ F̂m1

∂ r
Pi P ′

j dx

}
δr j +

∑
j

{
2

L∫
0

q̂ Pi Pj dx

}
δλ j

+
∑

j

{ L∫
0

(
∂ F̂m1

∂ q̂
+ ∂ F̂m3

∂ q̂
+ ∂ F̂m4

∂ q̂
+ 2λ

)
Pi Pj dx

+
L∫

0

∂ F̂m2

∂ q̂
P ′

i Pj dx +
L∫

0

(
∂ F̂m2

∂ q̂ ′ + ∂ F̂m3

∂ q̂ ′
)

Pi P ′
j dx

}
δq̂ j

+ 2δi0φL

(
P̂

0
)

δq̂0 − 2δi LφL

(
P̂

L
)

δq̂L . (53)

Finally, the linearization of Eq. (48) reads

δF (8)
i = 2

L∫
0

q̂ · δq̂ Pi dx = 2
∑

j

L∫
0

q̂ Pi Pj dx · δq̂ j . (54)

The details regarding the partial derivatives in the above equations are presented in the Appendix. From (52)–
(54), we can observe that the linearization is relatively simple, which results in its easier implementation
in a computer code and a higher computational efficiency when compared to our previous quaternion-based
formulation [45].

By studying the sparseness of the tangent stiffness matrix, we found that the additional unknown only
slightly enhances the complexity of the linearized system of equations, while at the same time the component
blocks of the tangent stiffness matrix are easier to evaluate. The sparseness of these additional blocks due to
taking the Lagrangian multiplier as an additional unknown is also related to the singularity problems at the
structural level, if we allow λ to be discontinuous over the boundary. By satisfying the continuity conditions
for λ and by taking the same order of interpolation for all the interpolated unknowns, we completely avoid any
such numerical problems.

6 Numerical examples

In order to demonstrate validity, efficiency and accuracy of the proposed numerical approach, we now discuss
several standard numerical examples. The examples also show the capability of the present formulation to
consider the beams at arbitrary deformed configuration. All the calculations were performed in the Matlab
[34] computing environment.
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Fig. 2 Normalized vertical tip displacement versus GL2/Eh2

Finite elements with various numbers of interpolation points, N +2, are used to investigate the influence of
their number on the accuracy of numerical solutions. A number of internal points, N , will be used to describe
the applied elements.

Note that the present algorithm exactly preserves the unity of rotational quaternions at the interpolation
and integration points.

6.1 The shear locking test

In the present quaternion-based formulation, we alleviate shear locking in low-order elements in a standard
way by using the reduced integration, see Sect. 5. For the sake of demonstration, we study a straight cantilever
beam under a vertical tip load F = 1 at the free end. The geometric and material properties of the cantilever
are:

E = 107, G = 1013, L = 1, t = 0.1,

t is the width of the rectangular cross-section. Note that shear modulus G was taken exceedingly large as the
problem of shear locking becomes severe by increasing G. On the other hand, in conventional displacement-
based finite elements, locking progresses rapidly as the height of the cross-section decreases. The height, h,
of the beam was therefore varied from 0.1 (small) to 10 (large). Our numerical results for the tip displacement
uZ are compared with the exact solution uZ ,ref in the form of quotient uZ/uZ ,ref . The variation of uZ/uZ ,ref

is shown with respect to the structural parameter GL2/Eh2 in the logarithmic scale in Fig. 2.
We can observe that the linear elements (N = 0) are prone to shear locking indeed and that locking is

efficiently resolved by using the reduced integration. The quadratic elements (N = 1) do not seem to suffer
severe locking. Nonetheless, the use of the reduced integration is advisable, because it gives more accurate
results. The higher-order elements (N ≥ 2) enable us to use the full integration with no harm.

Note that the origin of the shear locking problems demonstrated here is the use of the standard Galerkin
finite-element approach and are not imposed by the use of quaternions. This was indirectly confirmed in [45],
where the non-standard, yet a quaternion-based finite-element approach is presented which is locking-free.

6.2 A cantilever beam subject to a free-end moment

A straight cantilever beam is subjected to the in-plane moment MY = 1000 at its free end (Fig. 3). The
deformed shape is characterized by large rotations and large displacements both in the X and Z direction. The
analytical solution [29] shows that the beam deforms into a part of a circle. The in-plane rotation of the beam
is thus a linear function of x :
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Fig. 3 The cantilever under free-end in-plane moment

Table 1 Rotations of the cantilever under an in-plane moment

ne = 1 ne = 2 ne = 10 ne = 50

N = 1 2.825955 2.854684 2.857139 2.857143
N = 4 2.855784 2.857135 2.857143
N = 6 2.857142 2.857143
N = 9 2.857143
Exact nonlinear [29] 2.857143
N = number of internal points, ne = number of elements

ϑY (x) = MY

E J2
x .

This simple test is unpretentious for the rotational vector-based formulations but very significant when using
rotational quaternions. In contrast to the rotational vector-based formulations, where the first-order interpola-
tion describes the actual rotations exactly, the rotational quaternion-based approach employs the trigonometric
functions of the angle of rotation. This example indicates that higher-order elements may sometimes be needed
when using the rotational quaternions, which is also confirmed in the convergence study presented in Table 1.

The following geometric and material properties of the cantilever are taken into account:

E = 2.1 × 104 G = 1.05 × 104 L = 100

A1 = 20 A2 = A3 = 16

J1 = 6.4566 J2 = 1.6667 J3 = 666.66.

We can observe from Table 1 that a single high-order element gives the result accurate in all significant digits.
The accuracy of low-order elements can be improved by increasing the density of the finite-element mesh.
Clearly, the use of a small number of elements in conjunction with a high order of interpolation is computation-
ally more efficient. Note that for this problem, the present formulation shows better convergence, especially
for higher magnitudes of the applied moment, when compared to the quaternion-based elements, presented in
[45]. This might be due to a different treatment of the moment equilibrium equations.

6.3 The MacNeal and Harder test problems

In their paper from 1985 [16], MacNeal and Harder proposed a standard set of problems to test the finite-
element accuracy of beam, shell, and solid elements. Three of them are applicable in the spatial beams:
(i) the straight cantilever beam; (ii) the curved beam, and (iii) the twisted beam. The data for the straight
beam are:

A1 = 0.02 L = 6.0

A2 = A3 = 0.016 J1 = 4.8630 × 10−5

E = 1.0 × 107 J2 = 6.66667 × 10−5

G = 3.84615 × 106 J3 = 1.66667 × 10−5,

14



Fig. 4 The MacNeal and Harder test problems

Fig. 5 Cantilever 45◦ bend

where L is the length of the beam. Four load cases are considered: a unit force in all three coordinate directions
resulting in extension, in-plane shear and out-of-plane shear, and a unit torsional moment resulting in twist.
The axis of the curved beam in the initial undeformed configuration has the shape of a quarter of a circle with
radius R = 4.22. Only G and J1 are changed in this beam:

G = 4.0 × 106, J1 = 4.4050 × 10−5.

The twisted beam has a straight axis, while the cross-sections are linearly rotated from an angle ϑ = 0 at the
clamped edge to an angle ϑ = π/2 at the free end, see also discussion in [42]. The properties of the beam are:

A1 = 0.3520 L = 12.0

A2 = A3 = 0.2816 J1 = 0.0385

E = 2.9 × 107 J2 = 0.0030

G = 1.1885 × 107 J3 = 0.0355.

For both the curved and the twisted beam, we consider two load cases: the unit force in the in-plane and in
the out-of-plane direction, see Fig. 4. The results obtained by the cubic elements are presented in Table 2
and compared to the theoretical results of MacNeal and Harder [16] as well as to the analytical results of the
linearized Reissner beam theory, see [41, Appendix D]. Some small differences between the theoretical [16]
and the analytical results [42] can be observed which are due to the different theoretical assumptions of the
two beam theories. It is important to observe that the results using the present elements agree well with the
analytical results. The mesh of six cubic elements (N = 2) with an appropriate description of the initial curved
geometry gives results accurate to at least four significant digits. The importance of a proper description of the
initial geometry for the curved beam is demonstrated in Table 2. When the beam is modeled with six straight
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Table 2 Present results and analytical solutions of the MacNeal and Harder test problems

Initial beam type Type of solution Displacement in the direction of the load

Extension (F1) In-plane shear (F2) Out-of-plane shear (F3) Twist (M1)

Straight 6 straight elements 3.0 × 10−5 0.10810 0.43210 0.032079
Theoretical [16] 3.0 × 10−5 0.1081 0.4321 0.03208
Analytical 3.0 × 10−5 0.10810 0.43210 0.032079

Curved 6 straight elements – 0.087349 0.50222 –
40 straight elements – 0.088576 0.50608 –
6 curved elements – 0.088577 0.50615 –
Theoretical [16] – 0.08734 0.5022 –
Analytical – 0.088604 0.50617 –

Twisted 6 straight elements – 0.0054290 0.0017494 –
Theoretical [16] – 0.005422 0.001754 –
Analytical [45] – 0.0054293 0.0017496 –

Table 3 Free-end position of the 45◦ bend cantilever

Formulation rX rY rZ

Present, N = 0 16.5541 46.6026 53.5528
Present, N = 1 15.2860 47.4156 53.4733
Present, N = 3 15.2862 47.4159 53.4725
Present, N = 7 15.2862 47.4159 53.4725
Present, N = 15 15.2861 47.4159 53.4725
Zupan [45], N = 7 15.74 47.15 53.43
Zupan [45], N = 15a 15.74 47.15 53.43
Bathe and Bolourchi [4] 15.9 47.2 53.4
Simo [32] 15.79 47.23 53.37
Number of elements = 8, N = number of internal points
a Problems with convergence

elements, the numerical results agree with the analytical ones only in two significant digits; a mesh of 40
straight elements is needed for an accuracy, obtained with a mesh of six initially curved elements.

The present quaternion-based elements are thus capable of well describing the beam behavior with high
accuracy even for an initially curved and/or twisted geometry of the three-dimensional beams.

6.4 Bending of 45◦ cantilever

This problem, first presented by Bathe and Bolourchi [4], represents one of the classical finite-element tests
since it includes all possible natural modes of deformation of a beam: bending, shear, extension, and torsion.
The data are taken from [4]: the circular arch with radius 100 is located in the horizontal plane and clamped at
one end (Fig. 5). The cross-section is taken to be a unit square. The arch is subjected to a vertical load F = 600
at the free end. The elastic and the shear moduli of material are E = 107 and G = E/2.

In Table 3, we compare the results for the position vector of the free end of the cantilever. Eight straight
elements of various order were used to obtain the results of the present formulation. The present results agree
well with the results of other authors. An excellent performance and numerical stability of our method can be
observed even for very high order of interpolation and a rapid convergence with respect to the order is evident.
In contrast, for N = 15, some convergence problems with formulation [45] were observed.

6.5 Lateral buckling of a right-angle frame

This classical problem was introduced by Argyris et al. [3] and was later studied by many authors. The simply
supported thin right-angle frame is analyzed to check the ability of the present formulation to consider the
torsional-bending coupling properly. At the two supported ends, the frame is subjected to the in-plane moments
in the opposite directions, see Fig. 6. The geometrical and material parameters are taken from [2] and are:
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Fig. 6 Lateral buckling of a right-angle frame

Table 4 Critical moment Mc of the simply supported right-angle frame

Element type ne = 1 ne = 2 ne = 10

Present, N = 1 ±686.085 ±626.876 ±622.219
Present, N = 2 ±645.430 ±624.547 ±622.215
Present, N = 4 ±622.282 ±622.211 ±622.210
Jelenić and Saje [13], N = 4 ±622.2
Nour-Omid and Rankin [21], mixed ±626.7
Simo [32], N = 2 ±626
Zupan and Saje [40], N = 4 ±622.40 ±622.22
Zupan [45], N = 5 ±622.19 ±622.22 ±622.22
Analytical solution ±622.210
ne = number of elements, N = number of internal points

J1 = 1.50 A1 = 18 E = 71240

J2 = 0.54 A2 = 15 G = 39155.04

J3 = 1350 A3 = 15 L = 240.

Because the slenderness of the rectangular cross-section is extreme, the frame buckles out of the plane. This
phenomenon is numerically detected by the onset of singularity of the tangent stiffness matrix. The accuracy
of the solution is dependent on the density of the mesh used, see Table 4. Due to the symmetry of the problem
only a half of the structure was modeled. Our results are compared to the analytical solution by Timoshenko
and Gere [35] and to the numerical results of other authors. From Table 4, we can observe that the present
approach gives the critical moment accurate in all significant digits for a mesh of only two elements with
four internal points. This is also more accurate with respect to the results of other formulations including the
quaternion-based approach in [45]. The advantage of the present approach for this particular problem might
be due to a convenient form of the quaternion moment, which results in the boundary point moments being
the direct members of the tangent stiffness matrix, see Eq. (53).

7 Conclusion

We presented a fully consistent standard formulation of the Reissner three-dimensional beam theory based on
the rotational quaternions. We strictly use the quaternion algebra in the derivation of the governing equations.
The quaternion moment and the consistent quaternion-based moment equilibrium equation have been derived
in the continuous and the discrete forms. The numerical implementation is carried out in detail and some
numerical examples have been presented. The proposed method proves to be numerically robust, accurate, and
computationally efficient. These important properties stem from the present kinematically consistent approach,
in which the algebraic constraint for the rotational quaternions is properly considered. Without much addi-
tional effort, the present model is very suitable for the implementation in existing finite-element computer
environments.
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Appendix: The details about the linearization

Here, we derive the linearization of several rotation-dependent terms which will serve well in the linearization
process of the governing equations. Special care is taken in considering the nature of the varied quantities.
Note that the vector quantities need to be extended to pure quaternions whenever the rotations are applied. The
variation of a pure quaternion is properly reduced to three dimensions whenever needed.

The linearization of the conjugated rotational quaternion follows directly from Eq. (9):

δq̂ ◦ q̂∗ + q̂ ◦ δ
(̂
q∗) = 0,

δ
(̂
q∗) = −q̂∗ ◦ δq̂ ◦ q̂∗ = −φL

(̂
q∗)φR

(̂
q∗) δq̂. (55)

The linearization of the translational strain follows from (27):

δγ̂ G = δ
(̂
q∗) ◦ r̂ ′ ◦ q̂ + q̂∗ ◦ δr ′ ◦ q̂ + q̂∗ ◦ r̂ ′ ◦ δq̂

= φL
(̂
q∗)φR (̂q) δ̂r ′ + (

φL
(
γ̂ G − ĉG

) − φR
(
γ̂ G − ĉG

))
φL

(̂
q∗) δq̂

= ∂ γ̂ G

∂ r̂ ′ δ̂r ′ + ∂ γ̂ G

∂ q̂
δq̂, (56)

where

∂ γ̂ G

∂ r̂ ′ = φL
(̂
q∗)φR (̂q) , (57)

∂ γ̂ G

∂ q̂
= (

φL
(
γ̂ G − ĉG

) − φR
(
γ̂ G − ĉG

))
φL

(̂
q∗) . (58)

Note that
∂γ̂ G

∂ r̂ ′ and
∂γ̂ G
∂ q̂ are 4 × 4 matrices. Displacements and strains are pure quaternions, and thus, their

variations δ̂r and δγ̂ are pure quaternions as well. The trivial scalar components of pure quaternions will
be eliminated from expressions. Considering the nature of the pure quaternions, we introduce the following
combined vector-quaternion notation to express the variations

δγ G =
[
∂ γ̂ G

∂ r̂ ′
]

IR3×3
δr ′ +

[
∂ γ̂ G

∂ q̂

]
IR3×4

δq̂, (59)

where [.]IR3×3 denotes the sub-matrix obtained by removing the first column and the first row of the original
matrix, and [.]IR3×4 denotes the matrix obtained by removing only the first row. For the sake of simplicity, the
following notation will be used instead:

δγ G = ∂γ G

∂ r ′ δr ′ + ∂γ G

∂ q̂
δq̂, (60)

where
∂γ G
∂r ′ =

[
∂γ̂ G

∂ r̂ ′
]

IR3×3
and

∂γ G
∂ q̂ =

[
∂γ̂ G
∂ q̂

]
IR3×4

.

The linearization of rotational strains from (28) gives

δκ̂G = 2δq̂∗ ◦ q̂ ′ + 2̂q∗ ◦ δq̂ ′

= 2φL
(̂
q∗) δq̂ ′ − φL

(̂
q∗)φR (̂κG) δq̂

= ∂ κ̂G

∂ q̂ ′ δq̂ ′ + ∂ κ̂G

∂ q̂
δq̂, (61)

where

∂ κ̂G

∂ q̂ ′ = 2φL
(̂
q∗) ,

∂ κ̂G

∂ q̂
= −φL

(̂
q∗)φR (̂κG) .
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The linearization of the stress-resultant vectors, when expressed in the local basis, follows directly from
(50)–(51):

δNG = C N δγ G, δMG = C M δκG . (62)

When vector quantities are expressed as pure quaternions, Eq. (62) reads

δ N̂G = Ĉ N δγ̂ G, δM̂G = Ĉ M δκ̂G, (63)

where the hat over the matrix in IR3×3 denotes its natural expansion into IR4×4:

Ĉ N =
[

1 0T

0 C N

]
, Ĉ M =

[
1 0T

0 C M

]
.

The stress resultants as they appear in the equilibrium equations are expressed with respect to the fixed basis,
and thus, we also need to linearize the coordinate transformation, which is, in the present paper, expressed
using quaternions (see Eq. 6), e.g.,

N̂ = q̂ ◦ N̂G ◦ q̂∗, M̂ = q̂ ◦ M̂G ◦ q̂∗.

For the resultant force vector, we have

δ N̂ = δq̂ ◦ N̂G ◦ q̂∗ + q̂ ◦ δ N̂G ◦ q̂∗ + q̂ ◦ N̂G ◦ δ
(̂
q∗)

= δq̂ ◦ q̂∗ ◦ q̂ ◦ N̂G ◦ q̂∗ + q̂ ◦ Ĉ N δγ̂ G ◦ q̂∗ − q̂ ◦ N̂G ◦ q̂∗ ◦ δq̂ ◦ q̂∗

= φL (̂q) φR
(̂
q∗) Ĉ N δγ̂ G + (

φR
(
N̂g

) − φL
(
N̂g

))
φR

(̂
q∗) δq̂

= ∂ N̂
∂ γ̂ G

δγ̂ G + ∂ N̂
∂ q̂

δq̂.

After considering the nature of the pure quaternions, we finally have

δN = ∂ N
∂γ G

δγ G + ∂ N
∂ q̂

δq̂, (64)

where

∂ N
∂γ G

= [
φL (̂q)φR

(̂
q∗) Ĉ N

]
IR3×3 ,

∂ N
∂ q̂

= [(
φR

(
N̂

) − φL
(
N̂

))
φR

(̂
q∗)]

IR3×4 .

In an analogous way, we obtain

δM̂ = ∂ M̂
∂ κ̂G

δκ̂G + ∂ M̂
∂ q̂

δq̂, (65)

where

∂ M̂
∂ κ̂G

= φL (̂q)φR
(̂
q∗) Ĉ M ,

∂ M̂
∂ q̂

= (
φR

(
M̂

) − φL
(
M̂

))
φR

(̂
q∗) .

Prior to the linearization of the moment equilibrium equation (47), it is useful to introduce the following
notations:

F̂m1 = −2
(̂
r ′ × N̂

) ◦ q̂,

F̂m2 = −2M̂ ◦ q̂,

F̂m3 = −M̂ ◦ κ̂ ◦ q̂,

F̂m4 = −2m̂ ◦ q̂,
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and linearize them separately. The direct linearization of the above terms yields

δ F̂m1 = −2φR (̂q)
(−N̂ × δ̂r ′) − 2φR (̂q)

(̂
r ′ × δ N̂

) − 2φL
(̂
r ′ × N̂

)
δq̂

= −2

[
φR (̂q)

(
Ŝ (−N) + Ŝ

(
r ′) ∂ N

∂γ G

∂γ G

∂ r ′

)]
IR4×3

δr ′

−2

(
φR (̂q) Ŝ

(
r ′) (

∂ N̂
∂ γ̂ G

∂ γ̂ G

∂ q̂
+ ∂ N̂

∂ q̂

)
+ φL

(̂
r ′ × N̂

))
δq̂

= ∂ F̂m1

∂ r ′ δr ′ + ∂ F̂m1

∂ q̂
δq̂.

Ŝ is a natural extension of the skew-symmetric matrix associated with the cross vector product into four
dimensions and defines the cross-vector product of the pure quaternions as defined in Eq. (11):

Ŝ (v) =
⎡
⎢⎣

1 0 0 0
0 0 −v3 v2
0 v3 0 −v1
0 −v2 v1 0

⎤
⎥⎦ ,

composed from components v1, v2, v3 of a vector v.
Similarly,

δ F̂m2 = 2φR (̂q) δM̂ + 2φL
(
M̂

)
δq̂

= 2φR (̂q)

(
∂ M̂
∂ κ̂G

(
∂ κ̂G

∂ q̂ ′ δq̂ ′ + ∂ κ̂G

∂ q̂
δq̂

)
+ ∂ M̂

∂ q̂
δq̂

)
+ 2φL

(
M̂

)
δq̂

= ∂ F̂m2

∂ q̂
δq̂ + ∂ F̂m2

∂ q̂ ′ δq̂ ′.

The linearization of Fm3 additionally requires considering κ̂ ◦ q̂ = 2̂q ′ and performing some rearrangement
of terms to get

δFm3 = −2φR
(̂
q ′) δM̂ − 2φL

(
M̂

)
δq̂ ′

= 2φR
(̂
q ′) (

∂ M̂
∂ κ̂G

(
∂ κ̂G

∂ q̂ ′ δq̂ ′ + ∂ κ̂G

∂ q̂
δq̂

)
+ ∂ M̂

∂ q̂
δq̂

)
+ 2φL

(
M̂

)
δq̂ ′

= ∂ F̂m3

∂ q̂
δq̂ + ∂ F̂m3

∂ q̂ ′ δq̂ ′.

Finally, the linearization of F̂m4 gives

δ F̂m4 = −φL (m̂) δq̂ = ∂ F̂m4

∂ q̂
δq̂.
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