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On a Well-Conditioned Electric Field Integral

Operator for Multiply Connected Geometries
Francesco P. Andriulli, Senior Member, IEEE, Kristof Cools, Ignace Bogaert, and Eric Michielssen, Fellow, IEEE

Abstract—All known integral equation techniques for simu-
lating scattering and radiation from arbitrarily shaped, perfect
electrically conducting objects suffer from one or more of the
following shortcomings: (i) they give rise to ill-conditioned sys-
tems when the frequency is low (ii) and/or when the discretization
density is high, (iii) their applicability is limited to the quasi-static
regime, (iv) they require a search for global topological loops,
(v) they suffer from numerical cancelations in the solution when
the frequency is very low. This work presents an equation that
does not suffer from any of the above drawbacks when applied
to smooth and closed objects. The new formulation is obtained
starting from a Helmholtz decomposition of two discretizations of
the electric field integral operator obtained by using RWGs and
dual bases respectively. The new decomposition does not leverage
Loop and Star/Tree basis functions, but projectors that derive
from them. Following the decomposition, the two discretizations
are combined in a Calderon-like fashion resulting in a new overall
equation that is shown to exhibit self-regularizing properties
without suffering from the limitations of existing formulations.
Numerical results show the usefulness of the proposed method

both for closed and open structures.

Index Terms—Integral Equations, Loop-Star/Tree bases, EFIE,
MFIE, Calderón Equations.

I. INTRODUCTION

INTEGRAL equation solvers are widely used for simulating

electromagnetic scattering and radiation from arbitrarily

shaped, Perfect Electrically Conducting (PEC) objects. Long

popular in academic circles, these solvers recently have been

incorporated into several commercial electromagnetic analysis

and design tools as well. Their attractiveness stems from the

fact that they only require surface discretizations, operate on

(comparatively) small interaction matrices that can be applied

rapidly to arbitrary vectors by fast multipole and related

algorithms [1], [2], [3], and yield solutions that automatically

satisfy the radiation condition.

Among the many available alternatives, the surface Elec-

tric Field Integral Equation (EFIE) plays a dominant role.

Although the EFIE initially was developed for simulating

scattering and radiation from PEC surfaces, its underlying

Electric Field Integral Operator (EFIO) also is used in integral

This work was supported in part by the Agence Nationale de la Recherche
under the Grant ANR Blanc JCJC2012 FASTEEG, by the European Com-
mission under the Grant Marie Curie GIC NEUROIMAGEEG, and by the
Foundation Telecom under the Grant “Futur et Ruptures” CPCR11322.

F. P. Andriulli is with the Microwave Department of Telecom Bretagne -
Institut Mines-Telecom, Brest, France.

K. Cools is with the Electrical Systems and Optics Research Division,
University of Nottingham, Nottingham NG7 2RD, U.K.

I. Bogaert is with the Department of Information Technology, Ghent
University, Ghent 9000, Belgium

E. Michielssen is with the Department of Electrical Engineering and
Computer Science, University of Michigan, Ann Arbor, MI 48109 USA.

equations applicable to resistive, surface impedance, and pen-

etrable surfaces. This explains the large effort of the scientific

community, currently underway, to stably discretize and invert

the EFIO, a process that is plagued by numerous problems.

When the EFIO is discretized with boundary elements

with average diameter h, the resulting matrix has a condition

number (the ratio of the matrix’ largest and smallest singular

values) that grows as (kh)
−2

, where k is the wavenumber

(see [4] and references therein). When using an iterative

method to solve an ill-conditioned linear system, the number

of iterations tends to be large and the solution inaccurate.

As a result, when k approaches zero, the EFIE becomes

increasingly difficult and sometimes impossible to solve. This

so-called low frequency breakdown phenomenon traditionally

has been remedied by using Loop-Star/Tree (quasi-Helmholtz,

or Hodge) decompositions [5], [6], [7], [8], [9]. When using

these decompositions with the EFIO and after appropriate

matrix scaling with suitably chosen powers of (kh), the low

frequency breakdown is solved; that is, in the limit of k going

to zero, the matrix condition number is constant.

That said, these methods do not cure the undesirable scaling

of the matrix condition number with h. Following their appli-

cation, the matrix condition number scales as h−1, h−2, or

h−3 (depending on the formulation). This dense discretization

breakdown phenomenon is due to the combined effect of the

spectral properties of the EFIO [10], [4] and the instability of

the Loop-Star/Tree bases [11].

In addition to suffering from dense discretization break-

down, Loop-Star/Tree decompositions also require the de-

tection of global loops when the surface is a non-simply

connected geometry, i.e. it contains holes and handles [5].

Existing general-purpose algorithms for finding global loops

exhibit quadratic complexity. Their cost therefore scales worse

than that of fast integral equation solvers, which exhibit quasi-

linear complexity.

Recently a new family of augmented equations that is im-

mune to low frequency breakdown and that, remarkably, does

not require the detection of global loops has been introduced

[12]. Even more recently, a clever approach based on the

solution of a moderately low-frequency EFIE problem, allows

for a solution of the EFIE that is also immune from the low-

frequency breakdown [13]. Unfortunately, these formulations

still suffer from dense discretization breakdown, since they

inherit the spectral properties of the EFIO.

To protect an EFIE against both low frequency and the

dense discretization breakdown, a simple rescaling of the EFIO

does not suffice. Instead, a more invasive procedure aimed at

modifying its spectrum is called for. This can be achieved
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by using hierarchical quasi-Helmholtz decompositions [14],

[15], [16], [4] and/or Calderón techniques [17], [18], [19],

[10], [20], [21], or the Epstein-Greengard method based on

generalized Debye sources [22]. On a related note, the work

in [17] uses a discrete Helmholtz-Hodge decomposition to

construct a valid dual boundary element space for use with

Calderón formulas. It hints at the fact that Helmholtz-Hodge

decompositions and Calderón techniques nicely fit, and it is

a premonitory fact that the scheme we present in this work

succeeds.

When analyzing non-simply connected geometries, hierar-

chical schemes explicitly call for global loops in their current

expansions and Calderón schemes require the construction of

global loops at very low frequencies due to the existence of

the toroidal and poloidal static null-spaces of the internal and

external magnetic field operator [23]. At very low frequencies

both solver families therefore require the construction of global

loops. A similar problem stands for the Epstein-Greengard

method.

Finally, several of the above schemes are susceptible to

very low frequency cancelations in the solution vector. In fact,

even if the equations are made well-conditioned, for plane

wave scattering problems the physics dictates that the non-

solenoidal and solenoidal components of the current scale as

k and are frequency independent, respectively. If these two

components are not separated during the solution process,

numerical cancelations that deteriorate the accuracy of the

far field computation ensue. This phenomenon has been first

pointed out in [24], and further studied in [25], [26] and

[27] and [28]. The reader should be aware of the meaning

of “very low frequency” in this context. The above discussed

low frequency breakdown, for a structure of few centimeters

in size, typically kicks in when the frequency is on the order

of few MHz. For the same structure, the very low frequency

cancelation of the current only becomes problematic at a few

Hz. This is why Calderón techniques can be successfully

applied to the analysis of most scattering problems, only

requiring special care when approaching statics. The very

low frequency cancellation problem can be solved either by

using perturbation methods [24], [25], [29] or by augmenting

a Calderón scheme with Loop-Star/Tree decompositions [20],

[21]. Perturbation methods are a valuable solution, but require

one to switch formulations when passing from the low to

the high frequency regime - their application in the latter

regime would require too many terms in the perturbation

series. Moreover, they inherit the spectral problems of the

starting equations, that is dense discretization breakdown when

applied to the augmented EFIE or the necessity of global loop

extraction when applied to the MFIE or to the Calderón EFIE.

The use of Loop-Star/Tree decompositions on the other hand

requires the extraction of global loops and regularization of

the dense discretization breakdown related to the instability of

the decomposition (present in decomposed Calderón equations

in [21] and [11]).

In summary, to the best of our knowledge, there exists

no integral equations that is simultaneously immune to low

frequency and dense discretization breakdown, and free from

very low frequency cancelation and the need to detect global

loops. This paper presents a new equation that does not suffer

from any of these drawbacks. It introduces a new basis-

free Loop-Star decomposition that derives from projections

and is used to rescale the standard EFIO and remove low

frequency breakdown and very low frequency current can-

celation phenomena. Moreover, the rescaled EFIO is self-

regularizing, and when squared in a Calderon-like fashion, is

immune from dense discretization breakdown. Different from

the standard Calderón EFIO, however, our new operator does

not have any static null-space. In conclusion, the resulting

equation simultaneously is free from low frequency and dense

discretization breakdown, very low frequency cancelations,

and the need to detect global loops.

This paper is organized as follows. Section II presents

background material and introduces notation. Section III

presents the new equation. Section IV analyzes the new

equation’s properties. Section V focuses on implementation

details. Section VI presents numerical results that demonstrate

the effectiveness of the proposed scheme. Section VII presents

our conclusions and avenues for future research.

II. BACKGROUND AND NOTATION

Let Γ be the surface of an orientable PEC object residing

in a background medium of permittivity ǫ and permeability µ
and let n̂r denote Γ’s normal vector at r. Surface Γ can be

non-simply connected, i.e. it can potentially have holes and/or

handles. The incident electric field Ei(r) impinges on Γ and

induces the surface current density J(r), which satisfies the

EFIE

T (J) = −n̂r ×Ei (1)

where T (J) = k Ts(J) + 1

k
Th(J) with

Ts(J) = in̂r ×
∫

Γ

eik|r−r
′|

4π |r − r′|J(r
′) dr′, (2)

Th(J) = in̂r ×∇
∫

Γ

eik|r−r
′|

4π |r − r′|∇s · J(r′) dr′, (3)

and the wavenumber k = 2π/λ = ω
√
ǫµ. Note that with

these definitions J(r) is the jump across Γ of the (rotated)

total magnetic field multiplied by the medium characteristic

impedance η =
√

µ/ǫ.
To solve the EFIE by the boundary element method, Γ is

approximated by a mesh of planar triangles with average edge

length h, and J(r) is approximated as

J(r) ≈
N
∑

n=1

Infn(r) (4)

where fn(r), n = 1, . . . , N are Rao-Wilton-Glisson (RWG)

div-conforming basis functions defined on the mesh’s N
internal edges [30]. To simplify the notation, the RWGs are

defined without edge length normalization: for two adjacent

triangles c+j and c−j with areas Ac
+

j
and Ac

−

j
and free vertices

vectors r+
j and r+

j (Fig. 1), fn is defined as

fn (r) =















r − r+n
2Ac

+
n

for r ∈ c+n

r−
n − r

2Ac
−

n

for r ∈ c−n

. (5)
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c+n c−nr+n r−n

v+n

v−n

en

Fig. 1. Conventions used in the definition of RWG, Loop, and Star functions.

After substistuting (4) into (1), the EFIE is tested with the

functions n̂r×f i yielding the N×N discretized EFIE system

¯̄Z Ī =

(

k ¯̄Zs +
1

k
¯̄Zh

)

Ī = V̄ (6)

where (¯̄Zs)i,j =
〈

n̂r × f i, Ts(f j)
〉

, (¯̄Zh)i,j =
〈

n̂r × f i, Th(f j)
〉

, (V̄)i =
〈

f i, n̂r × n̂r ×Ei
〉

, and

(Ī)j = Ij . Here 〈a, b〉 =
∫

Γ
a · b dΓ. Upon solving (6) for Ī, J

can be approximated using (4). It should be noted that, a scale

factor of η aside, (6) is identical to the standard EFIE system

of equations in [30]. The EFIO can be alternatively discretized

by using the Buffa-Christiansen (BC) basis functions defined

on the mesh’s barycentric refinement [31]. These functions,

similar to RWGs, are div-conforming and defined on the

mesh’s N internal edges. In what follows, they are denoted

by fBC
j . The BC functions are also quasi curl-conforming in

the sense that the mixed gram matrix ¯̄Gmix between BC and

curl-conforming rotated RWGs

( ¯̄Gmix)i,j =
〈

n̂r × f i,f
BC
j

〉

. (7)

is well-conditioned. The explicit definition and further details

regarding these functions can be found in [31] and [10]. The

BC discretized EFIO will be denoted

¯̄Z =

(

k ¯̄Zs +
1

k
¯̄Zh

)

(8)

where ( ¯̄Zs)i,j =
〈

n̂r × fBC
i , Ts(fBC

j )
〉

and ( ¯̄Zh)i,j =
〈

n̂r × fBC
i Th(fBC

j )
〉

.

To construct the new EFIE, we need to define Loop and

Star transformation matrices. Since Loop and Star bases are

very well-known [5], [6], [7], [8], [9], the treatment will be

minimal and solely meant to introduce notation.

Loop functions are denoted by {Λj , j = 1, . . . , Nv} where

Nv is the number of inner vertices of the mesh. Each Loop

function can be expressed as Λj = ∇ × n̂rλj , where λj

is the piecewise linear Lagrange basis function that equals

one on the j-th inner node of the mesh and zero on all other

nodes. The Loop to RWG transformation matrix, i.e. the matrix

whose columns are the coefficients of Loop functions when

expressing them as linear combinations of RWG functions is

denoted by ¯̄Λ. With the conventions of Fig. 1, the matrix ¯̄Λ
can be expressed as

¯̄Λi,j =







1 if node j equals v+i
−1 if node j equals v−i
0 otherwise

(9)

If the surface Γ is closed and if (for notational simplicity)

we assume Γ to be a single scatterer (a body with only one

connected component), the set of Loop functions defined on

all the vertices of the mesh is not linearly independent. The

matrix ¯̄Λ has a one-dimensional null-space spanned by the

vector 1̄Λ of length Nv containing all ones, i.e.

¯̄Λ1̄Λ = 0̄. (10)

The Star functions are denoted by {Σj , j = 1, . . . , Nc} where

Nc is the number of cells of the mesh. The Star to RWG

transformation matrix, i.e. the matrix whose columns are the

coefficients of Star functions when expressing them as linear

combinations of RWG functions, is denoted by ¯̄Σ. With the

conventions of Fig. 1, the matrix ¯̄Σ can be expressed as

¯̄Σi,j =







1 if the cell j equals c+i
−1 if the cell j equals c−i
0 otherwise

(11)

The set of Star functions is not linearly independent. The

matrix ¯̄Σ has a one-dimensional null-space spanned by the

vector 1̄Σ of length Nc containing all ones, i.e.

¯̄Σ1̄Σ = 0̄. (12)

From their definitions it follows immediately that the Loop

and Star transformation matrices are mutually orthogonal [6],

i.e.
¯̄ΣT ¯̄Λ = ¯̄0. (13)

It should be noted that the particularly simple form of the

Loop and Star to RWG transformation matrices in (9) and in

(11) is a consequence of (5), where the RWGs are defined

without edge length normalization.

When Γ is simply connected, the Loop and Star functions

span the entire RWG space, i.e. given an arbitrary RWG

coefficient vector Ī there exist two (in general non unique)

vectors l̄ and s̄ such that

Ī = ¯̄Λl̄+ ¯̄Σs̄. (14)

When Γ is not simply connected, the above expression should

be modified in

Ī = ¯̄Λl̄+ ¯̄Σs̄+ ¯̄Hh̄ (15)

where ¯̄H is the so-called global loop to RWG transformation

matrix. Global loops are the discretized counterparts of the

harmonic space of the Helmholtz decomposition. It is im-

possible to provide a complete description of this family of

functions and the interested reader is referred to [5] and [23].

The column dimension of ¯̄H is 2Nhandles + Nholes, where

Nhandles and Nholes are the number of handles and holes of

Γ, respectively. The orthogonality properties

¯̄ΣT ¯̄H = ¯̄0 and ¯̄ΛT ¯̄H = ¯̄0. (16)

hold. It should also be noted that both ¯̄Λl̄ and ¯̄Hh̄ are RWG

coefficients of solenoidal functions. Given the decomposition

in (15), a dual decomposition exists for the BC functions ([31],

[32], [20], [21]): given an arbitrary BC coefficient vector Ī,

the following decomposition holdsĪ = ¯̄Λl̄+ ¯̄Σs̄+ ¯̄Hh̄ (17)
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where the two vectors l̄ and s̄ are in general not unique. It

should be noted that both ¯̄Σs̄ and ¯̄Hh̄ are BC coefficients of

solenoidal functions.

III. THE NEW EQUATION

We next describe a new EFIE that, contrary to currently

available ones, is concurrently immune to the low frequency

breakdown and the dense discretization breakdown, as well as

very low frequency solution cancelation. Moreover, the new

equation will not require an identification search of global

loops, that is the matrix ¯̄H defined above. The new formulation

is obtained in two steps: (i) first, a quasi-Helmholtz decom-

position is applied to the EFIO to cure it from low frequency

breakdown. For this purpose, we introduce a new, basis-free

decomposition, since a standard quasi-Helmholtz decomposi-

tion introduces a basis-related dense discretization breakdown

(see [11]) and would require the explicit determination of ¯̄H
(the global loops). (ii) The new decomposed equation will be

“squared” in a suitable, Calderón like fashion to cure it from

dense discretization breakdown.

Space limitations do not allow for a thorough discussion of

the low frequency breakdown of the EFIO and the treatment

here will be minimal; further details can be found, for example,

in [7]. The low frequency breakdown is due to the different

scaling of the terms involving ¯̄Zs and ¯̄Zh with k [7]. Since

both ¯̄Λl̄ and ¯̄Hh̄ are RWG coefficients of solenoidal functions,

it is easily verified that

¯̄Zh
¯̄Λ = ¯̄0, ¯̄Zh

¯̄H = ¯̄0, ¯̄ΛT ¯̄Zh = ¯̄0, ¯̄HT ¯̄Zh = ¯̄0 (18)

Then the Loop-Star decomposition solves the low

frequency breakdown since, by defining ¯̄ZΛHΣ =
[

¯̄Λ, ¯̄H, ¯̄Σ
]T

¯̄Z
[

¯̄Λ, ¯̄H, ¯̄Σ
]

, we have

¯̄ZΛHΣ = k





¯̄ΛT ¯̄Zs
¯̄Λ ¯̄ΛT ¯̄Zs

¯̄H ¯̄ΛT ¯̄Zs
¯̄Σ

¯̄HT ¯̄Zs
¯̄H ¯̄ΛT ¯̄Zs

¯̄H ¯̄HT ¯̄Zs
¯̄Σ

¯̄ΣT ¯̄Zs
¯̄Λ ¯̄ΣT ¯̄Zs

¯̄H 1

k2

¯̄ΣT ¯̄Z ¯̄Σ



 (19)

so that a simple block normalization matrix ¯̄D =

diag
{√

k,
√
k, 1/

√
k
}

eliminates the matrix ill-scaling

¯̄D ¯̄ZΛHΣ ¯̄D =





¯̄ΛT ¯̄Zs
¯̄Λ ¯̄ΛT ¯̄Zs

¯̄H k ¯̄ΛT ¯̄Zs
¯̄Σ

¯̄HT ¯̄Zs
¯̄H ¯̄ΛT ¯̄Zs

¯̄H k ¯̄HT ¯̄Zs
¯̄Σ

k ¯̄ΣT ¯̄Zs
¯̄Λ k ¯̄ΣT ¯̄Zs

¯̄H ¯̄ΣT ¯̄Z ¯̄Σ



 .

(20)

Three things should be retained by an analysis of equation

(20). (i) Equation (20) still suffers from an h dependent

ill-conditioning due to the operator spectra of ¯̄ΛT ¯̄Zs
¯̄Λ and

¯̄ΣT ¯̄Z ¯̄Σ and due to the instability of the Loop-Star basis, i.e.

the fact that the following condition number bound

cond

(

[

¯̄Λ, ¯̄H, ¯̄Σ
]T [

¯̄Λ, ¯̄H, ¯̄Σ
]

)

>
C

h2
(21)

holds [11], where C is an h independent constant. (ii) The

combined action of
[

¯̄Λ, ¯̄H, ¯̄Σ
]

¯̄D takes each loop, global loop,

and star component of the initial RWG current vector and

scales them by the appropriate factor. (iii) The scaling factor

for loops and global loops is the same. As a side note: the

h dependent ill-conditioning would have been present in (20)

even if the blocks would have been scaled with kh instead

of k. Observations (ii) and (iii) suggest a different strategy

to decompose the equation. Note that since ¯̄ΣT ¯̄Λ = ¯̄0 and
¯̄ΣT ¯̄H = ¯̄0 then for an arbitrary RWG vector Ī

¯̄ΣT Ī = ¯̄ΣT ¯̄Λl̄+ ¯̄ΣT ¯̄Σs̄+ ¯̄ΣT ¯̄Hh̄ = ¯̄ΣT ¯̄Σs̄ (22)

so that if we assume Γ to be a single scatterer we can use the

degree of freedom we have in choosing s̄ to set s̄T 1̄Σ = 0,

we get

s̄ = ( ¯̄ΣT ¯̄Σ)+ ¯̄ΣT Ī (23)

where ( ¯̄ΣT ¯̄Σ)+ denotes the pseudoinverse of ( ¯̄ΣT ¯̄Σ). Finally,

the star component of Ī is obtained by using the projection
¯̄PΣĪ, where the projector ¯̄PΣ is defined as

¯̄PΣ = ¯̄Σ( ¯̄ΣT ¯̄Σ)+ ¯̄ΣT (24)

The loops and global loops components of Ī can be obtained

by the complementary projector

¯̄PΛH = ¯̄I− ¯̄Σ( ¯̄ΣT ¯̄Σ)+ ¯̄ΣT (25)

Note that it is not necessary to discriminate further between

loops and global loops, since the associated scaling factor will

be the same (observation (iii) above); this renders unnecessary

the explicit and costly recovery of global loops. Finally, define

the decomposition operator

¯̄M = ¯̄PΛH 1√
k
+ i ¯̄PΣ

√
k, (26)

and note that ¯̄MT = ¯̄M. The role of the imaginary constant i
in the definition (26) will become clear in Section IV. Using

the decomposition operator, the EFIO takes the form

¯̄MT ¯̄Z ¯̄M =
(

¯̄PΛH ¯̄Zs
¯̄PΛH − ¯̄PΣ ¯̄Zh

¯̄PΣ
)

+
(

¯̄PΛH ¯̄Zs
¯̄PΣ + ¯̄PΣ ¯̄Zs

¯̄PΛH
)

ik (27)

−
(

¯̄PΣ ¯̄Zs
¯̄PΣ

)

k2

=
(

¯̄PΛH ¯̄Zs
¯̄PΛH − ¯̄Zh

)

+O(k)

which is clearly immune from low frequency breakdown. In

(27) we have used ¯̄PΣ ¯̄Zh
¯̄PΣ = ¯̄Zh which easily follows

from ¯̄PΣ + ¯̄PΛH = ¯̄I and ¯̄Zh
¯̄PΛH = ¯̄PΛH ¯̄Zh = ¯̄0. Note

that, contrary to decomposition (20), (27) does not require

the identification of global loops and, in addition, is a stable

decomposition since ¯̄PΛH and ¯̄PΣ are projectors and thus

cond
(

¯̄MT ¯̄M
)

is independent of h, which compares very

favorably with (21).

The treatment for BC discretized matrix ¯̄Z is the same pro-

vided that the role of the loop and star matrices is exchanged.

In fact it should be recalled that in (17) ¯̄Σs̄ and ¯̄Hh̄ are BC

coefficients of solenoidal functions. Thus we will define the

dual projectors
¯̄PΛ = ¯̄Λ( ¯̄ΛT ¯̄Λ)+ ¯̄ΛT (28)

¯̄PΣH = ¯̄I− ¯̄Λ( ¯̄ΛT ¯̄Λ)+ ¯̄ΛT (29)

and the associated decomposition operator

¯̄M = ¯̄PΣH 1√
k
+ i ¯̄PΛ

√
k (30)
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so that the decomposed BC-discretized EFIO reads

¯̄MT ¯̄Z ¯̄M =
(

¯̄PΣH ¯̄Zs
¯̄PΣH − ¯̄PΛ ¯̄Zh

¯̄PΛ
)

+
(

¯̄PΣH ¯̄Zs
¯̄PΛ + ¯̄PΛ ¯̄Zs

¯̄PΣH
)

ik (31)

−
(

¯̄PΛ ¯̄Zs
¯̄PΛ

)

k2

=
(

¯̄PΣH ¯̄Zs
¯̄PΣH − ¯̄Zh

)

+O(k)

which is also immune from low frequency breakdown. The

practical computation of ( ¯̄ΣT ¯̄Σ)+ and ( ¯̄ΛT ¯̄Λ)+ will be de-

tailed in Section V. Moreover, note that if Γ has more than

one connected components, i.e. when Γ comprises multiple

scatterers, the treatment in this section goes through with only

minor modifications. Specifically, the dimension of the null-

space of ¯̄ΣT ¯̄Σ will equal the number of scatterers, while the

dimension of the null-space of ¯̄ΛT ¯̄Λ will equal the number of

closed scatterers. Definitions (24)-(31) remain intact.

The reader notices that ¯̄Λ and ¯̄Σ are the edge-vertex and

edge-cell incidence matrices of the mesh, respectively. In

graph theoretical terms they stand for the topological gradients

on the standard and dual meshes. The matrices ¯̄ΣT and
¯̄ΛT similarly represent the topological divergences on these

meshes. Not surprisingly, ¯̄ΛT ¯̄Λ and ¯̄ΣT ¯̄Σ are the graph

Laplacians of the standard and dual meshes, and the projectors
¯̄PΛ = ¯̄Λ( ¯̄ΛT ¯̄Λ)+ ¯̄ΛT and ¯̄PΣ = ¯̄Σ( ¯̄ΣT ¯̄Σ)+ ¯̄ΣT are the graph-

theoretical counterparts of the smoothing projector ∇s∆
−1
s ∇s·

in the irrotational space [33].

The EFIO, after solving the low frequency breakdown with

a Loop-Star decomposition, has a condition number that still

grows as an inverse power of h, this is the dense discretization

breakdown problem (refer to [10], [4] for further details).

For the standard EFIO both the low frequency and the dense

discretization breakdown are solved by Calderón precondi-

tioning: the EFIO discretized matrix ¯̄Z is replaced by the

Calderón preconditioned matrix ¯̄Z ¯̄G−1
mix

¯̄Z and the Calderón

preconditioned EFIE

¯̄Z ¯̄G−1
mix

¯̄Z Ī = ¯̄Z ¯̄G−1
mixV̄ (32)

is solved instead of solving the EFIE system in (6). The matrix
¯̄Z ¯̄G−1

mix
¯̄Z is provably immune from both low frequency and

dense discretization breakdown, however it has a null-space

in statics [23] and it can suffer from current cancelation at

very low frequencies. The new equation proposed in this work

is obtained by replacing the RWG- and BC-discretized EFIO

operators ¯̄Z and ¯̄Z with the respective decomposed ones in

(27) and in (31). Our new equation reads
(

¯̄MT ¯̄Z ¯̄M)

¯̄G−1
mix

(

¯̄MT ¯̄Z ¯̄M
)

Ȳ =
(

¯̄MT ¯̄Z ¯̄M)

¯̄G−1
mix

¯̄MT V̄

(33)

with Ī =
(

¯̄M
)

Ȳ.

IV. PROPERTIES OF THE NEW EQUATION

Let’s first prove that the operator of the new equation has the

same null-space of the EFIO and thus, in particular, it does not

have the global loops spanned static null-space of the Calderón

EFIE. It is sufficient to prove the statement in statics, in fact
¯̄G−1
mix is non-singular and, away from statics, also the matrices

¯̄M and ¯̄M are well-defined and non-singular. Let’s study the

static limit of (27), i.e. let’s prove that the operator
(

¯̄PΛH ¯̄Zs
¯̄PΛH − ¯̄PΣ ¯̄Zh

¯̄PΣ
)

(34)

does not have a null-space. Since ¯̄PΛH ¯̄PΣ = ¯̄0 it is sufficient

to prove that ¯̄PΛH ¯̄Zs
¯̄PΛH is non-singular on the range of

[

¯̄Λ, ¯̄H
]

and that ¯̄PΣ ¯̄Zh
¯̄PΣ is non singular on the range of ¯̄Σ.

Since on these spaces both ¯̄Zs and ¯̄Zh in statics are symmetric

positive definite matrices [34], then we get that ∀v̄ in the range

of
[

¯̄Λ, ¯̄H
]

v̄T ¯̄PΛH ¯̄Zs
¯̄PΛH v̄ = 0 ⇒ ¯̄PΛH v̄ = 0̄

⇒ v̄ is in the range of ¯̄Σ ⇒ v̄ = 0̄ (35)

dually, ∀q̄ in the range of ¯̄Σ

q̄T ¯̄PΣ ¯̄Zs
¯̄PΣq̄ = 0 ⇒ ¯̄PΣv̄ = 0̄

⇒ q̄ is in the range of
[

¯̄Λ, ¯̄H
]

⇒ q̄ = 0̄ (36)

from this we deduce that (27) does not have a static null-

space. The same statement is proved for (31) by using the

same approach. Finally we deduce that the newly proposed

equation (33) has no static null-space since it is the product

of three non-singular matrices.

Let’s now study the conditioning behavior of (33) as a

function of frequency and discretization. Since both (27) and

(31) are immune from the low frequency breakdown, so will

be (33), since ¯̄G−1
mix is a frequency independent matrix.

To show that the equation is also immune from the dense

discretization breakdown. We will prove this in the static

limit. After substituting (27) and (31) in (33) and using the

relationship ¯̄Zh
¯̄G−1
mix

¯̄Zh = ¯̄0, the operator of the new equation

can be written as
(

¯̄MT ¯̄Z ¯̄M)

¯̄G−1
mix

(

¯̄MT ¯̄Z ¯̄M
)

=

= −
(

¯̄PΣH ¯̄Zs
¯̄PΣH

)

¯̄G−1
mix

¯̄Zh − ¯̄Zh
¯̄G−1
mix

(

¯̄PΛH ¯̄Zs
¯̄PΛH

)

+
(

¯̄PΣH ¯̄Zs
¯̄PΣH

)

¯̄G−1
mix

(

¯̄PΛH ¯̄Zs
¯̄PΛH

)

+O(k) (37)

where the property ¯̄Zh
¯̄G−1

mix
¯̄Zh = ¯̄0 has been used (see, for

example, [32] and [35]). At the same time, since ¯̄PΣ+ ¯̄PΛH =
¯̄PΛ + ¯̄PΣH = ¯̄I and since, from the properties of the mixed

Gram matrix we have ¯̄PΛ ¯̄G−1
mix

¯̄Zh =
(

¯̄PΛ ¯̄G−1
mix

¯̄PΣ

)

¯̄Zh = ¯̄0

and ¯̄Zh
¯̄G−1
mix

¯̄PΣ = ¯̄Zh

(

¯̄PΛ ¯̄G−1
mix

¯̄PΣ

)

= ¯̄0, then the standard

Calderón EFIE operator ¯̄Z ¯̄G−1
mix

¯̄Z can be written as

¯̄Z ¯̄G−1
mix

¯̄Z = ¯̄Zh
¯̄G−1
mix

¯̄PΛH ¯̄Zs +
¯̄Zs

¯̄PΣH ¯̄G−1
mix

¯̄Zh +O(k2)
(38)

In (37), the third term can be neglected since it is a dis-

cretization of the compact operator T 2
s . Given this it is clear

that (37) maps the range of ¯̄PΛH into the range of ¯̄PΛ

and the range of ¯̄PΣ into the range of ¯̄PΣH and these

sets are mutually orthogonal. When these sets are used to

decompose both (37) and (38) the two equations will have the

same diagonal blocks and the former will be block diagonal.

Thus the singular values of the new equation (33) will be
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(asymptotically) bounded by the maximum and minimum

singular values of the standard calderon equation. Thus the

operator in (33) will have the same conditioning behavior as

the standard Calderón EFIO. The reader should notice that

although the term
(

¯̄PΣH ¯̄Zs
¯̄PΣH

)

¯̄G−1
mix

(

¯̄PΛH ¯̄Zs
¯̄PΛH

)

does

not influence the h-dependent conditioning of (37), it is instead

important for determining its null-space. In fact, it could be

shown that the presence of this operator (which is absent in

the static Calderón EFIO) is responsible for the absence of the

static null-space of (33) (this absence has been proved earlier

in this section by using another approach).

To complete the analysis of the properties of (33) we will

study the frequency behavior of the solution for different types

of excitation in order to show that the solution of (33) does

not suffer from very low frequency cancelations. If we assume

that, as a function of k, the solenoidal part of the physical

current Ī scales as (Rs, Is) (real part and imaginary part) and

if we assume that the non-solenoidal part scales as (Rns, Ins),
then the scattered far-field due to the solenoidal part will scale

as
(

RF
s , I

F
s

)

= (kIs, kRs) while the scattered field due to the

non-solenoidal part will scale as
(

RF
ns, I

F
ns

)

= (Rns, Ins) [24].

Then from the relationship Ȳ = ¯̄M−1Ī and the definition of
¯̄M it follows that the solenoidal part of the solution Ȳ of

(33) will scale as
(

RY
s , I

Y
s

)

=
(√

kRs,
√
kIs

)

while the non-

solenoidal part will scale as
(

RY
ns, I

Y
ns

)

=
(

1√
k
Ins,

1√
k
Rns

)

.

We will consider the cases of plane wave excitation, inductive

voltage gap excitation (the geometry is such that at least one

global loop runs through the excitation port) and capacitive

voltage gap excitation (the geometry is such that no global

loop runs through the excitation port). For these sources we

will use the scalings obtained in [26]. The current scalings

as a function of k are summarized in Table I. The rightmost

column of the table identifies the current components that need

to be recovered precisely in order to obtain a correct result for

the current (and, where applicable, for the input impedance).

The far-field scalings as a function of k are summarized in

Table II. The rightmost column of the table identifies the

current components that need to be recovered precisely in

order to obtain a correct result for the far-field. The scalings

of the components of the solution Ȳ of (33) as a function of

k are summarized in Table III. The rightmost column of the

table identifies the current components that can be recovered

from Ȳ since do not undergo numerical cancelation, i.e. the

components corresponding to the lowest power of k in the real

and in the imaginary part of Ȳ.

For example, when the excitation is a plane wave, both

Rs and Ins are necessary to correctly recover the far field.

Given that, as it is clear from Table I, only Rs is recovered at

low frequencies by any method that does not decompose the

current, i.e. any method that has the (solenoidal/non-solenoidal

undecomposed) physical current as a solution. This is the

very low frequency cancelation phenomenon that has been

recognized and analyzed in [24]. From Table III, however,

it is clear that the new equation recovers all the necessary

components to obtain a correct current (recovery of Rs) and

a correct far field (recovery of Rs and Ins). Similarly, for the

other two classes of sources, it is evident that the rightmost

column of Table III always contains the union of the rightmost

columns of Tables I and II so that the new equation always

recover correctly both physical currents and far-fields. It is

worth noticing the role played by the imaginary constant in

the definition of the matrix ¯̄M in (26) that ensures that all

the necessary components are always recovered by the new

equation either in the real or in the imaginary part of ¯̄Y.

Source (Rs, Is) (Rns, Ins) Current Leading term

Plane Wave (1, k)
(

k2, k
)

Rs

Ind. Voltage Gap
(

k2, 1

k

) (

k4, k
)

Is

Cap. Voltage Gap
(

k4, k
) (

k4, k
)

Is,Ins

TABLE I
SCALINGS OF THE PHYSICAL CURRENT Ī

Source (kIs, kRs) (Rns, Ins) Current Leading term

Plane Wave
(

k2, k
) (

k2, k
)

Rs,Ins

Ind. Voltage Gap
(

1, k3
) (

k4, k
)

Is
Cap. Voltage Gap

(

k2, k5
) (

k4, k
)

Ins

TABLE II
SCALINGS OF THE FAR FIELD

Source
(

√

kRs,
√

kIs

) (

Ins
√

k
, Rns

√

k

)

Recovered terms

Plane Wave
(

√

k, k
√

k
) (

√

k, k
√

k
)

Rs,Ins,Rns,Is

Ind. Voltage Gap
(

k2
√

k, 1
√

k

) (

√

k, k3
√

k

)

Is,Ins

Cap. Voltage Gap
(

k4
√

k, k
√

k
) (

√

k, k3
√

k
)

Is,Ins

TABLE III
SCALINGS OF THE SOLUTION Ȳ OF (33)

V. IMPLEMENTATION RELATED TOPICS

This section provides further information to stably and

rapidly implement the newly proposed equation starting from

a standard EFIE code. The implementation presented here

allows for a stable use of the new equation (33) from high

frequency till arbitrary low frequencies. It is not excluded that

the implementation could be simplified if a shorter frequency

range of operation is sufficient. For the sake of brevity,

however, we will not distinguish between different frequency

ranges and we will present the most conservative choices

that will allow the implementation to operate in the entire

frequency spectrum.

In order to limit the length of the treatment, we will rely

on some of the definitions used in [10] for implementing the

standard Calderón EFIE. More in detail, in the following we

will use the matrices ¯̄Zb, ¯̄R, ¯̄P, and ¯̄G whose explicit (and

simple) definition can be found in [10]. Moreover we will

refer to the matrices ¯̄Zb
A and ¯̄Zb

φ that are the vector and scalar

potential contributions of ¯̄Zb, with ¯̄Zb = ¯̄Zb
A+ ¯̄Zb

φ. In addition,

we define the edge matrix ¯̄E as the N × N diagonal matrix

so that ¯̄Ei,i = li where li is the length of the edge associated

with the RWG i. With these definitions we have

k ¯̄Zs =
¯̄PT ¯̄Zb

A
¯̄P k ¯̄Zs =

¯̄E−1 ¯̄RT ¯̄Zb
A
¯̄R ¯̄E−1 (39)
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¯̄Zh = k ¯̄PT ¯̄Zb
φ
¯̄P ¯̄Zh = k ¯̄E−1 ¯̄RT ¯̄Zb

φ
¯̄R ¯̄E−1 (40)

¯̄G−1
mix =

(

¯̄RT ¯̄G ¯̄P
)−1

(41)

¯̄A1 =
(

¯̄M(

k ¯̄Zs

)

¯̄M)

¯̄G−1
mix

(

¯̄M
(

k ¯̄Zs

)

¯̄M
)

(42)

¯̄A2 =
(

− ¯̄PΛ
(

¯̄Zh

)

¯̄PΛ
)

¯̄G−1
mix

(

¯̄M
(

k ¯̄Zs

)

¯̄M
)

(43)

=
(

− ¯̄PΛ
(

¯̄Zh

)

¯̄PΛ
)

¯̄G−1
mix

((√
k ¯̄Zs

)

¯̄M
)

¯̄A3 =
(

¯̄M(

k ¯̄Zs

)

¯̄M)

¯̄G−1
mix

(

− ¯̄PΣ
(

¯̄Zh

)

¯̄PΣ
)

(44)

=
(

¯̄M(√
k ¯̄Zs

))

¯̄G−1
mix

(

− ¯̄PΣ
(

¯̄Zh

)

¯̄PΣ
)

V̄1 =
(

¯̄M(

k ¯̄Zs

)

¯̄M)

¯̄G−1
mix

1√
k
¯̄PΛHV̄ (45)

−
(

¯̄PΛ
(

¯̄Zh

)

¯̄PΛ
)

¯̄G−1
mix

1√
k
¯̄PΛHV̄

V̄2 =
(

¯̄M(

k ¯̄Zs

)

¯̄M)

¯̄G−1
mix

√
k ¯̄PΣV̄ (46)

=
(

¯̄M(

k ¯̄Zs

))

¯̄G−1
mix

¯̄PΣV̄

After solving the system
(

¯̄A1 +
¯̄A2 +

¯̄A3

)

Ȳ = V̄1 + V̄2 (47)

the solution vector Ī is recovered as

Īs =
1√
k

(

¯̄PΛHȲ
)

(48)

Īns = i
√
k
(

¯̄PΣȲ
)

(49)

Ī = Īs + Īns (50)

The usual techniques used when dealing with very low fre-

quency problems should be used over here. A particular care

should be devoted in evaluating (45). As pointed out in [36]

when V̄ is generated by the plane wave eikk̂·r, in order to

avoid unstabilities, the vector V̄ in (45) should be replaced by

the vector V̄ext generated by
(

eikk̂·r − 1
)

with the standard

techniques to avoid numerical cancelation. A similar caution

should be used when calculating the scattered far field. The

field should be calculated from Īns and Īs separately and

in the latter the kernel of the radiation integral should be
(

eikk̂·r − 1
)

. These techniques are standard and we will not

provide further details that can be found, for example, in [36].

Similar cautions should be taken for the other two typologies

of excitation. When the excitation is a capacitive voltage gap,

V̄1 should be put to zero to avoid numerical cancelation.

Moreover, the projection ¯̄PΛHȲ in (48) should always be

done accurately. In particular, ¯̄PΛHȲ should be replaced by

an exact zero anytime ‖ ¯̄PΛHȲ‖/
∥

∥Ȳ
∥

∥ is in the order of the

machine precision.

We note that when dealing with open structures, the appro-

priate definition of ¯̄P (which makes use of half barycentric

RWGs) should be used [10]. Likewise, when treating structures

Fig. 2. Geometries used in testing the new equation: sphere, square inductor,
and parallel plate capacitor.

with geometric junctions, the same strategies that can be used

with standard Calderón techniques [37] can be used here.

We conclude the section by explaining how to efficiently

compute the pseudoinverses
(

¯̄ΛT ¯̄Λ
)+

and
(

¯̄ΣT ¯̄Σ
)+

. The

first step is to deflect the matrices in order to transform the

pseudoinverse into a standard inverse. In fact it is easy to show

that
(

¯̄ΣT ¯̄Σ+
1

Nc

1̄Σ
(

1̄Σ
)T

)+

=

(

¯̄ΣT ¯̄Σ+
1

Nc

1̄Σ
(

1̄Σ
)T

)−1

(51)

=
(

¯̄ΣT ¯̄Σ
)+

+
1

Nc

1̄Σ
(

1̄Σ
)T

then, since ¯̄Σ
(

1̄Σ
(

1̄Σ
)T

)

¯̄ΣT = ¯̄0, we have

¯̄Σ
(

¯̄ΣT ¯̄Σ
)+

¯̄ΣT = ¯̄Σ

(

¯̄ΣT ¯̄Σ+
1

Nc

1̄Σ
(

1̄Σ
)T

)−1

¯̄ΣT (52)

and dually

¯̄Λ
(

¯̄ΛT ¯̄Λ
)+

¯̄ΛT = ¯̄Λ

(

¯̄ΛT ¯̄Λ+
1

Nv

1̄Λ
(

1̄Λ
)T

)−1

¯̄ΛT (53)

note however that the latter is strictly necessary only when
¯̄ΛT ¯̄Λ is singular (on closed structures for example). Since the

eigenvectors of the matrices
(

¯̄ΛT ¯̄Λ+ 1

Nv
1̄Λ

(

1̄Λ
)T

)−1

and
(

¯̄ΣT ¯̄Σ+ 1

Nc
1̄Σ

(

1̄Σ
)T

)−1

are those of a graph Laplacian,

standard multigrids provide optimal preconditioning and both

matrices can be inverted in linear time (further details on

this can be found in [11]). Note moreover, that if Γ is

made out of multiple scatterers, the generalization of the

formulas above is straightforward. The graph Laplacian should

be deflected with a number of vectors equal to the number of

disconnected components of Γ in the case of ¯̄ΣT ¯̄Σ and to the

number of closed disconnected components of Γ in the case

of ¯̄ΛT ¯̄Λ. Each of these vectors is unitary and constant on the

corresponding connected component while it is zero on all the

others.

VI. NUMERICAL RESULTS

The new equation was tested for plane wave, inductive, and

capacitive excitations of a sphere, a planar square ring, and

a two plate system, respectively (see Fig. 2). The first test

involves a sphere of unit radius that is excited by a plane wave.

Figs. 3 and 4 show the condition number of the matrix on the
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Fig. 3. Sphere: condition number of (33) as a function of the excitation
frequency.

0.2 0.25 0.3 0.35 0.4 0.45
10

0

10
1

10
2

10
3

10
4

10
5

h

C
o
n
d
it
io

n
 N

u
m

b
e
r

 

 

Loop−Star EFIE
Augmented EFIE
Standard Calderon
This Work

Fig. 4. Sphere: condition number of (33) as a function of the average mesh
size h.

left hand side of (33) as a function of the excitation frequency

and the discretization density, respectively. The proposed

equation clearly is immune from low frequency and dense

discretization breakdown. The behavior of the equation is also

compared with that of Loop-Star-decomposed and Augmented

EFIEs ([12], equation (9)). In Fig. 3, for the Augmented EFIE,

the three smallest frequencies (f = 1Hz,f = 10−20Hz, and

f = 10−40Hz) produce convergent, but incorrect solutions.

This is because, as explained in [26], at very low frequencies

the Augmented EFIE should be coupled with a perturbation

method. The star component of the current for a frequency

of 10−40Hz computed using (33) is shown in Fig. 5; the

loop component is shown in Fig. 6. Each time, the current

obtained by solving (33) is compared to that obtained by

solving a standard Loop-Star EFIE, a formulation that is

known to provide the correct current in both the solenoidal

and the non-solenoidal components, although it is difficult to

solve as it suffers from dense discretization breakdown as it is

clear from Fig. 4. From these two figures it is clear that the

new equation is immune from the very low frequency current
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Fig. 5. Sphere, frequency: 10−40Hz. Comparison of the Star component
of the induced current calculated with (33) and with a Loop-Star EFIE.
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Fig. 6. Sphere, frequency: 10−40Hz. Comparison of the Loop component
of the induced current calculated with (33) and with a Loop-Star EFIE.

cancelation. This is also confirmed by Fig. 7 and Fig. 8 which

show the far field calculated using (33) for frequencies of 1Hz

and 10−40Hz, respectively. The solution of (33) is in good

agreement with the solution of the standard Calderón EFIE as

well as with the Mie series result. It is clear that although a

standard Calderón equation can provide a stable solution till

low frequencies (1Hz), the new equation (33) is immune from

the very low frequency current cancelation and provides stable

solutions even when the frequency is arbitrarily low.

To study the behavior of the new equation (33) when

applied to inductive structures with voltage gap excitations,

consider the square ring with side length 1m and width 0.25m
shown in Fig. 2); the voltage gap is located in the center of

one of the ring’s sides. Fig. 9 shows the absolute value of

the input inductance as a function of frequency. The values

obtained by solving (33) are in very good agreement with those

obtained using the standard Loop-Star EFIE. The computed
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Fig. 7. Sphere: far field calculated when the frequency equals 1Hz
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Fig. 8. Sphere: far field calculated when the frequency equals 10−40Hz

value of the static inductance is near 1.197µH, the approximate

inductance value predicted using classical expressions. The

ring’s far fields for a frequency of 10−40Hz computed using

(33) and the Loop-Star EFIE, are shown in Fig. 10 and

match very well. Clearly, when the new equation is applied to

inductive structures with voltage gap excitations, the far fields

do not suffer from very low frequency cancelations. Fig. 11

compares the singular values of the system matrix produced

by the standard Calderón approach and (33) for a frequency of

10−40Hz. A static null-space of dimension one is expected for

the Calderón EFIO, since the open structure has one hole. An

almost zero singular value is evident in Fig. 11. In contrast,

and as predicted by our theory, the new equation however does

not have a static null-space.

To study the behavior of the new equation (33) when applied

to capacitive structures with voltage gap excitations, consider

the parallel plate capacitor composed of plates with side length

1m that are separated by 1cm shown in Fig. 2); a voltage

gap is located in a narrow strip that connects the two plates.

Fig. 12 shows the absolute value of the input capacitance as
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Fig. 9. Input inductance of the square inductor as a function of the frequency.
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Fig. 10. RCS of the square inductor with voltage gap excitation
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Fig. 11. Square inductor: singular values of the standard Calderón EFIO and
of operator in (33).
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Fig. 12. Input capacitance of the parallel plate capacitor as a function of the
frequency.
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Fig. 13. RCS of the parallel plate capacitor with voltage gap excitation

a function of frequency (the reader should not be puzzled by

the abrupt change of the capacitance value in the plot which is

solely due to the choice of the axis’ scale). The capacitance

values obtained by solving (33) are in good agreement with

those obtained with a standard Loop-Star EFIE. Moreover, the

computed static capacitance is near 0.884nF, the approximate

capacitance value predicted by classical expressions.

The capacitor’s far fields for a frequency of 10−40Hz com-

puted using (33) and the Loop-Star EFIE, are shown in Fig. 13

and match very well. Clearly, when the new equation is applied

to capacitive structures with voltage gap excitations, the far

fields do not suffer from very low frequency cancelations.

VII. CONCLUSIONS

This paper presented an electric field integral equation that

is immune from both low-frequency and dense discretization

breakdown, does not require a search for global topological

loops, and does not suffer from numerical cancelations in the

solution when the frequency is very low. The computational

cost of all calculations in the new formulation not required

by the solvers it builds on scale linearly in the number of

unknowns; hence the new formulation can be applied in tan-

dem with fast methods without degradation in computational

complexity. Numerical results demonstrated the beneficial

properties of the new technique. It should be noted that

standard and Calderon EFIOs are not uniquely invertible when

defined on closed objects when the frequency corresponds to

an internal resonance. This problem is traditionally solved

by using combined field operators. It appears that a similar

approach can be applied to the new EFIO presented in this

work and this is the subject of current research.
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