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On a Waveguide with Frequently Alternating
Boundary Conditions: Homogenized
Neumann Condition

Denis Borisov, Renata Bunoiu and Giuseppe Cardone

Abstract. We consider a waveguide modeled by the Laplacian in a straight
planar strip. The Dirichlet boundary condition is taken on the upper
boundary, while on the lower boundary we impose periodically alternating
Dirichlet and Neumann condition assuming the period of alternation to
be small. We study the case when the homogenization gives the Neumann
condition instead of the alternating ones. We establish the uniform resol-
vent convergence and the estimates for the rate of convergence. It is shown
that the rate of the convergence can be improved by employing a special
boundary corrector. Other results are the uniform resolvent convergence
for the operator on the cell of periodicity obtained by the Floquet–Bloch
decomposition, the two terms asymptotics for the band functions, and
the complete asymptotic expansion for the bottom of the spectrum with
an exponentially small error term.

1. Introduction

During last decades, models of quantum wave guides attracted much attention
by both physicists and mathematicians. It was motivated by many interest-
ing mathematical phenomena of these models and also by the progress in the
semiconductor physics, where they have important applications. Much efforts
were exerted to study the influence of various perturbations on the spectral
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properties of the wave guides. One of such perturbations is a finite number of
openings coupling two lateral wave guides (see, for instance [7–9,12,15,18,19])
and such openings are usually called “windows”. If the coupled wave guides
are symmetric, one can replace them by a single waveguide with the opening(s)
modeled by the change in boundary condition (see [9,12,15]). The main phe-
nomenon studied in [7–9,12,15,18,19]) is the appearance of new eigenvalues
below the essential spectrum, which is stable with respect to windows.

A close model was suggested in [3], where the number of openings was infi-
nite. The waveguide was modeled by a straight planar strip, where the Dirichlet
Laplacian was considered. On the upper boundary, the Dirichlet condition was
imposed. On the lower boundary, the Neumann condition was settled on a peri-
odic set, while on the remaining part of the boundary the Dirichlet condition
is involved. In other words, on the lower boundary one had the alternating
boundary conditions. The main assumption was the smallness of the sizes of
Dirichlet and Neumann parts on the lower boundary. They were described by
two parameters: the first one, ε, was supposed to be small, while the other,
η = η(ε), could be either bounded or small.

The main difference between the models studied in [3] and in [7–9,12,
15,18,19] is the influence of the perturbation on the spectral properties: while
in the latter papers the essential spectrum remained unchanged and discrete
eigenvalues appeared below its bottom, in [3] the spectrum was purely essen-
tial and had band structure. Moreover, it depended on the perturbation and,
for example, the bottom of the spectrum moved as ε → +0. Assuming that

ε ln η(ε) → −0 as ε → +0, (1.1)

it was shown in [3] that the homogenized operator is the Laplacian with the
previous boundary condition on the upper boundary, while the alternation on
the lower boundary should be replaced by the Dirichlet one. More precisely, it
was shown that the uniform resolvent convergence for the perturbed operator
holds true and the rate of convergence was estimated. Other main results were
the two terms asymptotics for first band functions of the perturbed operator
and the complete two-parametric asymptotic expansion for the bottom of the
spectrum.

In the present paper, we consider a different case: we assume that the
homogenized operator has the Neumann condition on the lower boundary,
which is guaranteed by the condition

ε ln η(ε) → −∞ as ε → +0. (1.2)

We observe that this condition is not new, and it was known before that it
implied the homogenized Neumann boundary condition for the similar prob-
lems in bounded domains, see ([13,14,16,17,20,24]).

We obtain the uniform resolvent convergence for the perturbed operator
and we estimate the rate of convergence. We also obtain similar convergence for
the operator appearing on the cell of periodicity after Floquet decomposition
and provide two-term asymptotics for the first band function. The last main
result is the complete asymptotic expansion for the bottom of the spectrum.
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Similar results were obtained [3] under the assumption (1.1), and now
we want to underline the main differences. We first observe that in [3] the
estimate of the rate of convergence for the perturbed resolvent was obtained
for the difference of the resolvents of the perturbed and homogenized operator
and this difference was considered as an operator from L2 into W 1

2 . In our
case, to have a similar good estimate, we have to consider the difference not
with the resolvent of the homogenized operator, but with that of an additional
operator depending on boundary condition on an additional parameter

μ = μ(ε) := − 1
ε ln η(ε)

→ +0 as ε → +0. (1.3)

Moreover, we also have to use a special boundary corrector, see Theorem 2.1.
Omitting the corrector and estimating the difference of the same resolvents as
an operator in L2, we can still preserve the mentioned good estimate. Omit-
ting the corrector or replacing the additional operator mentioned above by the
homogenized one, one worsens the rate of convergence. At the same time, this
rate can be improved partially by considering the difference of the resolvents
as an operator in L2 and such situation was known to happen in the case of the
operators with the fast oscillating coefficients (see [1,2,6,30,31,34–36,38,39])
and the references therein for further results). From this point of view, the
results of the present paper are closer to the cited paper in contrast to the
results of [3] and [29, Ch. III, Sect. 4.1].

One more difference to [3] is the asymptotics for the band functions and
the bottom of the essential spectrum. The second term in the asymptotics for
the band functions is not a constant, but a holomorphic in μ function. In fact,
it is a series in μ and this is why the mentioned two-term asymptotics can
be regarded as the asymptotics with more terms, see (2.8). Even more inter-
esting situation occurs in the asymptotics for the bottom of the spectrum.
Here the asymptotics contains just one first term, but the error estimate is
exponential. The leading term depends on ε and μ holomorphically and can
be represented as the series in ε with the holomorphic in μ coefficients. For
the bounded domains, the complete asymptotic expansions for the eigenvalues
in the case of the homogenized Neumann problem were constructed in [4,25].
These asymptotics were power in ε [25] with the holomorphic in μ coefficients
[4]. At the same time, the error terms were powers in ε and the convergence
of these asymptotic series was not proved. In our case, the first term in the
asymptotics for the bottom of the essential spectrum is the sum of the asymp-
totic series analogous to those in [4,25]. In other words, we succeeded to prove
that in our case, this series converges is holomorphic in ε and μ and gives
the exponentially small error term that for singularly perturbed problems in
homogenization is regarded as a strong result.

Eventually, we point out that the technique we use is different: in addition
to the boundary layer method [37] used also in [3], here we also have to employ
the method of matching of the asymptotic expansions [27] and such combina-
tion was borrowed from [4,23–25]. We use this combination to construct the
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aforementioned corrector to obtain the uniform resolvent convergence. Simi-
lar correctors were also constructed in [13,20,24], but to obtain either weak
or strong resolvent convergence. We also employ the same corrector in the
combination of the technique developed in [21] for the analysis of the uniform
resolvent convergence for thin domains.

In conclusion, we describe briefly the structure of the paper. In the next
section, we formulate precisely the problem and give the main results. The
third section is devoted to the study of the uniform resolvent convergence.
In the fourth section, we make the similar study for the operator appearing
after the Floquet decomposition, and we also establish two-term asymptotics
for the first band functions. In the last, fifth section, we construct the complete
asymptotic expansion for the bottom of the spectrum.

2. Formulation of the Problem and the Main Results

Let x = (x1, x2) be Cartesian coordinates in R2, and Ω := {x : 0 < x2 < π}
be a straight strip of width π. By ε, we denote a small positive parameter, and
η = η(ε) is a function satisfying the estimate

0 < η(ε) <
π

2
.

We indicate by Γ+ and Γ− the upper and lower boundary of Ω, and we parti-
tion Γ− into two subsets (cf. Fig. 1),

γε := {x : |x1 − επj| < εη, x2 = 0, j ∈ Z}, Γε := Γ−\γε.

The main object of our study is the Laplacian in L2(Ω) subject to the
Dirichlet boundary condition on Γ+ ∪ γε and to the Neumann one on Γε. We
introduce this operator as the non-negative self-adjoint one in L2(Ω) associated
with the sesquilinear form

hε[u, v] := (∇u,∇v)L2(Ω) on W̊ 1
2 (Ω,Γ+ ∪ γε),

where W̊ 1
2 (Q,S) indicates the subset of the functions in W 1

2 (Q) having zero
trace on the curve S. We denote the described operator as Hε. The aim of this
paper is to study the asymptotic behavior of the resolvent and the spectrum
of Hε as ε → +0.

Figure 1. Waveguide with frequently alternating boundary
conditions
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Let H(μ) be the non-negative self-adjoint operator in L2(Ω) associated
with the sesquilinear form

h(μ)[u, v] := (∇u,∇v)L2(Ω) + μ(u, v)L2(∂Ω) on W̊ 1
2 (Ω,Γ+),

where μ � 0 is a constant. Reproducing the arguments of [5, Sect. 3], one can
show that the domain of H(μ) consists of the functions in W 2

2 (Ω) satisfying
the boundary condition

∂u

∂x2
− μu = 0 on Γ−, u = 0 on Γ+, (2.1)

and

H(μ)u = −Δu. (2.2)

By ‖ · ‖L2(Ω)→L2(Ω) and ‖ · ‖L2(Ω)→W 1
2 (Ω) we denote the norm of an operator

acting from L2(Ω) into L2(Ω) and into W 1
2 (Ω), respectively.

Our first main result describes the uniform resolvent convergence for Hε.

Theorem 2.1. Suppose (1.2). Then

‖(Hε − i)−1 − (H(μ) − i)−1‖L2(Ω)→L2(Ω) � Cεμ| ln εμ|, (2.3)

‖(Hε − i)−1 − (H(0) − i)−1‖L2(Ω)→W 1
2 (Ω) � Cμ1/2, (2.4)

‖(Hε − i)−1 − (H(0) − i)−1‖L2(Ω)→L2(Ω) � Cμ, (2.5)

where the constants C are independent of ε and μ, and μ = μ(ε) was defined
in (1.3). There exists a corrector W = W (x, ε, μ) defined explicitly by (3.17)
such that

‖(Hε − i)−1 − (1 +W )(H(μ) − i)−1‖L2(Ω)→W 1
2 (Ω) � Cεμ| ln εμ|, (2.6)

where the constant C is independent of ε and μ.

The spectrum of the operator H(0) is purely essential and coincides with[
1
4 ,+∞). By [RS1, Ch. VIII, Sect. 7, Ths. VIII.23, VIII.24] and Theorem 2.1

we have

Theorem 2.2. The spectrum of Hε converges to that of H(0). Namely, if λ �∈[
1
4 ,+∞), then λ �∈ σ(Hε) for ε small enough. If λ ∈ [

1
4 ,+∞), then there

exists λε ∈ σ(Hε) so that λε → λ as ε → +0. The convergence of the spectral
projectors associated with Hε and H(0)

‖P(a,b)(Hε) − P(a,b)(H(0))‖ → 0, ε → 0,

is valid for a < b.

The operator Hε is periodic since the sets γε and Γε are periodic, and we
employ the Floquet decomposition to study its spectrum. We denote

Ωε :=
{
x : |x1| < επ

2
, 0 < x2 < π

}
,

γ̊ε := ∂Ωε ∩ γε, Γ̊ε := ∂Ωε ∩ Γε, Γ̊± := ∂Ωε ∩ Γ±.
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By H̊ε(τ) we indicate the self-adjoint non-negative operator in L2(Ωε) associ-
ated with the sesquilinear form

h̊ε(τ)[u, v] :=
((

i
∂

∂x1
− τ

ε

)
u,

(
i
∂

∂x1
− τ

ε

)
v

)

L2(Ωε)

+
(
∂u

∂x2
,
∂v

∂x2

)

L2(Ωε)

on W̊ 1
2,per(Ωε, Γ̊+ ∪ γ̊ε), where τ ∈ [−1, 1). Here W̊ 1

2,per(Ωε, Γ̊+ ∪ γ̊ε) is the set
of the functions in W̊ 1

2 (Ωε, Γ̊+ ∪ γ̊ε) satisfying periodic boundary conditions
on the lateral boundaries of Ωε. The operator H̊ε(τ) has a compact resolvent,
since it is bounded as that from L2(Ωε) into W 1

2 (Ωε), and the space W 1
2 (Ωε) is

compactly embedded into L2(Ωε). Hence, the spectrum of H̊ε(τ) consists of its
discrete part only. We denote the eigenvalues of H̊ε(τ) by λn(τ, ε) and arrange
them in the ascending order with the multiplicities taking into consideration

λ1(τ, ε) � λ2(τ, ε) � · · · � λn(τ, ε) � · · ·
By [3, Lemma 4.1] we know that

σ(Hε) = σe(Hε) =
∞⋃

n=1

{λn(τ, ε) : τ ∈ [−1, 1)},

where σ(·) and σe(·) indicate the spectrum and the essential spectrum of an
operator.

By Lε we denote the subspace of L2(Ωε) consisting of the functions inde-
pendent of x1, and we shall make use the decomposition

L2(Ωε) = Lε ⊕ L⊥
ε ,

where L⊥
ε is the orthogonal complement to Lε in L2(Ωε). Let Qμ be the self-

adjoint non-negative operator in Lε associated with the sesquilinear form

q[u, v] :=
(

du
dx2

,
dv
dx2

)

L2(0,π)

+ μu(0)v(0) on W̊ 1
2 ((0, π), {π}),

i.e., Qμ is the operator − d2

dx2
2

in L2(0, π) with the domain consisting of the
functions in W 2

2 (0, π) satisfying the boundary conditions

u(π) = 0, u′(0) − μu(0) = 0.

Our next results are on the uniform resolvent convergence for H̊ε(τ) and
two-term asymptotics for the first band functions.

Theorem 2.3. Let |τ | < 1−κ, where 0 < κ < 1 is a fixed constant and suppose
(1.2). Then for sufficiently small ε the estimate
∥
∥
∥
∥
∥

(
H̊ε(τ) − τ2

ε2

)−1

− Q−1
μ ⊕ 0

∥
∥
∥
∥
∥

L2(Ωε)→L2(Ωε)

� Cκ
−1/2(ε1/2μ+ ε) (2.7)

holds true, where the constant C is independent of ε, μ, and κ.
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Theorem 2.4. Let the hypothesis of Theorem 2.3 holds true. Then given any N ,
for ε < 2κ

1/2N−1 the eigenvalues λn(τ, ε), n = 1, . . . , N , satisfy the relations

λn(τ, ε) =
τ2

ε2
+ Λn(μ) +Rn(τ, ε, μ),

|Rn(τ, ε, μ)| � Cκ
−1/2n4ε1/2μ,

(2.8)

where Λn(μ), n = 1, . . . , N , are the first N eigenvalues of Qμ, and the constant
C is the same as in (2.7). The eigenvalues Λn(μ) solve the equation

√
Λ cos

√
Λπ + μ sin

√
Λπ = 0, (2.9)

are holomorphic with respect to μ, and

Λn(μ) =
(
n− 1

2

)2

+
μ

π
(
n− 1

2

) + O(μ2). (2.10)

Let

θ(β) := −
+∞∑

j=1

1

n
√

4j2 − β(2j +
√

4j2 − β)
. (2.11)

It will be shown in Lemma 5.2 that the function θ(β) is holomorphic in β and
its Taylor series is

θ(β) = −
+∞∑

j=1

(2j − 1)!!ζ(2j + 1)
8j j!

βj−1, (2.12)

where ζ is the Riemann zeta-function.
Our last main result provides the asymptotic expansion for the bottom

of the essential spectrum of Hε.

Theorem 2.5. For ε small enough, the first eigenvalue λ1(τ, ε) attains its min-
imum at τ = 0,

inf
τ∈[−1,1)

λ1(τ, ε) = λ1(0, ε). (2.13)

The asymptotics

λ1(0, ε) = Λ(ε, μ) + O(με−1/2e−2ε−1
+ ε1/2η1/2) (2.14)

holds true, where Λ(ε, μ) is the real solution to the equation
√

Λ cos
√

Λπ + μ sin
√

Λπ − ε3μΛ3/2θ(ε2Λ) cos
√

Λπ = 0 (2.15)

satisfying the restriction

Λ(ε, μ) = Λ1(μ) + o(1), ε → 0. (2.16)

The function Λ(ε, μ) is jointly holomorphic with respect to ε and μ and can be
represented as the series

Λ(ε, μ) = Λ1(μ) + μ2
+∞∑

j=1

ε2j+1K2j+1(μ) + μ3
+∞∑

j=2

ε2jK2j(μ), (2.17)
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where the functions Kj(μ) are holomorphic with respect to μ, and, in particu-
lar,

K3(μ) = −ζ(3)
4

Λ2
1(μ)

πΛ1(μ) + μ+ πμ2
,

K4(μ) = 0,

K5(μ) = −3ζ(5)
64

Λ3
1(μ)

πΛ1(μ) + μ+ πμ2
,

K6(μ) =
ζ(3)2

64
Λ3

1(μ)(2π2Λ2
1(μ) + 7πμΛ1(μ) + 2π2μ2Λ1(μ) + 7μ2 + 7πμ3)

(πΛ1(μ) + μ+ πμ2)3

K7(μ) = −5ζ(7)
512

Λ4
1(μ)

πΛ1(μ) + μ+ πμ2
,

K8(μ) =
3ζ(3)ζ(5)

512

×Λ4
1(μ)(2π2Λ2

1(μ) + 9πμΛ1(μ) + 2π2μ2Λ1(μ) + 9μ2 + 9μ3π)
(πΛ1(μ) + μ+ πμ2)3

.

(2.18)

The asymptotic expansion for the associated eigenfunction of H̊ε(0) reads as
follows,

‖ψ̊(·, ε) − Ψ̊ε‖W 1
2 (Ωε) = O(μe−2ε−1

+ εη1/2), (2.19)

where the function Ψ̊ε is defined in (5.27).

Remark 2.6. All other coefficients of (2.17) can be determined recursively by
substituting this series and (2.12) into (2.15), expanding then (2.15) in powers
of ε, and solving the obtained equations with respect to Ki.

3. Uniform Resolvent Convergence for Hε

In this section, we prove Theorem 2.1. Given a function f ∈ L2(Ω), we denote

uε := (Hε − i)−1f, u(μ) := (H(μ) − i)−1f.

The main idea of the proof is to construct a special corrector W = W (x, ε, μ)
with certain properties and to estimate the norms of vε := uε − (1 +W )u(μ)

and u(μ)W . In fact, the function W reflects the geometry of the alternation
of the boundary conditions for Hε, and this is why it is much simpler to esti-
mate independently vε and u(μ)W than trying to get directly the estimate for
uε − u(μ) and uε − u(0). Next lemma is the first main ingredient in the proof
of Theorem 2.1 and it shows how W is employed.

Lemma 3.1. Let W = W (x, ε, μ) be an επ-periodic in x1 function belonging
to C(Ω) ∩ C∞(Ω\{x : x2 = 0, x1 = ±εη + επn, n ∈ Z}) satisfying boundary
conditions

W = −1 on γε,
∂W

∂x2
= −μ on Γε, (3.1)
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and having differentiable asymptotics

W (x, ε, μ) = c±(ε, μ)r1/2
± sin

θ±
2

+ O(ρ±), r± → +0. (3.2)

Here (r±, θ±) are polar coordinates centered at (±εη, 0) such that the values
θ± = 0 correspond to the points of γε. Assume also that ΔW ∈ C(Ω). Then
(1 +W )u(μ) belongs to W̊ 1

2 (Ω,Γ+ ∪ γε), and

‖∇vε‖2
L2(Ω) + i‖vε‖2

L2(Ω) = (f, vεW )L2(Ω) + (u(μ)ΔW, vε)L2(Ω)

−2i(u(μ)W, vε)L2(Ω) − 2(W∇u(μ),∇vε)L2(Ω)

−μ(u(μ),Wvε)L2(Γε). (3.3)

Proof. We write the integral identities for uε and u(μ),

(∇uε,∇φ)L2(Ω) + i(uε, φ)L2(Ω) = (f, φ)L2(Ω) (3.4)

for all φ ∈ W̊ 1
2 (Ω,Γ+ ∪ γε), and

(∇u(μ),∇φ)L2(Ω) + μ(u(μ), φ)L2(Γ−) + i(u(μ), φ)L2(Ω) = (f, φ)L2(Ω) (3.5)

for all φ ∈ W̊ 1
2 (Ω,Γ+). Employing the smoothness of W , (3.1), (3.2), and

proceeding as in the proof of Lemma 3.2 in [3], we check that (1 + W )φ ∈
W̊ 1

2 (Ω,Γ+∪γε), if φ belongs to the domain of Hε or H(μ). Hence, (1+W )u(μ) ∈
W̊ 1

2 (Ω,Γ+ ∪ γε). Thus,

(1 +W )vε ∈ W̊ 1
2 (Ω,Γ+ ∪ γε). (3.6)

We take φ = (1 +W )vε in (3.5),

(∇u(μ),∇(1 +W )vε)L2(Ω) + μ(u(μ), (1 +W )vε)L2(Γ−)

+ i(u(μ), (1 +W )vε)L2(Ω) = (f, (1 +W )vε)L2(Ω),

(∇u(μ), (1 +W )∇vε)L2(Ω) + i(u(μ), (1 +W )vε)L2(Ω)

= (f, (1 +W )vε)L2(Ω) − (∇u(μ), vε∇W )L2(Ω) − μ(u(μ), (1 +W )vε)L2(Γ−),

(∇(1 +W )u(μ),∇vε)L2(Ω) + i((1 +W )u(μ), vε)L2(Ω)

= (f, (1 +W )vε)L2(Ω) − (∇u(μ), vε∇W )L2(Ω)

+ (u(μ)∇W,∇vε)L2(Ω) − μ(u(μ), (1 +W )vε)L2(Γ−).

We deduct (3.4) with φ = vε from the last identity,

‖∇vε‖2
L2(Ω) + i‖vε‖2

L2(Ω) = −(f,Wvε)L2(Ω) + (∇u(μ), vε∇W )L2(Ω)

− (u(μ)∇W,∇vε)L2(Ω) + μ(u(μ), (1 +W )vε)L2(Γ−). (3.7)

We integrate by parts taking into consideration (3.1), (3.5), and (3.6),

(∇u(μ), vε∇W )L2(Ω) − (u(μ)∇W,∇vε)L2(Ω)

= (∇u(μ), vε∇W )L2(Ω) +
∫

Γε

u(μ) ∂W

∂x2
vε dx1 + (div u(μ)∇W, vε)L2(Ω)

= 2(∇u(μ), vε∇W )L2(Ω) − μ(u(μ), vε)L2(Γε) + (u(μ)ΔW, vε)L2(Ω),
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and

(∇u(μ), vε∇W )L2(Ω) = (∇u(μ),∇Wvε)L2(Ω) − (∇u(μ),W∇vε)L2(Ω)

= (f,Wvε)L2(Ω) − i(u(μ),Wvε)L2(Ω)

−μ(u(μ),Wvε)L2 (̊Γ−) − (∇u(μ),W∇vε)L2(Ω).

We substitute the obtained identities into (3.7) and this completes the proof.
�

As it follows from (3.3), to prove the smallness of vε in W 1
2 (Ω)-norm, it

is sufficient to construct a function W satisfying the hypothesis of Lemma 3.1
so that the quantities W and ΔW are small in certain sense. This is why we
introduce W as a formal asymptotic solution to the equation

ΔW = 0 in Ω, (3.8)

satisfying (3.1), (3.2) and other assumptions of Lemma 3.1. To construct such
solution, we shall employ the asymptotic constructions from [4,25], based
on the method of matching of asymptotic expansions [27] and the bound-
ary layer method [37]. We also mention that similar approach was used in [24,
Lemma 1] for constructing a different corrector.

First we construct W formally, and after that we shall prove rigorously
all the required properties of the constructed corrector. Denote ξ = (ξ1, ξ2) =
xε−1, ς(j) = (ς(j)1 , ς

(j)
2 ), ς(j)1 = (ξ1 − πj)η−1, ς(j)2 = ξ2η

−1. Outside a small
neighborhood of γε we construct W as a boundary layer

W (x, ε, μ) = εμX(ξ).

We pass to ξ in (3.8) and let η = 0 in the boundary conditions. It yields a
boundary value problem for X,

ΔξX = 0, ξ2 > 0,
∂X

∂ξ2
= −1, ξ ∈ Γ0 := {ξ : ξ2 = 0}

∖ +∞⋃

j=−∞
{(πj, 0)},

(3.9)

where the function X should be π-periodic in ξ1 and decay exponentially as
ξ2 → +∞. It was shown in [23] that the required solution to (3.9) is

X(ξ) := Re ln sin(ξ1 + iξ2) + ln 2 − ξ2.

It was also shown that

X ∈ C∞({ξ : ξ2 � 0, ξ �= (πj, 0), j ∈ Z}),

and this function satisfies the differentiable asymptotics

X(ξ)=ln |ξ − (πj, 0)|+ln 2 − ξ2 + O(|ξ − (πj, 0)|2), ξ → (πj, 0), j ∈ Z.

(3.10)

In view of the last identity we rewrite the asymptotics for X as ξ → (πj, 0) in
terms of ς(j),
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εμX(ξ) = εμ (ln |ξ − (πj, 0)| + ln 2 − ξ2) + O(εμ|ξ − (πj, 0)|2)
= −1 + εμ

(
ln |ς(j)| + ln 2

)
− εμης

(j)
2 + O(εμη2|ς(j)|2). (3.11)

In accordance with the method of matching of asymptotic expansions it follows
from the obtained identities that in a small neighborhood of each interval of
γε we should construct W as an internal layer,

W (x, ε, μ) = −1 + εμW
(j)
in (ς(j)), (3.12)

where

W
(j)
in (ς(j)) = ln |ς(j)| + ln 2 + o(1), ς(j) → +∞. (3.13)

We substitute (3.12) into (3.8), (3.1), which leads us to the boundary value
problem for W (j)

in ,

Δς(j)W
(j)
in = 0, ς

(j)
2 > 0,

W
(j)
in = 0, ς(j) ∈ γ1,

∂W
(j)
in

∂ς
(j)
2

= 0, ς(j) ∈ Γ1, (3.14)

γ1 := {ς : |ς1| < 1, ς2 = 0}, Γ1 := Oς1\γ1.

It was shown in [23] that the problem (3.13), (3.14) is solvable and

W
(j)
in (ς(j)) = Y (ς(j)), Y (ς) := Re ln(z +

√
z2 − 1), z = ς1 + iς2, (3.15)

where the branch of the root is fixed by the requirement
√

1 = 1. It was also
shown that

Y (ς) = ln |ς| + ln 2 + O(|ς|−2), ς → ∞. (3.16)

As it follows from the last asymptotics, the term −εμς(j)2 in (3.11) is not
matched with any term in the boundary layer. At the same time, it was found
in [4,24,25] that such terms should be either matched or cancelled out to obtain
a reasonable estimate for the error terms. This is also the case in our problem.
In contrast to [4,24,25], to solve this issue we shall not construct additional
terms in W , but employ a different trick. Namely, we add the function εμξ2 to
the boundary layer and add also −μx2 as the external expansion. It changes
neither equations nor boundary conditions for W but allows us to cancel out
the mentioned term in (3.11). The final form of W is as follows,

W (x, ε, μ) = −μx2 + εμ(X(ξ) + ξ2)
+∞∏

j=−∞

(
1 − χ1

(
|ς(j)|ηα

))

+
+∞∑

j=−∞
χ1

(
|ς(j)|ηα

)(
−1 + εμY (ς(j))

)
, (3.17)

where α ∈ (0, 1) is a constant, which will be chosen later, and χ1 = χ1(t) is
an infinitely differentiable cut-off function taking values in [0, 1], being one as
t < 1, and vanishing as t > 3/2. It can be easily seen that the sum and the
product in the definition of (3.17) are always finite.
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Let us check that the function W satisfies the hypothesis of Lemma 3.1.
By direct calculations we check that the function W is επ-periodic with respect
to x1, belongs to C(Ω) ∩ C∞(Ω\{x : x2 = 0, x1 = ±εη + επn, n ∈ Z}), and
satisfies (3.2). The boundary condition on γε in (3.1) is obviously satisfied.
Taking into consideration the boundary conditions (3.9), (3.13), we check

∂W

∂x2

∣
∣
∣
x∈Γε

= −μ+ εμ

(
∂X

∂ξ2

∣
∣
∣
ξ∈Γ0

+ 1
) +∞∏

j=−∞

(
1 − χ1(|ς(j)|ηα)

)

+ εμ
+∞∑

j=−∞
χ1

(
|ς(j)|ηα

) ∂Y

∂ς
(j)
2

∣
∣
∣
∣
∣
ς(j)∈Γ1

= −μ,

i.e., the boundary condition on Γε in (3.1) is satisfied, too.
Let us calculate ΔW . To do it, we employ Eqs. (3.9), (3.13),

ΔW (x) = 2
+∞∑

j=−∞
∇xχ1

(
|ς(j)|ηα

)
· ∇xW

(j)
mat(x, ε, μ)

+
+∞∑

j=−∞
W

(j)
mat(x, ε, μ)Δxχ1

(
|ς(j)|ηα

)
, (3.18)

W
(j)
mat(x, ε, μ) = −1 + εμ

(
Y (ς(j)) −X(ξ) − ξ2

)
.

It follows from the definition of ξ, ς(j), χ1, X, Y , and the last formula that
ΔW ∈ C∞(Ω). Thus, we can apply Lemma 3.1. To estimate the right hand
side of (3.3), we need two auxiliary lemmas.

Given any δ ∈ (0, π/2), denote

Ωδ :=
+∞⋃

j=−∞
Ωδ

j , Ωδ
j := {x : |x− (πj, 0)| < εδ} ∩ Ω.

Lemma 3.2. For any u ∈ W 1
2 (Ω) and any δ ∈ (0, π/4) the inequality

‖u‖L2(Ωδ) � Cδ
(
| ln δ|1/2 + 1

)
‖u‖W 1

2 (Ω) (3.19)

holds true, where the constant C is independent of δ and u.

Proof. We begin with the formulas

‖u‖2
L2(Ωδ) =

+∞∑

j=−∞
‖u‖2

L2(Ωδ
j ),

‖u‖2
L2(Ωδ

j ) =
∫

Ωδ
j

|u(x)|2 dx = ε2
∫

|ξ−(πj,0)|<δ, ξ2>0

|u(εξ)|2 dξ (3.20)

= ε2
∫

|ξ−(πj,0)|<δ, ξ2>0

|χ2(ξ − (πj, 0))u(εξ)|2 dξ,
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where χ2 = χ2(ξ) is an infinitely differentiable function being one as |ξ| < δ
and vanishing as |ξ| > π/3. We also suppose that the functions χ2, χ′

2 are
bounded uniformly in ξ and δ. Hence,

χ2(· − (πj, 0))u ∈ W̊ 1
2 (Π1

j , ∂Π1
j ), Π1

j :=
{
ξ : |ξ1 − πj| < π

2
, 0 < ξ2 < 1

}
.

By [28, Lemma 3.2], we obtain

ε2
∫

|ξ−(πj,0)|<δ, ξ2>0

|χ2u|2 dξ � Cε2δ2(| ln δ| + 1)
∫

Π1
j

(|∇ξχ2u|2 + |χ2u|2
)

dξ

� Cε2δ2(| ln δ| + 1)
(
‖∇ξu‖L2(Π1

j ) + ‖u‖L2(Π1
j )

)

� Cδ2(| ln δ| + 1)‖u‖2
W 1

2 ({x:|x1−επj|<επ/2,0<x2<π}),

where the constants C are independent of j, ε, δ, μ, and u. We substitute these
inequalities into (3.20) and arrive at (3.19). �
Lemma 3.3. For any u ∈ W 2

2 (Ω) and any δ ∈ (0, π/2) the inequality

‖u‖L2(γδ
ε ) � Cδ1/2‖u‖W 2

2 (Ω), γδ
ε := {x : |x1 − επj| < εδ, x2 = 0},

holds true, where the constant C is independent of ε, δ, and u.

Proof. It is clear that

‖u‖L2(γδ
ε ) =

+∞∑

j=−∞
‖u‖L2(γδ

ε,j)
, γδ

ε,j := {x : |x1 − επj| < εδ, x2 = 0}. (3.21)

It follows from the definition of χ2 (see the proof of Lemma 3.2) that

‖u‖2
L2(γδ

ε,j)
=
∫

γδ
ε,j

∣
∣
∣χ2

(x1

ε
− πj

)
u(x1, 0)

∣
∣
∣
2

dx1. (3.22)

Since

χ2

(x1

ε
− πj

)
u(x1, 0) =

x1∫

επj− επ
2

∂

∂x1

(
χ2

(x1

ε
− πj

)
u(x1, 0)

)
dx1,

by the Cauchy–Schwartz inequality we get
∂

∂x1

(
χ2

(x1

ε
− πj

)
u(x1, 0)

)

= χ2

(x1

ε
− πj

) ∂u

∂x1
(x1, 0) + ε−1χ′

2

(x1

ε
− πj

)
u(x1),

∣
∣
∣χ2

(x1

ε
− πj, 0

)
u(x1, 0)

∣
∣
∣
2

� C

⎛

⎜
⎝ε

∫

γε,j

∣
∣
∣
∣
∂u

∂x1
(x1, 0)

∣
∣
∣
∣

2

dx1 + ε−1

∫

γε,j

|u(x1, 0)|2 dx1

⎞

⎟
⎠,

γε,j :=
{
x : |x1 − επj| < επ

2
, x2 = 0

}
,
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where the constants C are independent of j, ε, δ, and u. The last estimate and
(3.22) imply

‖u‖2
L2(γδ

ε,j)
� Cδ

(∥
∥
∥
∂u

∂x1

∥
∥
∥

2

L2(γε,j)
+ ‖u‖2

L2(γε,j)

)
,

where the constant C is independent of j, ε, δ, and u. We substitute the
obtained inequality into (3.21) and employ the standard embedding of W 2

2 (Ω)
into W 1

2 (Γ−) that completes the proof. �
Lemma 3.4. The estimates

|ΔW | � Cε−1μ(1 + η4α−2), x ∈ Ω, (3.23)

|W | � Cεμ(| ln δ| + 1), x ∈ Ω\Ωδ,
3
2
ηα < δ <

π

2
, (3.24)

|W | � C, x ∈ Ωδ,
3
2
ηα < δ <

π

2
, (3.25)

are valid, where the constants C are independent of ε, μ, η, δ, and x.

Proof. Since W is επ-periodic with respect to x1, it is sufficient to prove the
estimates only for |x1| < επ/2, 0 < x2 < π. It follows directly from the defini-
tion of X, Y , and (3.13), (3.16) that for any δ ∈ (0, π/2)

|X(ξ)| � C (| ln δ| + 1), |ξ1| < π

2
, ξ2 > 0, |ξ| � δ,

|Y (ς)| � C
(| ln δη−1| + 1

)
� C

(| ln δ| + ε−1μ−1
)
, |ς| � δη−1,

where the constants C are independent of ε, μ, η, δ, and x. These estimates
and (3.17) imply (3.24), (3.25).

It follows from the definition of χ1 that ΔW is non-zero only as

η−α < |ς(1)| < 3
2
η−α.

For the corresponding values of x due to (3.13), (3.15) the differentiable asymp-
totics

W
(1)
mat(x, ε, μ) = O

(
εμ(|ς(1)|−2 + |ξ|2)

)
,

η−α < |ς(1)| < 3
2
η−α,

η1−α < |ξ| < 3
2
η1−α,

holds true. Hence, for the same values of ξ and ς(1)

W
(1)
mat = O (εμ(η2α + η2−2α)

)
,

∇xW
(1)
mat = O

(
μ(η−1|ς(1)|−3 + |ξ|)

)
= O (μ(η1−α + η3α−1)

)
.

Substituting the identities obtained into (3.18) and taking into consideration
the relations

∇xχ1

(
|ς(j)|ηα

)
= O(ε−1ηα−1), Δxχ1

(
|ς(j)|ηα

)
= O(ε−2η2α−2),

we arrive at (3.23). �
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Let us estimate the right hand side of (3.3). We have

|(f,Wvε)L2(Ω)| � ‖f‖L2(Ω)‖Wvε‖L2(Ω),
(3.26)

‖Wvε‖2
L2(Ω) = ‖Wvε‖2

L2(Ω\Ωδ) + ‖Wvε‖2
L2(Ωδ).

Let δ ∈ ( 3
2η

α, π
2

)
. Applying Lemma 3.2 and using (3.24), (3.25), we have

‖vεW‖2
L2(Ω\Ωδ) � Cε2μ2(| ln δ|2 + 1)‖vε‖2

L2(Ω\Ωδ),
(3.27)

‖vεW‖2
L2(Ωδ) � Cδ2(| ln δ| + 1)‖vε‖2

W 1
2 (Ω).

Here and till the end of this section we indicate by C various non-essential con-
stants independent of ε, μ, η, δ, x, vε, u(μ), and f . The inequalities (3.27) yield

|(f, vεW )L2(Ω)| � C
(
εμ| ln δ| + δ| ln δ|1/2 + δ

)
‖vε‖W 1

2 (Ω)‖f‖L2(Ω). (3.28)

It follows from the definition of u(μ) that

‖u(μ)‖W 2
2 (Ω) � C‖f‖L2(Ω). (3.29)

Taking into consideration this inequality, we proceed in the same way as in
(3.26), (3.27), (3.28),

‖u(μ)W‖L2(Ω) � C(εμ| ln δ| + δ| ln δ|1/2 + δ)‖u(μ)‖W 1
2 (Ω)

� C(εμ| ln δ| + δ| ln δ|1/2 + δ)‖f‖L2(Ω), (3.30)

‖W∇u(μ)‖L2(Ω) � C(εμ| ln δ| + δ| ln δ|1/2 + δ)‖u(μ)‖W 2
2 (Ω)

� C(εμ| ln δ| + δ| ln δ|1/2 + δ)‖f‖L2(Ω), (3.31)
∣
∣(u(μ),Wvε)L2(Ω) + (∇u(μ),W∇vε)L2(Ω)

∣
∣

� ‖u(μ)W‖L2(Ω)‖vε‖L2(Ω) + ‖W∇u(μ)‖L2(Ω)‖∇vε‖L2(Ω)

� C(εμ| ln δ| + δ| ln δ|1/2 + δ)‖f‖L2(Ω)‖vε‖W 1
2 (Ω). (3.32)

Employing (3.23) instead of (3.24), (3.25), and applying then Lemma 3.2
with δ = ηα, we get

‖u(μ)ΔW‖L2(Ω) = ‖u(μ)ΔW‖L2(Ω2ηα )

� Cηαε−3/2μ1/2(1 + η4α−2)‖u(μ)‖W 1
2 (Ω)

� Cηαε−3/2μ1/2(1 + η4α−2)‖f‖L2(Ω). (3.33)

Using (3.24), (3.25), (3.28), Lemma 3.3 with δ = δ̃ ∈ (ηα, π/2), the embedding
of W 2

2 (Ω) in W 1
2 (Γ−), and proceeding as in (3.26), (3.27), (3.28), we obtain

∣
∣(u(μ),Wvε)L2(Γε)

∣
∣ � ‖u(μ)W‖L2(Γε)‖vε‖L2(Γ−)� C‖u(μ)W‖L2(Γε)‖vε‖W 1

2 (Ω),

‖u(μ)W‖2
L2(Γε) = ‖u(μ)W‖2

L2(Γε\γδ̃
ε )

+ ‖u(μ)W‖2
L2(γδ̃

ε )

� Cε2μ2(| ln δ̃|2 + 1)‖u(μ)‖2
L2(Γε) + Cδ̃‖u(μ)‖2

W 2
2 (Ω) (3.34)

� C
(
δ̃ + ε2μ2(| ln δ̃|2 + 1)

)
‖f‖2

L2(Ω),

∣
∣(u(μ),Wvε)L2(Γε)

∣
∣ � C

(
δ̃1/2 + εμ(| ln δ̃| + 1)

)
‖f‖L2(Ω).
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Let α ∈ (1/2, 1). The last obtained estimate, (3.28), (3.32), (3.33), and (3.3)
yield

‖vε‖2
W 1

2 (Ω) � C(δ| ln δ|1/2 + εμ| ln δ| + εμ2| ln δ̃| + μδ̃1/2)‖f‖L2(Ω)‖vε‖W 1
2 (Ω),

and it is assumed here that

ηα < δ < π/2, ηα < δ̃ < π/2, δ = δ(ε) → +0, δ̃ = δ̃(ε) → +0 as ε → +0.

Thus, taking δ = εμ, δ̃ = ε2μ2, we get

‖vε‖W 1
2 (Ω) � Cεμ| ln εμ|‖f‖L2(Ω),

and it proves (2.6).
We take δ = εμ in (3.30) and employ (2.6),

‖(Hε − i)−1f − (H(μ) − i)−1f‖L2(Ω) = ‖uε − u(μ)‖L2(Ω)

� ‖uε − (1 +W )u(μ)‖L2(Ω) + ‖u(μ)W‖L2(Ω)

� Cεμ| ln εμ|‖f‖L2(Ω),

which proves (2.3).

Lemma 3.5. The estimate

‖∇(u(μ)W )‖L2(Ω) � Cμ1/2‖f‖L2(Ω) (3.35)

holds true.

Proof. We integrate by parts employing (3.1), (3.2), (2.1), (2.2),

‖∇(u(μ)W )‖2
L2(Ω)

= −
(

∂

∂x2
u(μ)W,u(μ)W

)

L2(Γ−)

−
(
Δ(u(μ)W ), u(μ)W

)

L2(Ω)

= −μ‖u(μ)W‖2
L2(Γ−) +

∫

γε

|u(μ)|2 ∂W
∂x2

dx1 + μ(u(μ), u(μ)W )L2(Γε)

−(WΔu(μ),Wu(μ))L2(Ω) − 2
(
W∇u(μ), u(μ)∇W

)

L2(Ω)

−
(
u(μ)ΔW,u(μ)W

)

L2(Ω)
.

We take the real part of this identity,

‖∇(u(μ)W )‖2
L2(Ω)

= μ(u(μ), u(μ)W )L2(Γε) +
∫

γε

|u(μ)|2 ∂W
∂x2

dx1

−μ‖u(μ)W‖2
L2(Γ−) − Re(WΔu(μ),Wu(μ))L2(Ω)

−2Re
(
W∇u(μ), u(μ)∇W

)

L2(Ω)
−
(
u(μ)ΔW,u(μ)W

)

L2(Ω)
. (3.36)
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Let us calculate the fifth term in the right hand side of the last equation. We
integrate by parts employing (2.1),

2Re
(
W∇u(μ), u(μ)∇W

)

L2(Ω)

=
1
2

∫

Ω

∇W 2 · ∇|u(μ)|2 dx

= −1
2

∫

Γ−

W 2 ∂

∂x2
|u(μ)|2 dx1 − 1

2

∫

Ω

W 2Δ|u(μ)|2 dx

= −μ‖u(μ)W‖2
L2(Γ−) − Re(Wu(μ),WΔu(μ))L2(Ω)

−‖W∇u(μ)‖2
L2(Ω).

We substitute the last identity into (3.36),

‖∇(u(μ)W )‖2
L2(Ω) = μ(u(μ), u(μ)W )L2(Γε) +

∫

γε

|u(μ)|2 ∂W
∂x2

dx1

+‖W∇u(μ)‖2
L2(Ω) −

(
u(μ)ΔW,u(μ)W

)

L2(Ω)
. (3.37)

Taking δ = εμ in (3.31), we get

‖W∇u(μ)‖L2(Ω) � Cεμ| ln εμ|‖f‖L2(Ω). (3.38)

It follows from (3.30) with δ = εμ and (3.33) that
∣
∣(u(μ)ΔW,u(μ)W )L2(Ω)

∣
∣ � Cηαε−1/2μ3/2| ln εμ|‖f‖2

L2(Ω), α ∈ (1/2, 1).

(3.39)

Employing (3.17), (3.15), by direct calculations we check that
∫

γε

|u(μ)|2 ∂W
∂x2

dx1 =
+∞∑

j=−∞

∫

γε,j

|u(μ)|2 ∂W
∂x2

dx1

= εμ
+∞∑

j=−∞

∫

γε,j

|u(μ)|2 ∂

∂x1
arcsin

x1 − επj

εη
dx1,

and
∫

γε,j

|u(μ)|2 ∂

∂x1
arcsin

x1 − επj

εη
dx1

=

επj∫

επj−εη

|u(μ)|2 ∂

∂x1

(
arcsin

x1 − επj

εη
+
π

2

)
dx1

+

επj+εη∫

επj

|u(μ)|2 ∂

∂x1

(
arcsin

x1 − επj

εη
− π

2

)
dx1,
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= π|u(μ)(επj, 0)|2 +
∫

γε,j

(
arcsin

x1 − επj

εη
− π

2
sgn(x1 − επj)

)

× ∂

∂x1
|u(μ)|2 dx1,

where

π|u(μ)(επj, 0)|2 =
1
ε

επj∫

επ(j−1)

∂

∂x1

(
(x1 − επ(j − 1))|u(μ)|2

)
dx1.

Thus, in view of the embedding of W 2
2 (Ω) into W 1

2 (Γ−) and (3.29)
∣
∣
∣
∣
∣
∣

∫

γε

|u(μ)|2 ∂W
∂x2

dx1

∣
∣
∣
∣
∣
∣
� μ

+∞∑

j=−∞

επj∫

επ(j−1)

∣
∣
∣
∣
∂

∂x1
(x1 − επ(j − 1))|u(μ)|2

∣
∣
∣
∣ dx1

+ εμπ
+∞∑

j=−∞

∫

γj
ε

∣
∣
∣
∣
∂

∂x1
|u(μ)|2

∣
∣
∣
∣ dx1 � Cμ‖f‖2

L2(Ω).

We substitute the obtained estimate, (3.34) with δ̃ = ε2μ2, (3.38), (3.39) into
(3.37) and arrive at (3.35). �

The proven lemma and (2.6), (3.30) with δ = εμ imply

‖(Hε − i)−1 − (H(μ) − i)−1‖L2(Ω)→W 1
2 (Ω) � C1μ

1/2. (3.40)

The resolvent (H(μ) − i)−1 is obviously analytic in μ and thus

‖(H(μ) − i)−1 − (H(0) − i)−1‖L2(Ω)→W 1
2 (Ω) � Cμ.

This inequality, (3.40), and (2.3) yield (2.4), (2.5).

4. Uniform Resolvent Convergence for H̊ε(τ )

This section is devoted to the proof of Theorems 2.3, 2.4. The proof of the
first theorem is close in spirit to that of Theorem 2.3 in [3]. The difference is
that here we employ the corrector W as we did in the previous section. This
is why an essential modification of the proof of Theorem 2.3 in [3] is needed.

We begin with several auxiliary lemmas. The first one was proved in [3],
see Lemma 4.2 in this paper.

Lemma 4.1. Let |τ | < 1 − κ, where 0 < κ < 1, and

Uε =
(

H̊ε(τ) − τ2

ε2

)−1

f, f ∈ L2(Ωε).
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Then

‖Uε‖L2(Ωε) � 4‖f‖L2(Ωε),
∥
∥
∥
∂Uε

∂x2

∥
∥
∥

L2(Ωε)
� 2‖f‖L2(Ωε), (4.1)

∥
∥
∥
∂Uε

∂x1

∥
∥
∥

L2(Ωε)
� 2

κ
1/2

‖f‖L2(Ωε).

If, in addition, f ∈ L⊥
ε , then

‖Uε‖L2(Ωε) � ε

κ
1/2

‖f‖L2(Ωε), ‖∇Uε‖L2(Ωε) � ε

2κ

‖f‖L2(Ωε). (4.2)

It was also shown in [3] in the proof of the last lemma that for any
u ∈ W̊ 1

2,per(Ωε, Γ̊+) and |τ | � 1 − κ

∥
∥
∥
(

i
∂

∂x1
− τ

ε

)
u
∥
∥
∥

2

L2(Ωε)
− τ2

ε2
‖u‖2

L2(Ωε) � κ

∥
∥
∥
∂u

∂x1

∥
∥
∥

2

L2(Ωε)
,

(4.3)∥
∥
∥
∂u

∂x2

∥
∥
∥

L2(Ωε)
� 1

2
‖u‖L2(Ω).

Lemma 4.2. Let F ∈ L2(0, π). Then

|(Q−1
μ F )(0)| � 5‖F‖L2(0,π).

Proof. We can find Q−1
μ F explicitly

(Q−1
μ F )(x2) = −1

2

π∫

0

(
|x2 − t| − π +

x2 − π

1 + πμ
(1 + μ(t− π))

)
F (t) dt.

Hence, by the Cauchy–Schwartz inequality

|(Q−1
μ F )(0)| � 1

2(1 + πμ)

π∫

0

(2π − t)|F (t)|dt � 5‖F‖L2(0,π),

that completes the proof. �
Proof of Theorem 2.3. Let f ∈ L2(Ωε), f = Fε+f⊥

ε , where Fε ∈ Lε, f⊥
ε ∈ L⊥

ε ,

Fε(x2) =
1
επ

επ
2∫

− επ
2

fε(x) dx1,

(4.4)
επ‖Fε‖2

L2(0,π) + ‖f⊥
ε ‖2

L2(Ωε) = ‖f‖2
L2(Ωε).

Then
(

H̊ε(τ) − τ2

ε2

)−1

f =
(

H̊ε(τ) − τ2

ε2

)−1

Fε +
(

H̊ε(τ) − τ2

ε2

)−1

f⊥
ε .

By (4.2), (4.4), we obtain
∥
∥
∥
∥

(
H̊ε(τ) − τ2

ε2

)−1

f⊥
ε

∥
∥
∥
∥

L2(Ωε)

� ε

κ
1/2

‖f⊥
ε ‖L2(Ωε) � ε

κ
1/2

‖f‖L2(Ωε). (4.5)
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We denote

Uε :=
(

H̊ε(τ) − τ2

ε2

)−1

Fε, U (μ)
ε := Q−1

μ Fε,

Vε(x) := Uε(x) − U (μ)
ε (x) − U (μ)

ε (0)W (x, ε, μ)χ1(x2),

where, we remind, the function χ1 was introduced in the third section. In view
of (3.1) and the definition of Uε the function Vε belongs to W̊ 1

2,per(Ωε, Γ̊+∪ γ̊ε).

We write the integral identities for Uε and U (μ)
ε ,

h̊ε(τ)[Uε, φ] − τ2

ε2
(Uε, φ)L2(Ωε) = (Fε, φ)L2(Ωε) (4.6)

for all φ ∈ W̊ 1
2,per(Ωε, Γ̊+ ∪ γ̊ε), and
(

dU (μ)
ε

dx2
,
dφ

dx2

)

L2(0,π)

+ μU (μ)
ε (0)φ(0) = (Fε, φ)L2(0,π) (4.7)

for all φ ∈ W̊ 1
2 ((0, π), {π}). Given any φ ∈ W̊ 1

2,per(Ωε, Γ̊+), for a.e. x1 ∈
(−επ/2, επ/2) we have φ(x1, ·) ∈ W̊ 1

2 ((0, π), {π}). We take such φ in (4.7)
and integrate it over x1 ∈ (−επ/2, επ/2),

(
dU (μ)

ε

dx2
,
∂φ

∂x2

)

L2(Ωε)

+ μ(U (μ)
ε , φ)L2 (̊Γ−) = (Fε, φ)L2(Ωε).

The function U (μ)
ε is independent of x1, and hence
((

i
∂

∂x1
− τ

ε

)
U (μ)

ε ,

(
i
∂

∂x1
− τ

ε

)
φ

)

L2(Ωε)

= −τ

ε

(
U (μ)

ε ,

(
i
∂

∂x1
− τ

ε

)
φ

)

L2(Ωε)

=
τ2

ε2
(U (μ)

ε , φ)L2(Ωε).

The sum of two last equations is as follows,
((

i
∂

∂x1
− τ

ε

)
U (μ)

ε ,

(
i
∂

∂x1
− τ

ε

)
φ

)

L2(Ωε)

+

(
∂U

(μ)
ε

∂x2
,
∂φ

∂x2

)

L2(Ωε)

−τ2

ε2
(U (μ)

ε , φ)L2(Ωε) + μ(U (μ)
ε , φ)L2 (̊Γ−) = (Fε, φ)L2(Ωε) (4.8)

We let φ = Vε in (4.6), (4.8) and take the difference of these two equations,
((

i
∂

∂x1
− τ

ε

)
(Uε − U (μ)

ε ),
(

i
∂

∂x1
− τ

ε

)
Vε

)

L2(Ωε)

+
(

∂

∂x2
(Uε − U (μ)

ε ),
∂Vε

∂x2

)

L2(Ωε)

− τ2

ε2
(Uε − U (μ)

ε , Vε)L2(Ωε)

= μ(U (μ)
ε , Vε)L2 (̊Γ−).
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We represent Uε − U
(μ)
ε as Vε + U

(μ)
ε (0)Wχ1 and substitute it into the last

equation,
∥
∥
∥
∥

(
i
∂

∂x1
− τ

ε

)
Vε

∥
∥
∥
∥

2

L2(Ωε)

+
∥
∥
∥
∥
∂Vε

∂x2

∥
∥
∥
∥

2

L2(Ωε)

− τ2

ε2
‖Vε‖2

L2(Ωε)

= μ(U (μ)
ε , Vε)L2 (̊Γε) − U (μ)

ε (0)
((

i
∂

∂x1
− τ

ε

)
Wχ1,

(
i
∂

∂x1
− τ

ε

)
Vε

)

L2(Ωε)

− U (μ)
ε (0)

(
∂Wχ1

∂x2
,
∂Vε

∂x2

)

L2(Ωε)

− τ2

ε2
U (μ)

ε (0)(Wχ1, Vε)L2(Ωε)

= U (μ)
ε (0)

(

μ(W,Vε)L2 (̊Γε)−(∇Wχ1,∇Vε)L2(Ωε)− 2iτ
ε

(
∂Wχ1

∂x1
, Vε

)

L2(Ωε)

)

.

(4.9)

We integrate by parts employing (3.1),

−2iτ
ε

(
∂Wχ1

∂x1
, Vε

)

L2(Ωε)

=
2iτ
ε

(
W,χ1

∂Vε

∂x1

)

L2(Ωε)

,

and

μ(W,Vε)L2 (̊Γε) − (∇(Wχ1),∇Vε)L2(Ωε)

= μ(W,Vε)L2 (̊Γε) +
(
∂W

∂x2
, Vε

)

L2 (̊Γε)

+ (Δ(Wχ1), Vε)L2(Ωε)

= (ΔWχ1, Vε)L2(Ωε).

Together with (4.9) it yields
∥
∥
∥
∥

(
i
∂

∂x1
− τ

ε

)
Vε

∥
∥
∥
∥

2

L2(Ωε)

+
∥
∥
∥
∥
∂Vε

∂x2

∥
∥
∥
∥

2

L2(Ωε)

− τ2

ε2
‖Vε‖2

L2(Ωε)

= U (μ)
ε (0)

(

(Δ(Wχ1), Vε)L2(Ωε) +
2iτ
ε

(
Wχ1,

∂Vε

∂x1

)

L2(Ωε)

)

. (4.10)

It follows from Lemmas (4.2) and (4.4) that

|U (μ)
ε (0)| � 5πε−1/2‖f‖L2(Ωε).

Hence, we can estimate the right hand side of (4.10) as follows,
∣
∣
∣
∣
∣
U (μ)

ε (0)

(

(Δ(Wχ1), Vε)L2(Ωε) +
2iτ
ε

(
Wχ1,

∂Vε

∂x1

)

L2(Ωε)

)∣∣
∣
∣
∣

� 5πε−1/2‖f‖L2(Ωε)

(

‖Δ(Wχ1)‖L2(Ωε)‖Vε‖L2(Ωε)

+2ε−1‖Wχ1‖L2(Ωε)

∥
∥
∥
∥
∂Vε

∂x1

∥
∥
∥
∥

L2(Ωε)

)
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� 50π2ε−1‖Δ(Wχ1)‖2
L2(Ω)‖f‖2

L2(Ωε) +
1
8
‖Vε‖2

L2(Ωε)

+25π2
κ

−1ε−3‖W‖2
L2(Ωε)‖f‖2

L2(Ωε) + κ

∥
∥
∥
∥
∂Vε

∂x1

∥
∥
∥
∥

2

L2(Ωε)

.

We substitute this inequality and (4.3) into (4.10),

κ

∥
∥
∥
∥
∂Vε

∂x1

∥
∥
∥
∥

2

L2(Ωε)

+
1
4
‖Vε‖2

L2(Ωε) � 50π2ε−1‖f‖2
L2(Ωε)‖Δ(Wχ1)‖2

L2(Ωε)

+25π2
κ

−1ε−3‖W‖2
L2(Ωε)‖f‖2

L2(Ωε) +
1
8
‖Vε‖2

L2(Ωε) + κ

∥
∥
∥
∥
∂Vε

∂x1

∥
∥
∥
∥

2

L2(Ωε)

,

‖Vε‖2
L2(Ωε) � C

(
ε−1‖f‖2

L2(Ωε)‖Δ(Wχ1)‖2
L2(Ωε)

+κ
−1ε−3‖f‖2

L2(Ωε)‖W‖2
L2(Ωε)

)
,

‖Vε‖L2(Ωε) � C
(
ε−1/2‖Δ(Wχ1)‖L2(Ωε)

+κ
−1/2ε−3/2‖W‖L2(Ωε)

)
‖f‖L2(Ωε),

where the constants C are independent of ε, μ, κ, and f . Combining the last
inequality, Eq. (4.4) and Lemma 4.2, we arrive at

‖Uε − U (μ)
ε ‖L2(Ωε) � ‖Vε‖L2(Ωε) + |U (μ)(0)|‖W‖L2(Ωε)

� ‖Vε‖L2(Ωε) + Cε−1/2‖f‖L2(Ωε)‖W‖L2(Ωε)

� C
(
ε−1/2‖ΔWχ1‖L2(Ωε) + κ

−1/2ε−3/2‖W‖L2(Ωε)

)
‖f‖L2(Ωε), (4.11)

where the constants C are independent of ε, μ, κ, and f .
Let us estimate ‖W‖L2(Ωε) and ‖Δ(Wχ1)‖L2(Ωε). We have

‖W‖2
L2(Ωε) = ‖W‖2

L2(Ωε\Ωδ) + ‖W‖2
L2(Ωε∩Ωδ).

We take δ = 3
2η

α and in view of the definition (3.17) of W we obtain

‖W‖2
L2(Ωε\Ωδ) = ε2μ2‖X‖2

L2(Ωε\Ωδ) � ε4μ2

∫

|ξ1|< π
2 , ξ2>0

|X(ξ)|2 dξ � Cε4μ2,

where the constant C is independent of ε, μ, κ, and f . It follows from (3.25)
that

‖W‖2

L2(Ωε∩Ω
3
2 ηα

)
� Cε2η2α, α ∈ (0, 1),

where the constant C is independent of ε and η. Hence,

‖W‖L2(Ωε) � Cε2μ, (4.12)

where the constant C is independent of ε and μ.
The definition (3.17) of W , Eqs. (3.9), (3.14), the estimate (3.23), and

the exponential decay of X,

X(ξ) = O(e−2ξ1), ξ2 → +∞
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yield that

‖Δ(Wχ1)‖2
L2(Ωε) � 2‖ΔW‖2

L2(Ωε) + 2
∥
∥
∥
∥2
∂W

∂x1
χ′

1 +Wχ′′
1

∥
∥
∥
∥

2

L2(Ωε)

,

‖ΔW‖2
L2(Ωε) � Cμ2η2−2α, α ∈ (1/2, 1),

∥
∥
∥
∥2
∂W

∂x1
χ′

1 +Wχ′′
1

∥
∥
∥
∥

2

L2(Ωε)

� Cμ2e−2ε−1
,

where C are positive constants independent of ε, η, and μ. We substitute the
last estimates and (4.12) into (4.11),

‖Uε − U (μ)
ε ‖L2(Ωε) � Cκ

−1/2με1/2‖f‖L2(Ωε),

where the constant C is independent of ε, μ, and κ. Together with (4.5) it
completes the proof. �

Proof of Theorem 2.4. First we obtain the upper bound for the eigenvalues λn.
To do this, we employ standard bracketing arguments (see, for instance [33,
Ch. XIII, Sect. 15, Prop. 4]), and estimate the eigenvalues of H̊ε(τ) by those of
the same operator but with η = π/2, i.e., with Dirichlet boundary condition
on Γ̊−. The lowest eigenvalues of the latter operator are

τ2

ε2
+ n2,

(2 + τ)2 − τ2

ε2
+ n2,

(2 − τ)2 − τ2

ε2
+ n2, n = 1, 2, . . .

Hence, for n2 < 4κε−2 the lowest eigenvalues among mentioned are τ2ε−2+n2,
and thus

1
4

� λn(τ, ε) − τ2

ε2
� n2, n < 2κ

1/2ε−1. (4.13)

The lower estimate was obtained by replacing the boundary conditions on Γ̊−
by the Neumann one. In the same way we can estimate the eigenvalues of Qμ

replacing the boundary condition at x2 = 0 by the Dirichlet and Neumann
one,

0 � Λn(μ) � n2 (4.14)

uniformly in μ for all n ∈ Z.
By [29, Ch. III, Sect. 1, Theorem 1.4], Theorems (2.3), and (4.13), (4.14)

we get
∣
∣
∣
∣
∣

1
λn(τ, ε) − τ2

ε2

− 1
Λn(μ)

∣
∣
∣
∣
∣
� Cκ

−1/2ε1/2μ,

∣
∣
∣
∣λn(τ, ε) − τ2

ε2
− Λn(μ)

∣
∣
∣
∣ � Cκ

−1/2(με1/2 + ε)|Λn(μ)|
∣
∣
∣
∣λn(τ, ε) − τ2

ε2

∣
∣
∣
∣

� Cn4
κ

−1/2(με1/2 + ε),

which proves (2.8).
The eigenvalues Λn(μ) are solutions to Eq. (2.9), and the associated eigen-

functions are sin
√

Λn(x2 − π). Hence, these eigenvalues are holomorphic with
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respect to μ by the inverse function theorem. The formula (2.10) can be checked
by expanding Eq.(2.15) and Λn(μ) with respect to μ. �

5. Bottom of the Spectrum

In this section, we prove Theorem 2.5. The proof of (2.13) reproduces word by
word the proof of similar equation (2.5) in [3] with one minor change, namely,
one should use here identity

λ1(0, ε) =
1
4

+ o(1), ε → +0, (5.1)

instead of similar identity in [3]. The identity (5.1) follows from (2.8), (2.10).
In order to construct the asymptotic expansion for λ1(0, ε), we employ

the approach suggested in [4,23–25] for studying similar problems in bounded
domains.

The eigenvalue λ1(0, ε) and the associated eigenfunction ψ̊(x, ε) of H̊ε(0)
satisfy the problem

− Δψ̊(x, ε) = λ1(0, ε)ψ̊(x, ε) in Ωε,
(5.2)

ψ̊(x, ε) = 0 on Γ̊+ ∪ γ̊ε,
∂ψ̊

∂x2
(x, ε) = 0 on Γ̊ε.

and periodic boundary conditions on the lateral boundaries of Ωε. We con-
struct the asymptotics for λ1(0, ε) as

λ1(0, ε) = Λ(ε, μ),

where Λ = Λ(ε, μ) is a function to be determined. It view of (2.8) with τ = 0
the function Λ should satisfy (2.16).

The asymptotics of the associated eigenfunction ψ̊ε is constructed as the
sum of three expansion, namely, the external expansion, the boundary layer,
and the internal expansion. The external expansion has a closed form,

ψex
ε (x,Λ) = sin

√
Λ(x2 − π). (5.3)

It is clear that for any choice of Λ(ε, μ) this function solves Eq. (5.2), and
satisfies the periodic boundary conditions on the lateral boundaries of Ωε.

The boundary layer is constructed in terms of the variables ξ, i.e., ψbl
ε =

ψbl
ε (ξ, μ). The main aim of introducing the boundary layer is to satisfy the

boundary condition on Γ̊ε. We construct ψbl
ε by the boundary layer method.

In accordance with this method, the series ψbl
ε should satisfy Eq. (5.2), the

periodic boundary condition on the lateral boundaries of Ωε, the boundary
condition

∂ψex
ε

∂x2
+
∂ψbl

ε

∂x2
= 0 on Γ̊ε, (5.4)

and it should decay exponentially as ξ2 → +∞.
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It follows from (5.3) and the definition of ξ that ψbl
ε should satisfy the

boundary condition

∂ψbl
ε

∂ξ2
= −

√
Λ cos

√
Λπ on Γ̊0,

(5.5)
Γ̊0 :=

{
ξ : 0 < |ξ1| < π

2
, ξ2 > 0

}
.

Here we passed to the limit η → +0 in the definition of Γ̊ε.
We substitute ψbl

ε into Eq. (5.2) and rewrite it in the variables ξ,

− Δξψ
bl
ε = ε2Λψbl

ε , ξ ∈ Π, Π :=
{
ξ : |ξ1| < π

2
, ξ2 > 0

}
. (5.6)

To construct ψbl
ε , in [4,23–25], the authors used the standard way. Namely,

they sought ψbl
ε and Λ(ε, μ) as asymptotic series power in ε. Then these series

were substituted into (5.5), (5.6), and equating the coefficients at like powers
of ε implied the boundary value problems for the coefficients of the mentioned
series. In our case we do not employ this way. Instead of this we study the exis-
tence of the required solution to the problem (5.5), (5.6) and describe some of
its properties needed in what follows.

By V we denote the space of π-periodic even in ξ1 functions belonging to
C∞(Π\{0}) and exponentially decaying as ξ2 → +∞ together with all their
derivatives uniformly in ξ1. We observe that X ∈ V.

Lemma 5.1. The function X can be represented as the series

X(ξ) = −
+∞∑

n=1

1
n

e−2nξ2 cos 2nξ1, (5.7)

which converges in L2(Π) and in Ck(Π ∩ {ξ : ξ � R}) for each k � 0, R > 0.

Proof. Since X ∈ V, for each ξ2 > 0 and each k � 0 we can expand it in
Ck[−π/2, π/2],

X(ξ) =
+∞∑

n=1

Xn(ξ2) cos 2nξ1, ‖X(·, ξ2)‖2
L2(− π

2 , π
2 ) =

π

2

+∞∑

n=1

X2
n(ξ2),

(5.8)

Xn(ξ2) =
2
π

π
2∫

− π
2

X(ξ) cos 2nξ1 dξ1.

Integrating the second equation in (5.8) with respect to ξ2, we obtain the
Parseval identity

‖X‖2
L2(Π) =

π

2

+∞∑

n=1

‖Xn‖2
L2(0,+∞).

It yields that the first series in (5.8) converges also in L2(Π), since
∥
∥
∥X −

N∑

n=1

Xn cos 2nξ1
∥
∥
∥

2

L2(Π)
= ‖X‖2

L2(Π) − π

2

N∑

n=1

‖Xn‖2
L2(0,+∞).
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The harmonicity of X and the exponential decay as ξ2 → +∞ yield

X ′′
n(ξ2) = −

π
2∫

− π
2

∂2X

∂ξ21
cos 2nξ1 dξ1 = −n2Xn(ξ2),

Xn(ξ2) = kne−2nξ2 , kn =
2
π

∫

Γ̊0

Xn cos 2nξ1 dξ1.

Denote Πδ := Π\{ξ : |ξ| < δ}. Employing (3.9) and the harmonicity of
X, we integrate by parts,

0 = − lim
δ→+0

∫

Π

e−2nξ2 cos 2nξ1ΔξX dξ

=
∫

Γ̊0

(
cos 2nξ1

∂X

∂ξ2
+ 2nX cos 2nξ1

)
dξ1

+ lim
δ→+0

∫

|ξ|<δ, ξ2>0

(
e−2nξ2 cos 2nξ1

∂X

∂|ξ| −X
∂

∂|ξ|e
−2nξ2 cos 2nξ1

)
ds

= −
∫

Γ̊0

cos 2nξ1 dξ1 + πnkn + π. (5.9)

Thus, kn = −1/n, which implies (5.7). The convergence of this series in Ck(Π∩
{ξ : ξ2 � R}) follows from the exponential decay of its terms in (5.6) as
n → +∞. �

Lemma 5.2. For small real β the problem

− ΔξZ − β2Z = β2X, ξ ∈ Π,
∂Z

∂ξ2
= 0, ξ ∈ Γ̊0, (5.10)

has a solution in W 2
2 (Π) ∩ V. This solution and all its derivatives with respect

to ξ decay exponentially as ξ2 → +∞ uniformly in ξ1 and β. The differentiable
asymptotics

Z(ξ, β) = Z(0, β) + O(|ξ|2 ln |ξ|), ξ → 0, (5.11)

holds true uniformly in β. The function (X+Z) is bounded in L2(Π) uniformly
in β. The identity

Z(0, β) = β2θ(β2) (5.12)

is valid, where the function θ is defined in (2.11). The function θ is holomor-
phic and its Taylor series is (2.12).

Proof. Let W be the subspace of W 2
2 (Π) consisting of the functions satisfying

periodic boundary conditions on the lateral boundaries of Π, the Neumann
boundary condition on Γ̊0, and being orthogonal in L2(Π) to all functions
φ = φ(ξ2) belonging to L2(Π). The space W is the Hilbert one.
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By B we denote the operator in L2(Π) acting as −Δξ on W. This operator
is symmetric and closed. It follows from the definition of W that each v ∈ W
satisfies the equation

π
2∫

− π
2

v(ξ) dξ1 = 0 for a.e. ξ2 ∈ (0,+∞).

Using this fact, one can check easily that B � 4, and therefore the bounded
inverse operator exists, and ‖B−1‖ � 1/4. Hence,

(B − β2)−1 = B−1(I − β2B−1)−1,

i.e., the inverse operator (B − β2)−1 exists and is bounded uniformly in β.
We let Z := β2(B−β2)−1X. It is clear that the function Z ∈ W 2

2 (Π) solves
(5.10) and satisfies the periodic boundary conditions on the lateral boundaries
of Π. By the standard smoothness improving theorems and the smoothness of
X we conclude that Z ∈ C∞(Π\{0}).

Using Lemma 5.1, for ξ2 > 0 we can also construct Z by the separation
of variables,

Z(ξ, β) =
+∞∑

n=1

1
n

(

e−2nξ2 − 2n
√

4n2 − β2
e−

√
4n2−β2ξ2

)

cos 2nξ1. (5.13)

In the same way as in the proof of Lemma 5.1 one can check that this series
converges in L2(Π) and Ck(Π ∩ {ξ : ξ2 � R}) for each k � 0, R > 0. Thus,
this function and all its derivatives with respect to ξ decay exponentially as
ξ2 → +∞ uniformly in ξ1 and β, and Z ∈ V.

By (5.7), (5.13) we have

X + Z = −
+∞∑

n=1

2
√

4n2 − β2
e−

√
4n2−β2ξ2 cos 2nξ1,

‖X + Z‖2
L2(Π) =

+∞∑

n=1

π

4n2 − β2

+∞∫

n=1

e−2
√

4n2−β2ξ2 dξ2 =
+∞∑

n=1

π

2(4n2 − β2)3/2
.

Hence, the function (X + Z) is bounded in L2(Π) uniformly in β.
Reproducing the proof of Lemma 3.2 in [22], one can show easily that

the function Z satisfies differentiable asymptotics (5.11) uniformly in β. Let
us calculate Z(0, β). The function

Z̃(ξ, β) := X(ξ) + Z(ξ, β) + β−1 sinβξ2 (5.14)

solves the boundary value problem

(Δξ + β2)Z̃ = 0, ξ ∈ Π,
∂Z̃

∂ξ2
= 0, ξ ∈ Γ̊0,

is bounded, satisfies periodic boundary condition on the lateral boundaries of
Π, and has the asymptotics

Z̃(ξ, β) = ln |ξ| + O(1), ξ → 0.
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Using these properties and (5.10), we integrate by parts in the same way as in
(5.9),

β2

∫

Π

XZ̃ dξ = − lim
δ→+0

∫

Πδ

Z̃(Δξ + β2)Z dξ

= lim
δ→+0

∫

|ξ|=δ, ξ2>0

(

Z̃
∂Z

∂|ξ| − Z
∂Z̃

∂|ξ|

)

ds = −πZ(0, β),

and hence

Z(0, β) = −β2

π

∫

Π

XZ̃ dξ.

We substitute (5.7), (5.13), (5.14) into the last identity,

Z(0, β) = −β2
+∞∑

n=1

1

n
√

4n2 − β2

+∞∫

0

e−(2n+
√

4n2−β2)ξ2 dξ2

= −β2
+∞∑

n=1

1

n
√

4n2 − β2(2n+
√

4n2 − β2)

that proves (5.12).
The series in the definition of θ converges uniformly in β, and by the first

Weierstrass theorem this function is holomorphic in small β. It is easy to see
that

1

n
√

4n2 − β(2n+
√

4n2 − β)
=

2n−
√

4n2 − β

βn
√

4n2 − β

=
1
β

(
2

√
4n2 − β

− 1
n

)

=
1
β

⎛

⎝ 1

n
√

1 − β
4n2

− 1
n

⎞

⎠ =
+∞∑

j=1

(2j − 1)!!βj−1

8jn2j+1j!
.

We substitute this identity into the definition of θ(β),

θ(β) = −
+∞∑

n=1

+∞∑

j=1

(2j − 1)!!βj−1

8jn2j+1j!
= −

+∞∑

j=1

(2j − 1)!!ζ(2j + 1)βj−1

8jj!
,

which yields (2.12). The proof is complete. �

We choose the boundary layer as

ψbl
ε (ξ,Λ) = ε

√
Λ cos

√
Λπ
(
X(ξ) + Z(ξ, ε

√
Λ)
)
. (5.15)

It is clear that this function satisfies all the aforementioned requirements for
the boundary layer.

In accordance with Lemma 5.2, the boundary layer has a logarithmic
singularity at ξ = 0, and the sum of the external expansion and the bound-
ary layer does not satisfy the boundary condition on γ̊ε in (5.2). This is the
reason of introducing the internal expansion. We construct it as depending on
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ς := ς(1) and employ the method of matching of the asymptotic expansions. It
follows from (5.3), (2.9) that

ψex
ε (x, μ) = ψex

ε (0, μ) +
∂ψex

ε

∂x2
(0, μ)x2 + O(|x|2), x → 0, (5.16)

ψex
ε (0, μ) = − sin

√
Λ(ε, μ)π, (5.17)

where the asymptotics is uniform in Λ(ε, μ). Using the definition of ς = ξη−1

and (1.3), by (5.15), (5.11), (3.10) we obtain

ψbl
ε (ξ,Λ) =

√
Λ cos

√
Λπ
(

− 1
μ

+ ε(ln |ς| + ln 2) − x2

)

+ε3Λ3/2θ(ε2Λ) cos
√

Λπ + O(ε|ξ|2 ln |ξ|), ξ → 0,

uniformly in ε and Λ. In view of (5.5), (5.16), (5.17) we have

ψex
ε (x,Λ) + ψbl

ε (ξ,Λ)

= −
√

Λ
μ

cos
√

Λπ − sin
√

Λπ + ε3Λ3/2θ(ε2Λ) cos
√

Λπ

+ε
√

Λ cos
√

Λπ(ln |ζ| + ln 2) + O (εη2|ζ|2(| ln |ζ|| + | ln η|)),
as x → 0. Hence, in accordance with the method of matching of asymptotic
expansions we conclude that the internal expansion should be as follows,

ψin
ε (ς,Λ) = ψin

0 (ζ,Λ, ε) + εψin
1 (ζ,Λ, ε), (5.18)

where the coefficients should satisfy the asymptotics

ψin
0 (ς,Λ, ε) = −

√
Λ
μ

cos
√

Λπ − sin
√

Λπ

+ε3Λ3/2
1 θ(ε2Λ) cos

√
Λπ + o(1), ς → ∞, (5.19)

ψin
1 (ς,Λ) = ε

√
Λ cos

√
Λπ(ln |ζ| + ln 2) + o(1), ς → ∞.

We substitute (5.18) into (5.2) and pass to the variables ς. It yields the bound-
ary value problems for ψin

i ,

Δςψ
in
i = 0, ς2 > 0, ψin

i = 0, ς ∈ γ̊1,
∂ψin

i

∂ς2
= 0, ς ∈ Γ̊1. (5.20)

For i = 0 this problem has the only bounded solution which is trivial,

ψin
0 = 0. (5.21)

Thus, by (5.19) we obtain Eq. (2.15) for Λ(ε, μ).
In view of the properties of the function Y described in the third section

the function ψin
1 should be chosen as

ψin
1 (ζ,Λ, ε) = ε

√
Λ cos

√
ΛπY (ζ). (5.22)

The formal constructing of λ1(0, ε) and ψ̊ε is complete.
We proceed to the studying of Eq. (2.15). Since the function θ is holo-

morphic by Lemma 5.2, the function

T (ε, μ,Λ) :=
√

Λ cos
√

Λπ + μ sin
√

Λπ − ε3μΛ3/2θ(ε2Λ) cos
√

Λπ
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is jointly holomorphic with respect to small ε, μ, and Λ close to 1/4. Employing
the formula (2.12), we continue T analytically to complex values of ε, μ,
and Λ.

As ε = μ = 0, Eq. (2.15) becomes
√

Λ cos
√

Λπ = 0,

and it has the root Λ = 1/4. It is clear that

∂T

∂Λ

(
0, 0,

1
4

)
�= 0.

Hence, by the inverse function theorem there exists the unique root of
Eq. (2.15). This root is jointly holomorphic in ε and μ and satisfies (2.16).
We represent this root as

Λ(ε, μ) = Λ0(μ) +
+∞∑

j=1

εjK̃j(μ), (5.23)

where K̃j(μ) are holomorphic in μ functions. We choose the leading term in
this series as Λ1(μ), since as ε = 0 Eq. (2.15) coincides with (2.9).

We substitute (5.23) and (2.12) into (2.15) and equate the coefficients
at εi, i = 1, . . . , 8. It implies the equations for K̃i, i = 1, . . . , 8. Solving these
equations, we obtain K̃1 = K̃2 = 0 and (2.18).

Let us prove that K̃2j+1(μ) = μ2K2j+1(μ), K̃2j(μ) = μ3K2j(μ), where
Kj(μ) are holomorphic in μ functions. It is sufficient to prove that

K̃j(0) = K̃ ′
j(0) = 0, K̃ ′′

2j(0) = 0.

We take μ = 0 in (2.15) and (5.23),
√

Λ(0, ε) cos
√

Λ(0, ε)π = 0, (5.24)

Λ(0, ε) =
1
4
. (5.25)

By (2.10), (5.23) it implies K̃j(0) = 0. We differentiate Eq. (2.15) with respect
to μ and then we let μ = 0. It implies the equation

−1
2
π
√

Λ(ε, 0) sin
√

Λ(ε, 0)π − cos
√

Λ(ε, 0)π
√

Λ(ε, 0)
∂Λ
∂μ

(ε, 0)

−ε3Λ3/2(ε, 0)θ(ε2Λ(ε, 0)) cos
√

Λ(ε, 0)π + sin
√

Λ(ε, 0)π = 0.

We substitute here the identity (5.25) and arrive at the equation

−π

2
∂Λ
∂μ

(ε, 0) + 1 = 0,

which by (2.10) implies

∂Λ
∂μ

(ε, 0) =
2
π

=
∂Λ1

∂μ
(0). (5.26)

These identities and (5.23) yield K̃ ′
j(0) = 0.
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We differentiate Eq. (2.15) twice with respect to μ and then we let μ = 0
taking into consideration the identities (5.25), (5.26), and (2.12),

− 4
π

+
ε3

2
θ

(
ε2

4

)
− π

2
∂2Λ
∂μ2

(ε, 0) = 0,

∂2Λ
∂μ2

(ε, 0) =
1
π2

(
−8 + ε3πθ

(
ε2

4

))

= − 1
π2

⎛

⎝8 +
π

8

+∞∑

j=1

(2j − 1)!!ζ(2j + 1)
32j−1 j!

ε2j+1

⎞

⎠.

Hence, K̃ ′′
2j(0) = 0, j � 1.

To calculate all other coefficients of (2.17) we substitute this series and
(2.12) into Eq. (2.15) and then equate the coefficients of like powers of ε. It
implies certain equations, which can be solved with respect to Ki. Since all the
coefficients in the expansion in ε of θ and other terms in Eq. (2.15) are real,
the functions Ki are real, too. Hence, by (2.17) the function Λ is real-valued
for real ε and μ.

We proceed to the justification of the asymptotics. Denote

Ψ̊ε(x) :=
(
ψex

ε (x,Λ(ε, μ)) + χ1(x2)ψbl
ε (ξ,Λ(ε, μ))

) (
1 − χ1(|ς|η1/2)

)

+χ1

(
|ς|η1/2

)
ψin

ε (ς,Λ(ε, μ)). (5.27)

where, we remind, χ1 is the cut-off function introduced in the third section.

Lemma 5.3. The function Ψ̊ε ∈ C∞(Ωε\{x : x1 = ±εη, x2 = 0}) belongs to
the domain of H̊ε(0), satisfies the convergence

∥
∥
∥
∥Ψ̊ε − sin

x2 − π

2

∥
∥
∥
∥

L2(Π)

= O(ε1/2μ), ε → +0, (5.28)

and solves the equation
(
H̊ε(0) − Λ(ε, μ)

)
Ψ̊ε = hε, (5.29)

where for the function hε ∈ L2(Ωε) an uniform in ε, μ, and η estimate

‖hε‖L2(Ωε) � C(μe−2ε−1
+ εη1/2) (5.30)

holds true.

Proof. It follows from the definition of Ψ̊ε that

Ψ̊ε ∈ C∞(Ωε\{x : x1 = ±εη, x2 = 0}) ∩ W̊ 1
2,per(Ωε, Γ̊+). (5.31)

The boundary condition (5.4), (5.17), and (3.14) for Y yield those for Ψ̊ε,

Ψ̊ε = 0 on Γ̊+ ∪ γ̊ε,
∂Ψ̊ε

∂x2
= 0 on Γ̊ε. (5.32)

Let us show that

− (Δξ + Λ(ε, μ))Ψ̊ε = hε, x ∈ Ωε, (5.33)
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where hε ∈ L2(Ωε) satisfies (5.30). Employing Eqs. (5.6), (5.20), we obtain

−(Δξ + Λ)Ψ̊ε = hε, hε = −(h(1)
ε + h(2)

ε + h(3)
ε ), (5.34)

h(1)
ε (x) = 2χ′

1(x2)
∂

∂x2
ψbl

ε (ξ,Λ(ε, μ)) + χ′′
1(x2)ψbl

ε (ξ,Λ(ε, μ)),

h(2)
ε (x) = Λ(ε, μ)χ1(|ς|η1/2)ψin

ε (ς,Λ(ε, μ)),
(5.35)

h(3)
ε (x) = 2∇xχ1(|ς|η1/2) · ∇xΨ̊mat

ε (x) + Ψ̊(mat)
ε (x)Δxχ1(|ς|η1/2),

Ψ̊(mat)
ε (x) := ψin

ε (ς,Λ(ε, μ)) − ψex
ε (x,Λ(ε, μ)) − ψbl

ε (ξ,Λ(ε, μ)).

It is clear that h(i)
ε ∈ L2(Ωε) that implies the same for hε.

Due to (2.15) the function ψbl
ε can be rewritten as follows,

ψbl
ε (ξ,Λ(ε, μ)) = μ

(
ε3Λ3/2(ε, μ)θ(ε2Λ(ε, μ)) cos

√
Λ(ε, μ)π

− sin
√

Λ(ε, μ)π
)(

X(ξ) + Z(ξ, ε
√

Λ(ε, μ))
)
.

Thus,

h(1)
ε (x) = μ

(
ε3Λ3/2(ε, μ)θ(ε2Λ(ε, μ)) cos

√
Λ(ε, μ)π − sin

√
Λ(ε, μ)π

)

×
(

2χ′
1(x2)

∂

∂x2
+ χ′′

1(x2)
)(

X(ξ) + Z(ξ, ε
√

Λ(ε, μ))
)
.

The functions χ′
1(x2), χ′′

1(x2) are non-zero only for 1 < x2 <
3
2 that corre-

sponds to ε−1 < ξ2 <
3
2ε

−1. For such values of ξ we can use the series (5.7),
(5.13) for X and Z which converge in Ck

({
ξ : ε−1 � ξ2 � 3

2ε
−1, |ξ1| � π

2

})
.

It yields the exponential estimate for h(1)
ε ,

‖h(1)
ε ‖L2(Ωε) � Cμe−2ε−1

, (5.36)

where the constant C is independent of ε and μ.
Taking into consideration (5.21), and replacing in (5.22) the factor√

Λ cos
√

Λπ by μ
(
ε3Λ3/2(ε, μ)θ(ε2Λ(ε, μ)) cos

√
Λ(ε, μ)π − sin

√
Λ(ε, μ)π

)
as

we did it in (5.34), we estimate h(2)
ε ,

‖h(2)
ε ‖2

L2(Ωε) � Cε4μ2η2

∫

|ς|<η−1/2, ς2>0

|Y (ς)|2 dς

� Cε4μ2η| ln2 η| � Cε2η, (5.37)

where the constants C are independent of ε, μ, and η.
The asymptotics (3.10), (5.11), (3.16), Eq. (2.15), and the identities (5.3),

(5.15), (5.18), (5.21), (5.22) imply the differentiable asymptotics for Ψ̊mat
ε ,

Ψ̊mat
ε (x) = ε

√
Λ cos

√
Λπ
(
ln |ς| + ln 2 + O(|ς|−2)

)− sin
√

Λ(x2 − π)

−ε
√

Λ cos
√

Λπ
(
ln |ξ| + ln 2 + ε2Λθ(ε2Λ) − ξ2 + O(|ξ|2))

= − sin
√

Λ(x2 − π) − sin
√

Λπ +
√

Λx2 cos
√

Λπ + O (εμ(|ξ|2 + |ς|−2)
)

= O (|x|2 + εμ(|ξ|2 + |ς|−2)
)
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uniformly in ε, μ, and η as

εη1/2 < |x| < 3
2
εη1/2, x ∈ Ωε. (5.38)

Thus, for such x

|Ψ̊mat
ε (x)| � C(ε(ε+ μ)η),

|∇xΨ̊mat
ε (x)| � C((ε+ μ)η1/2),

where the constants C are independent of x, ε, μ, and η. Since the functions
∇xχ1(|ς|η1/2), Δxχ1(|ς|η1/2) are non-zero only for x satisfying (5.38), the last
inequalities for Ψ̊mat

ε and ∇xΨ̊mat
ε enable us to estimate h(3)

ε ,

‖h(3)
ε ‖L2(Ωε) � C((ε+ μ)η1/2),

where the constant C is independent of ε, μ, and η. We sum the last estimate
and (5.36), (5.37),

‖hε‖L2(Ωε) � C(μe−2ε−1
+ εη1/2),

where the constant C is independent of ε, μ, and η. This estimate imply (5.30).
Due to the smoothness (5.31) of Ψ̊ε, the boundary value conditions (5.32),

and Eq. (5.33), the function Ψ̊ε is a generalized solution to the boundary value
problem (5.33), (5.32). Hence, Ψ̊ε belongs to the domain of H̊ε(0).

Let us prove the estimate (5.28). Completely as in the estimating hε, we
check that

‖χ1(x2)ψbl
ε

(
1 − χ1(|ς|η1/2)

)
+ χ1

(
|ς|η1/2

)
ψin

ε − ψex
ε χ1(|ς|η1/2)‖L2(Ωε)

= O(ε2μ).

In view of (2.10) and the definition (5.3) of ψex
ε the estimate

∥
∥
∥
∥ψ

ex
ε − sin

x2 − π

2

∥
∥
∥
∥

L2(Π)

= O(ε1/2μ)

holds true. Two last estimates and the definition (5.27) of Ψ̊ε imply (5.28). �

We proceed to the estimating of the error terms. The core of these esti-
mates are Lemmas 12, 13 in [37]. We employ these results in the form they were
formulated in [29, Ch. III, Sect. 1.1, Lemma 1.1]. For the reader’s convenience
we provide this lemma below.

Lemma 5.4. Let A : H → H be a continuous linear compact self-adjoint oper-
ator in a Hilbert space H. Suppose that there exist a real M > 0 and a vector
u ∈ H, such that ‖u‖H = 1 and

‖Au−Mu‖H � κ, α = const > 0.

Then there exists an eigenvalue Mi of operator A such that

|Mi − μ| � κ.

Moreover, for any d > κ there exists a vector u such that

‖u− u‖H � 2κd−1, ‖u‖H = 1,
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and u is a linear combination of the eigenvectors of the operator A correspond-
ing to the eigenvalues of A from the segment [M − d,M + d].

Since the operator H̊ε(0) is non-negative and self-adjoint in L2(Ωε) and
satisfies (4.1), the inverse A := H̊−1

ε (0) exists, is bounded and self-adjoint, and
satisfies the estimate

‖A‖ � 4. (5.39)

The operator A is also bounded as that from L2(Ωε) into W 1
2 (Ωε) and in view

of the compact embedding of W 1
2 (Ωε) in L2(Ωε) the operator A is compact in

L2(Ωε).
We rewrite Eq. (5.29) as follows,

Λ−1(ε, μ)Ψ̊ε = AΨ̊ε + h̃ε, h̃ε := Λ−1(ε, μ)Ahε.

By (2.16), (2.10), (5.39), (5.30) the function h̃ε satisfies the estimate

‖h̃ε‖L2(Ωε) = O(μe−2ε−1
+ εη1/2).

Hence, by (5.28)

‖h̃ε‖L2(Ωε)‖Ψ̊ε‖−1
L2(Ωε) = O(με−1/2e−2ε−1

+ ε1/2η1/2).

Taking this estimate into consideration, we apply Lemma 5.4 with

H = L2(Ωε), u =
Ψ̊ε

‖Ψ̊ε‖L2(Ωε)

,

M = Λ−1(ε, μ), κ = ‖h̃ε‖L2(Ωε)‖Ψ̊ε‖−1
L2(Ωε),

(5.40)

and conclude that there exists an eigenvalue M̃(ε, μ) of A satisfying the esti-
mate

|M̃(ε, μ) − Λ−1(ε, μ)| = O(με−1/2e−2ε−1
+ ε1/2η1/2).

Thus, by (2.16), (2.10)

|M̃(ε, μ)| � |Λ−1(ε, μ)| − O(με−1/2e−2ε−1
+ ε1/2η1/2) � 3, |M̃−1(ε, μ)| � 1

3
,

|M̃−1(ε, μ) − Λ(ε, μ)| = O
(
(με−1/2e−2ε−1

+ ε1/2η1/2)|Λ(ε, μ)||M̃−1(ε, μ)|
)

= O(με−1/2e−2ε−1
+ ε1/2η1/2). (5.41)

The number M̃−1(ε, μ) is an eigenvalue of H̊ε(0). Due to (2.8), (2.10) there
exists exactly one eigenvalue of this operator satisfying (5.41), and this eigen-
value is λ1(0, ε). Thus,

|λ1(0, ε) − Λ(ε, μ)| = O(με−1/2e−2ε−1
+ ε1/2η1/2) (5.42)

that proves (2.14).
The asymptotics (2.8), (2.10), (2.16), (2.14) imply that for ε small enough

the segment [Λ(ε, μ) − 1,Λ(ε, μ) + 1] contains exactly one eigenvalue of H̊ε,
which is λ1(0, ε). Bearing in mind this fact and (5.30), we apply Lemma 5.4
with d = 1 and other quantities given by (5.40) and conclude that the
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normalized in L2(Ωε) eigenfunction φ̊(x, ε) associated with λ1(0, ε) satisfies
the estimate

∥
∥
∥
∥
∥

Ψ̊ε

‖Ψ̊ε‖L2(Ωε)

− φ̊(·, ε)
∥
∥
∥
∥
∥

L2(Ωε)

�
2‖hε‖L2(Ωε)

‖Ψ̊ε‖L2(Ωε)

�
C
(
μe−2ε−1

+ εη1/2
)

‖Ψ̊ε‖L2(Ωε)

,

where the constant C is independent of ε, μ, and η. Hence, for the eigenfunction
ψ̊(x, ε) := ‖Ψ̊ε‖L2(Ωε)φ̊(x, ε) associated with λ1(0, ε) we have

‖ψ̊(·, ε) − Ψ̊ε‖L2(Ωε) = O
(
μe−2ε−1

+ εη1/2
)
. (5.43)

Denote Φ̊ε(x) := Ψ̊ε(x) − ψ̊(x, ε). Equations (5.29) and the eigenvalue
equation for ψ̊(x, ε) imply the equation for Φ̊ε,

H̊ε(0)Φ̊ε = λ1(0, ε)Φ̊ε + (λ1(0, ε) − Λ(ε, μ)) Ψ̊ε.

Hence, we can write the integral identity

‖∇Φ̊ε‖2
L2(Ωε) = λ1(0, ε)‖Φ̊ε‖2

L2(Ωε) + (λ1(0, ε) − Λ(ε, μ)) (Ψ̊ε, Φ̊ε)L2(Ωε).

Thus, by (5.43), (5.42), (5.28), (2.14), (2.16), (2.10)

‖∇Φ̊ε‖2
L2(Ωε) � λ1(0, ε)‖Φ̊ε‖2

L2(Ωε) + (λ1(0, ε) − Λ(ε, μ)) (Ψ̊ε, Φ̊ε)L2(Ωε)

� ‖Φ̊ε‖2
L2(Ωε) + |λ1(0, ε) − Λ(ε, μ)|‖Ψ̊ε‖L2(Ωε)‖Φ̊ε‖L2(Ωε)

� C
(
μ2e−4ε−1

+ ε2η
)
.

The last estimate and (5.43) prove the asymptotics (2.19). Theorem 2.5 is
proved.
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