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Abstract

Consider two laws P and Q of multidimensional possibly explosive diffusions with
common diffusion coefficient a and drift coefficients b and b+ ac, respectively, and the
law P ◦ of an auxiliary diffusion with diffusion coefficient 〈c, ac〉−1a and drift coefficient
〈c, ac〉−1b. We show that P � Q if and only if the auxiliary diffusion P ◦ explodes almost
surely and that P ⊥ Q if and only if the auxiliary diffusion P ◦ almost surely does
not explode. As applications we derive a Khasminskii-type integral test for absolute
continuity and singularity, an integral test for explosion of time-changed Brownian
motion, and we discuss applications to mathematical finance.
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1 Introduction

Consider two laws P and Q of multidimensional possibly explosive diffusions with
common diffusion coefficient a and drift coefficients b and b + ac, respectively. We are
interested in finding analytic conditions for the absolute continuity P � Q and the
singularity P ⊥ Q. Such conditions are of interest in many branches of probability theory.
In mathematical finance, for instance, mutual absolute continuity is of importance in the
study of the absence of arbitrage, see [8, 15].

For one-dimensional diffusions precise integral tests were proven in [9] under the
Engelbert–Schmidt conditions. For multidimensional diffusions the situation is less
well-understood and only a few analytic conditions are known, see [3] for an integral
test for Fuchsian diffusions. Here, a diffusion is called Fuchsian if the coefficients a and
b are locally Hölder continuous, a is uniformly elliptic and supx∈Rd ‖b(x)‖(1 + ‖x‖) <∞.
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Absolute continuity/singularity of multidimensional diffusions

The starting point for our research is the following probabilistic characterization of
absolute continuity and singularity: Let X be the coordinate process and set

At ,
∫ t∧θ

0

〈c(Xs), a(Xs)c(Xs)〉ds, t ∈ R+,

where θ is the explosion time. It has been proven in [3, 12] that P � Q is equivalent to
P (Aθ <∞) = 1 and that P ⊥ Q is equivalent to P (Aθ =∞) = 1. In other words, P � Q

and P ⊥ Q are characterized by P -a.s. divergence and convergence of the perpetual
integral Aθ. Again, these properties are well-understood for one-dimensional diffusions,
see [13, 23, 28, 32], and it seems that less work has been done for the multidimensional
case, see [16, 42] for results concerning Bessel processes, [12] for some conditions in
radial cases, and [24] for results on divergence in case X is a conservative Feller process
possibly with jumps.

In [5, 13, 23, 24] the perpetual integral Aθ was related to the hitting time of a time-
changed process. We pick up this idea and prove the following: Let f : Rd → (0,∞)

be a Borel function which is locally bounded away from zero and infinity. Under the
assumptions that the diffusion P exists and that b and a are locally bounded, we show
existence of a diffusion P ◦ with diffusion coefficient f−1a and drift coefficient f−1b such
that the law of the perpetual integral

Tθ ,
∫ θ

0

f(Xs)ds

under P coincides with the law of the explosion time θ under P ◦. Furthermore, we show
that P ◦ is unique whenever P is unique.

Returning to our initial problem, we note that in case f = 〈c, ac〉 the absolute continuity
P � Q is equivalent to P ◦(θ < ∞) = 1 and the singularity P ⊥ Q is equivalent
to P ◦(θ = ∞) = 1. This observation is very useful, because the literature contains
many conditions for explosion and non-explosion of multidimensional diffusions, see
[27, 33, 40]. For illustration, we formulate a Khasminskii-type integral test for absolute
continuity and singularity.

The result can also be applied in the converse direction: In case we have criteria
for absolute continuity and singularity, these can be used to deduce explosion criteria
for time-changed diffusions. To illustrate this, we derive an integral test for almost
sure explosion and non-explosion of time-changed Brownian motion, using results on
singularity of Fuchsian diffusions proven in [3].

The absolute continuity P � Q is intrinsically connected to the uniform integrable
(UI) Q-martingale property of a certain stochastic exponential (see Eq. (2.2) below),
which has been studied for one-dimensional diffusions in [29]. Independent of the
dimension, for the conservative case it is known that the loss of the martingale property
has a one-to-one relation to the explosion of an auxiliary diffusion, see, e.g., [7, 39]. This
turned out to be wrong in the non-conservative setting of [29]. Our result shows that for
the UI martingale property the statement is true irrespective whether the diffusions are
conservative or non-conservative.

As a third application, we use the relation of the UI martingale property and absolute
continuity to study a problem in mathematical finance: More precisely, for certain
exponential diffusion models with infinite time horizon we derive analytic criteria for the
existence of an equivalent local martingale measure (ELMM), and explosion criteria for
the existence of an equivalent martingale measure (EMM).

Let us end the introduction with comments on related literature. To the best of
our knowledge, the relation of absolute continuity/singularity and explosion of a time-
changed process has not been reported before. We think that our new integral tests for
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Absolute continuity/singularity of multidimensional diffusions

absolute continuity/singularity and explosion/non-explosion illustrate that working out
this connection is fruitful. The integral tests in [9, 29] for absolute continuity, singularity
and the UI martingale property in one-dimensional frameworks follow from our result
and Feller’s test for explosion under additional assumptions on the coefficients. The
existence of E(L)MMs for one- and multidimensional diffusion models with finite time
horizon has, e.g., been studied in [10, 11, 30, 39]. Certain one-dimensional diffusion
models with infinite time horizon have been studied in [30]. In this article we focus on
multidimensional models. Beginning with [41], existence and uniqueness results for time-
changed Markov processes have a long history, see, e.g., [6, 40] for more information.
In most of the classical work, the function f is assumed to be uniformly bounded away
from zero, which implies that time-changes of conservative diffusions are themselves
conservative. More general positive continuous f are considered in the recent article
[24] in combination with linear growth conditions for non-explosion. The novelty of
our existence and uniqueness result is that we work without additional assumptions
for non-explosion. This is crucial for the question of absolute continuity and singularity.
Moreover, we work under sort of minimal assumptions on the original diffusion P by
assuming only existence and locally bounded coefficients.

The article is structured as follows: In Section 2 we present our main results, in
Section 3 we discuss applications and in Section 4 we prove our main theorem. In
Appendix B we recall the relation of martingale problems and weak solutions of stochastic
differential equations, and in Appendix C we collect some existence and uniqueness
results for solutions of martingale problems.

2 Main results

Let Rd∆ , Rd ∪ {∆} be the one-point compactification of Rd and let Ω be the space
of all continuous functions R+ → Rd∆ which are absorbed in ∆. Define X to be the
coordinate process on Ω, i.e., Xt(ω) = ω(t) for all ω ∈ Ω and t ∈ R+, and define
F , σ(Xt, t ∈ R+),Fot , σ(Xs, s ∈ [0, t]) and Ft , Fot+ ,

⋂
s>t Fos for all t ∈ R+.

Except stated otherwise, all terms such as martingale, stopping time etc. correspond
to F , (Ft)t≥0 as underlying filtration. Let Sd be the space of symmetric non-negative
definite real-valued d× d matrices.

For n ∈ N we set

θn , inf(t ∈ R+ : ‖Xt‖ ≥ n), θ , inf(t ∈ R+ : Xt = ∆) = lim
m→∞

θm.

It is well-known that θn and θ are stopping times. We fix two Borel functions b : Rd → Rd

and a : Rd → Sd and assume the following:

(S1) b and a are locally bounded.

Here, S is an acronym for standing, which indicates that the assumption is in force
for the remainder of the section. For reader’s convenience and because in some cases
not all standing assumptions are needed, we indicate in every result which standing
assumptions are used.

The following definition of a martingale problem is taken from [33], where it is called
generalized martingale problem due to the possibility of explosion. For simplicity we
drop the term generalized.

Definition 2.1. We say that a probability measure P on (Ω,F) solves the martingale
problem MP (a, b, x0), where x0 ∈ Rd, if P (X0 = x0) = 1 and for all n ∈ N and f ∈ C2(Rd)

the process

f(X·∧θn)− f(x0)−
∫ ·∧θn

0

(
〈∇f(Xs), b(Xs)〉+ 1

2 tr(∇2f(Xs)a(Xs))
)
ds
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Absolute continuity/singularity of multidimensional diffusions

is a P -martingale. A solution P is called conservative (or non-explosive), if P (θ =∞) = 1,
and almost surely explosive, if P (θ <∞) = 1.

It is well-known that martingale problems have a one-to-one relation to weak solutions
of stochastic differential equations, see, e.g., [17, Section 5.3] or [22, Section 5.5.B]. For
reader’s convenience, we recall this connection in Appendix B.

The following theorem is the key observation in this article. It shows that perpetual
integrals are distributed as the explosion time of a time-changed diffusion.

Theorem 2.2. Assume (S1), let f : Rd → (0,∞) be Borel and locally bounded away from
zero and infinity and let x0 ∈ Rd. There exists a measurable map V : Ω→ Ω such that for
every solution Px0 to the MP (a, b, x0) the following hold:

(i) P ◦x0
, Px0

◦ V −1 solves the MP (f−1a, f−1b, x0).

(ii) For all Borel sets A ⊆ [0,∞]

Px0

(∫ θ

0

f(Xs)ds ∈ A
)

= P ◦x0
(θ ∈ A). (2.1)

Moreover, if P ◦x0
is the unique solution to the MP (f−1a, f−1b, x0), then Px0 is the unique

solution to the MP (a, b, x0).

Remark 2.3. By symmetry, Theorem 2.2 yields that existence and uniqueness hold
simultaneously for the MPs (a, b, x0) and (f−1a, f−1b, x0), i.e., one of these problems has
a solution precisely in case the other has a solution and this solution is unique precisely
if the other problem has a unique solution.

The proof of Theorem 2.2 is given in Section 4 below. Let us shortly explain the main
idea: We first define a right-continuous measurable process Y via a random time-change,
i.e. we set

Yt ,

{
XLt , t < Tθ,

∆, t ≥ Tθ,

with

Tt ,
∫ t∧θ

0

f(Xs)ds, Lt , inf(s ∈ R+ : Ts > t), t ∈ R+.

The technical core in the proof of Theorem 2.2 is to show that Y has almost surely
continuous paths. This observation allows us to define the map V as a modification of Y .
Noting that θ(Y ) = Tθ explains (ii). To understand (i), consider the simplified case where
f is uniformly bounded away from zero and Px0

is conservative. Then, Px0
-a.s.

Tθ =

∫ ∞
0

f(Xs)ds ≥ inf
x∈Rd

f(x)

∫ ∞
0

ds =∞,

and Px0
-a.s. Y = XL has Rd-valued continuous paths. Due to a change of variable, for

every f ∈ C2(Rd) we obtain that Px0
-a.s.∫ ·

0

(
〈∇f(Ys), f

−1(Ys)b(Ys)〉+ 1
2 tr(∇2f(Ys)f

−1(Ys)a(Ys))
)
ds

=

∫ L·

0

(
〈∇f(Xs), b(Xs)〉+ 1

2 tr(∇2f(Xs)a(Xs))
)
ds.

This observation allows us to deduce (i) from the optional stopping theorem. The assump-
tion that f is uniformly bounded away from zero simplifies the argument substantially.
As we explain in Remark 2.7 below, a uniform boundedness assumption is typically too
strong for our purpose.
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While we are mainly interested in (2.1), the existence and uniqueness parts of
Theorem 2.2 are also useful, because they lead to localizations of known existence
and uniqueness theorems. For example, if (S1) holds it follows from Theorem 2.2 and
an existence result from [36] that existence of a solution to MP (a, b, x0) is implied
by the weak ellipticity condition det(a)−1 ∈ L1

loc(Rd). To see this, note first that there
exists a continuous function f : Rd → (0,∞) such that fb and fa are bounded. Then,
[36, Theorem 2] yields that the MP (fa, fb, x0) has a (conservative) solution. Finally,
Theorem 2.2 implies that also the MP (a, b, x0) has a (not necessarily conservative)
solution. We give more details on this in Appendix C.

Fix a third Borel function c : Rd → Rd and assume the following:

(S2) ac is locally bounded.

Before we turn to our main application, we report a simple observation which we
believe to be of interest: Absolute continuity and singularity are invariant under time-
changes. We outline an application of this observation in Section 3.3.1 below.

Corollary 2.4. Assume that (S1) and (S2) hold and let f : Rd → (0,∞) be a Borel function
which is locally bounded away from zero and infinity and take x0 ∈ Rd. Further, let
Px0 be the unique solution to the MP (a, b, x0), let Qx0 be the unique solution to the MP
(a, b + ac, x0), let P ◦x0

be the unique solution to the MP (f−1a, f−1b, x0) and let Q◦x0
be the

unique solution to the MP (f−1a, f−1(b + ac), x0). The following hold:

(i) Px0
� Qx0

if and only if P ◦x0
� Q◦x0

.

(ii) Px0
⊥ Qx0

if and only if P ◦x0
⊥ Q◦x0

.

Proof. Let V be as in Theorem 2.2, let A ∈ F be such that Q◦x0
(A) = 0 and set B ,

{V ∈ A} ∈ F . Then, Theorem 2.2 yields that Qx0(B) = Q◦x0
(A) = 0. Thus, Px0 � Qx0

implies P ◦x0
(A) = Px0

(B) = 0 and consequently, P ◦x0
� Q◦x0

. The converse implication in
(i) follows by symmetry. Part (ii) can be shown in the same manner.

From now on, we also assume the following:

(S3) For every x ∈ Rd there exists a unique solution Px to the MP (a, b, x), and for a
fixed x0 ∈ Rd there exists a solution Qx0

to the MP (a, b + ac, x0).

Analytic conditions for (S3) are given in Proposition C.1 in Appendix C.
Next, we introduce a non-negative local Qx0 -martingale which relates Qx0 and Px0 .

For this, we assume the following:

(S4) 〈c, ac〉 is locally bounded.

If (S1) – (S4) hold, Qx0 from (S3) is unique by Proposition C.3 in Appendix C. We set

X ·∧θn , X·∧θn −X0 −
∫ ·∧θn

0

(
b(Xs) + a(Xs)c(Xs)

)
ds.

By definition of the martingale problem, X ·∧θn is a continuous Qx0
-martingale with

quadratic variation process

[X ·∧θn , X ·∧θn ] =

∫ ·∧θn
0

a(Xs)ds.

By assumption (S4), the integral process Y ·∧θn ,
∫ ·∧θn

0
〈c(Xs), dXs〉 is well-defined as a

continuous Qx0
-martingale with quadratic variation process

[Y ·∧θn , Y ·∧θn ] =

∫ ·∧θn
0

〈c(Xs), a(Xs)c(Xs)〉ds.
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Lemma 2.5. Assume that (S1) – (S4) hold. Then, the process

Zt ,

{
exp

(
−
∫ t

0
〈c(Xs), dXs〉 − 1

2

∫ t
0
〈c(Xs), a(Xs)c(Xs)〉ds

)
, t < θ,

lim infn→∞ Zθn , t ≥ θ,
(2.2)

is a non-negative local Qx0 -martingale and Qx0 -a.s. the terminal value Z∞ , limt→∞ Zt
exists and is finite.

Proof. It follows similar to the proof of [20, Lemma 12.43] that Z is a non-negative local
Qx0 -martingale. Thus, Z is a non-negative Qx0 -supermartingale by Fatou’s lemma, and
the existence of a finite terminal value follows from the supermartingale convergence
theorem.

As in the introduction, we set

Aθ ,
∫ θ

0

〈c(Xs), a(Xs)c(Xs)〉ds.

The next proposition is a version of [3, Theorem 1] for possibly non-conservative martin-
gale problems. Closely related results are also given in [12, Corollaries 3.4 and 5.1] and
[37, Theorem 3.3]. The setting in [12, 37] is not completely identical to ours, because
the path space in [12, 37] allows also discontinuous explosion. This freedom is crucial
for the extension arguments used in [12, 37]. In Appendix A we explain how part (i) of
the next proposition can be deduced from [12, Corollary 3.4]. The proof of (ii) is identical
to those of [3, Theorem 1] and omitted.

Proposition 2.6. Assume that (S1) – (S4) hold.

(i) The following are equivalent:

(a) Px0 � Qx0 with
dPx0
dQx0

= Z∞.
(b) The local Qx0 -martingale Z as defined in (2.2) is a uniformly integrable (UI)

Qx0 -martingale.
(c) Px0(Aθ <∞) = 1.

(ii) The following are equivalent:

(a) Px0 ⊥ Qx0 .
(b) Px0(Aθ =∞) = 1.

From now on we also assume the following:

(S5) 〈c, ac〉 is locally bounded away from zero.

Remark 2.7. In case 〈c, ac〉 is uniformly bounded away from zero and Px0
is conservative,

we have Px0
(Aθ =∞) = 1 and Proposition 2.6 shows that Px0

⊥ Qx0
. This observation

explains that a uniform boundedness assumption is too strong for a characterization of
absolute continuity.

Due to Theorem 2.2, there exists a unique solution P ◦x0
to the time-changed MP

(〈c, ac〉−1a, 〈c, ac〉−1b, x0) and Px0
(Aθ <∞) = P ◦x0

(θ <∞). In view of Proposition 2.6, this
observation allows us to relate absolute continuity and singularity of Qx0

and Px0
to

almost sure (non-)explosion properties of P ◦x0
:

Corollary 2.8. Assume that (S1) – (S5) hold.

(i) (i.a) – (i.c) in Proposition 2.6 are equivalent to P ◦x0
(θ <∞) = 1.

(ii) (ii.a) and (ii.b) in Proposition 2.6 are equivalent to P ◦x0
(θ =∞) = 1.
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Applications of Corollary 2.8 are discussed in Section 3 below. Next, we comment on
the difference between finite and infinite time horizons. As we explain in Appendix A,
the next proposition, which can be seen as a local version of Proposition 2.6 (i), follows
from [12, Corollary 3.4], see also [12, Corollary 5.1] and [37, Theorem 3.3] for closely
related statements.

Proposition 2.9. Suppose that (S1) – (S4) hold. The following are equivalent:

(i) Px0
�loc Qx0

, i.e., Px0
� Qx0

on Ft for all t ∈ R+.

(ii) The local Qx0 -martingale Z as defined in (2.2) is a Qx0 -martingale.

(iii) Px0
-a.s. Aθ <∞ on {θ <∞}.

As the next corollary shows, in case Qx0
is conservative local absolute continuity of

Px0
and Qx0

and the martingale property of Z are equivalent to non-explosion of Px0
.

This observation is well-known, see, e.g., [40, Exercise 10.3.2] or [7, 29, 39].

Corollary 2.10. Suppose that (S1) – (S4) hold and that Qx0
is conservative. The follow-

ing are equivalent:

(i) Px0
�loc Qx0

.

(ii) The local Qx0 -martingale Z is a Qx0 -martingale.

(iii) Px0
is conservative.

Proof. The implications (iii)⇒ (i)⇔ (ii) follow directly from Proposition 2.9. If (i) holds,
then Px0

(θ ≤ t) = 0 for all t ∈ R+, because Qx0
is conservative. This shows (i)⇒ (iii).

In view of Proposition 2.9 and Corollary 2.10, we observe an interesting difference
between the characterizations of local absolute continuous and global absolute continu-
ity, and between the martingale property and the UI martingale property of the local
martingale Z: The local absolute continuity Px0

�loc Qx0
and the Qx0

-martingale prop-
erty of Z are related to non-explosion of Px0

, while the absolute continuity Px0
� Qx0

and the UI Qx0
-martingale property of Z are related to almost sure explosion of P ◦x0

.
Moreover, Corollary 2.8 shows that absolute continuity and singularity can be related to
the explosion of one auxiliary diffusion. This is not necessarily true for local absolute
continuity and the martingale property, see Proposition 2.9 and [29, Remark (ii), p. 10].

Let us also comment on the role played by the initial value.

Lemma 2.11. Assume that b is locally bounded, that a is locally Hölder continuous and
that 〈ξ, a(x)ξ〉 > 0 for all x ∈ Rd and ξ ∈ Rd\{0}. Then, for every x0 ∈ Rd there exists a
unique solution Px0

to the MP (a, b, x0) and the following hold:

(i) Px0(θ =∞) = 1 holds for all x0 ∈ Rd if it holds for some x0 ∈ Rd.
(ii) Px0

(θ <∞) = 1 holds for all x0 ∈ Rd if it holds for some x0 ∈ Rd.

Proof. The existence and uniqueness of Px follows from Proposition C.1 in Appendix C.
The maximum principle ([4, Lemma 1.4]) implies that non-negative harmonic functions
vanish at all points whenever they vanish at one point. Because x 7→ Px(θ < ∞) and
x 7→ 1− Px(θ <∞) are harmonic ([4, Lemma 1.2]), the claim follows.

For the conservative case the following observation is implied by [3, Corollary 1].

Corollary 2.12. Suppose that b and ac are locally bounded, that a satisfies the assump-
tions from Lemma 2.11 and that 〈c, ac〉 is strictly positive and locally Hölder continuous.
Then, for every x0 ∈ Rd there exist unique solutions Px0 and Qx0 to the MPs (a, b, x0)

and (a, b + ac, x0), respectively. Moreover, the following hold:

(i) Px0
� Qx0

holds for all x0 ∈ Rd if it holds for some x0 ∈ Rd.
(ii) Px0 ⊥ Qx0 holds for all x0 ∈ Rd if it holds for some x0 ∈ Rd.
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In the following section we present three applications of our results. First, we derive
a Khasminskii-type integral test for absolute continuity and singularity, second, we derive
a Feller-type integral test for explosion of a multidimensional time-changed Brownian
motion, and, third, we outline applications to mathematical finance.

3 Three applications

3.1 A Khasminskii-test for absolute continuity/singularity

For d = 1 almost sure explosion and non-explosion can be characterized via ana-
lytic integral tests, see, e.g., [22, Theorem 5.5.29, Proposition 5.5.32]. In combination
with Corollary 2.8 these characterizations lead to [9, Corollaries 5.1, 5.3] and [29,
Theorem 2.3] under additional assumptions on the coefficients. Most importantly, the
time-change argument requires c 6= 0, which is not needed in [9, 29]. In return, Corol-
lary 2.8 can be applied independent of the dimension. Moreover, the characterization of
absolute continuity and singularity via almost sure explosion and non-explosion is useful,
because even for multidimensional diffusions many analytic conditions for almost sure
(non-)explosion are known, see, e.g., [27, 33, 40]. In the following we use some of these
conditions to formulate a Khasminskii-type integral test for Px0 � Qx0 and Px0 ⊥ Qx0 .

Condition 3.1. There exist continuous functions B : [ 1
2 ,∞)→ R and A : [ 1

2 ,∞)→ (0,∞)

such that for all x ∈ Rd : ‖x‖ ≥ 1

A
(‖x‖2

2

)
≤ 〈x, a(x)x〉
〈c(x), a(x)c(x)〉

,

〈x, a(x)x〉B
(‖x‖2

2

)
≤ tr(a(x)) + 2〈x, b(x)〉,

and ∫ ∞
1
2

1

C(z)

∫ z

1
2

C(u)du

A(u)
dz <∞,

where

C(z) , exp
(∫ z

1
2

B(u)du
)
.

Condition 3.2. There exists an R > 0 and continuous functions B : [R,∞) → R and
A : [R,∞)→ (0,∞) such that for all x ∈ Rd : ‖x‖ ≥

√
2R

A
(‖x‖2

2

)
≥ 〈x, a(x)x〉
〈c(x), a(x)c(x)〉

,

〈x, a(x)x〉B
(‖x‖2

2

)
≥ tr(a(x)) + 2〈x, b(x)〉,

and ∫ ∞
R

1

C(z)

∫ z

R

C(u)du

A(u)
dz =∞,

where

C(z) , exp
(∫ z

R

B(u)du
)
.

Corollary 3.3. Assume that (S1) – (S5) from Section 2 hold.

(i) Suppose that Condition 3.1 holds. Then, Px0 � Qx0 with
dPx0
dQx0

= Z∞. In particular,

Z as defined in (2.2) is a uniformly integrable Qx0
-martingale.

(ii) Suppose that Condition 3.2 holds. Then, Px0
⊥ Qx0

and Z as defined in (2.2) is no
uniformly integrable Qx0

-martingale.

EJP 26 (2021), paper 12.
Page 8/26

https://www.imstat.org/ejp

https://doi.org/10.1214/20-EJP555
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Absolute continuity/singularity of multidimensional diffusions

Proof. Due to [40, Theorem 10.2.4], Condition 3.1 implies that P ◦x0
(θ <∞) = 1. In case

Condition 3.2 holds, [40, Theorem 10.2.3] yields that P ◦x0
(θ = ∞) = 1. Now, all claims

follow from Corollary 2.8.

3.2 An explosion-test for time-changed Brownian motion

Let g : Rd → (0,∞) be a Borel function which is locally bounded away from zero and
infinity. Due to Theorem 2.2, for every x0 ∈ Rd there exists a unique solution Px0

to the
MP (g Id, 0, x0). Providing an intuition, the probability measure Px0

is the (unique) law
of the Rd∆-valued time-changed Brownian motion

Yt ,

{
x0 +WLt , t < T∞,

∆, t ≥ T∞,

where W is a d-dimensional standard Brownian motion and

Tt ,
∫ t

0

ds

g(x0 +Ws)
, Lt , inf(s ∈ R+ : Ts > t), t ∈ R+.

Because Brownian motion is recurrent for d = 1, 2, Theorem 2.2 directly implies that Px0

is non-explosive in this case, see [31, Theorem 3.27] or [35, Proposition X.3.11]. We are
interested in explosion properties of Px0 for the transient regime of Brownian motion.

For the remainder of this section let d ≥ 3 and denote by Wx0 the d-dimensional
Wiener measure with initial value x0.

By the standard linear growth condition for non-explosion, we have Px0
(θ =∞) = 1

in case
g(x) ≤ C(1 + ‖x‖)2, x ∈ Rd,C > 0.

Using the Green kernel of Brownian motion, we also obtain a condition for almost sure
explosion. More precisely, [31, Theorems 3.32, 3.33] yield that

EWx0

[ ∫ ∞
0

ds

g(Xs)

]
= Cd

∫
Rd

‖x− x0‖2−ddx
g(x)

,

for a dimension-dependent constant Cd > 0. Together with Theorem 2.2 this observation
implies the following:

Corollary 3.4. If
∫
Rd

g−1(x)‖x− x0‖2−ddx <∞, then Ex0
[θ] <∞.

We now ask whether for certain choices of g the convergence criterion in Corollary 3.4
is necessary for almost sure explosion. In other words, we ask whether in some cases
Ex0

[θ] =∞ implies Px0
(θ =∞) > 0, which is of course in general not true. The following

corollary shows that in case g is locally Hölder continuous and at least of quadratic
growth, Ex0 [θ] =∞ even implies Px0(θ =∞) = 1.

Corollary 3.5. Suppose that g is locally Hölder continuous and

g(x) ≥ C(1 + ‖x‖)2, x ∈ Rd,C > 0. (3.1)

If
∫
Rd

g−1(x)‖x‖2−ddx =∞, then Px0
(θ =∞) = 1.

Proof. We define a , Id and c , g−
1
2 e1, where e1 is the first unit vector. Let Qx0

be the
unique solution to the MP (a, c, x0), see Proposition C.1 in Appendix C. Because a and c

are bounded, the solution Qx0
is conservative. Note that 〈c, ac〉 = g−1 is a strictly positive

continuous function. Corollary 2.8 yields that Px0
(θ =∞) = 1 if and only ifWx0

⊥ Qx0
.

It follows from [3, Corollary 4]1 that

Wx0
⊥ Qx0

⇔
∫
Rd

‖x‖2−ddx
g(x)

=∞.

1The statement of [3, Corollary 4] contains a small typo: |b(x)| has to be replaced by |b(x)|2, see [3, Eq. 1.2].
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This completes the proof.

The growth condition (3.1) and
∫
Rd

g−1(x)‖x‖2−ddx =∞ do not exclude each other:
In case (3.1) holds, we have∫

Rd

‖x‖2−ddx
g(x)

≤ C

∫
Rd

‖x‖2−ddx
1 + ‖x‖2

= Cd

∫ ∞
0

rdr

1 + r2
=∞.

The following proposition explains that in general the growth condition (3.1) is sharp.

Proposition 3.6. Let ρ : R+ → [1,∞) be an increasing function with ρ(0) = 1 and
ρ(x)→∞ as x→∞. There exists a function g such that the following hold:

(i) g(x) ≥ 1+‖x‖2
ρ(‖x‖) for all x ∈ Rd.

(ii) P0(θ <∞) = 1.

(iii)
∫
Rd

g−1(x)‖x‖2−ddx =∞.

Proof. We adapt the proof of [3, Theorem 3]. Let e1 be the first unit vector, set x1 , e1

and define inductively

Rn , 3−n‖xn‖, xn+1 ∈
{
te1 : t > 4‖xn‖, ρ( t2 ) > 4d(n+1)

}
. (3.2)

Set BR(x) , {y ∈ Rd : ‖x − y‖ < R} and note that the balls (BRn(xn))n∈N are disjoint,
because

‖xn+1‖ − ‖xn‖ >
3‖xn+1‖

4
=

3n+2Rn+1

4
>

9

8

(
Rn+1 +Rn

)
,

where we use (3.2) and in particular that 3Rn+1 > 4Rn. Define

g(x) ,

{
1+‖x‖2

ρ(‖xn‖−Rn) , x ∈ BRn(xn) for some n ∈ N,
2 + ‖x‖4, x 6∈

⋃
n∈N BRn(xn) , G.

It is clear that g is Borel and locally bounded away from zero and infinity. If x ∈ BRn(xn)

we have ‖xn‖ −Rn ≤ ‖x‖ and

g(x)ρ(‖x‖)
1 + ‖x‖2

=
ρ(‖x‖)

ρ(‖xn‖ −Rn)
≥ 1,

because ρ is increasing. If x 6∈ G =
⋃
n∈NBRn(xn) we have

g(x)ρ(‖x‖)
1 + ‖x‖2

≥ ρ(‖x‖) ≥ 1.

In other words, (i) holds.
Next, we show (ii). Due to [31, Corollary 3.19] we have

∞∑
n=1

W0(X hits BRn(xn)) =

∞∑
n=1

( Rn
‖xn‖

)d−2

=

∞∑
n=1

3−n(d−2) <∞. (3.3)

Thus, the Borel–Cantelli lemma yields that W0-a.a. paths of X hit only finitely many
elements of (BRn(xn))n∈N. Recalling that Brownian motion is transient for d ≥ 3, i.e.,
thatW0-a.a. paths of X leave bounded domains forever in finite time, we conclude that
W0-a.s. ∫ ∞

0

IG(Xs)ds

g(Xs)
<∞.
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Note that

EW0

[ ∫ ∞
0

ds

2 + ‖Xs‖4
]

=

∫
Rd

‖x‖2−ddx
2 + ‖x‖4

= dωd

∫ ∞
0

rdr

2 + r4
<∞,

where ωd is the volume of the unit ball in Rd. We conclude thatW0-a.s.∫ ∞
0

ds

g(Xs)
<∞.

Thus, Theorem 2.2 yields that P0(θ <∞) = 1, i.e., (ii) holds.
It is left to verify (iii). Using (3.2), the fact that f(x) = ‖x‖2−d is harmonic on Rd\{0}

and the mean-value property of harmonic functions, we obtain∫
Rd

‖x‖2−ddx
g(x)

≥
∞∑
n=1

∫
BRn (xn)

‖x‖2−ddx
g(x)

=

∞∑
n=1

ρ(‖xn‖ −Rn)

∫
BRn (xn)

‖x‖2−ddx
1 + ‖x‖2

≥ ωd
∞∑
n=1

ρ(‖xn‖ −Rn)
‖xn‖2−dRdn

1 + (‖xn‖+Rn)2

≥ ωd
∞∑
n=1

ρ((1− 3−n)‖xn‖)
1 + (1 + 3−n)2

( Rn
‖xn‖

)d
≥ ωd

5

∞∑
n=1

ρ
(‖xn‖

2

)
3−dn

≥ ωd
5

∞∑
n=1

(4

3

)dn
=∞.

This implies (iii) and the proof is complete.

In case g is a radial function, the growth condition on g is not needed:

Corollary 3.7. Suppose that g(x) = s(‖x‖) for a Borel function s : R+ → (0,∞) which is
locally bounded away from zero and infinity. The following hold:

(i) If
∫∞
‖x0‖ rs

−1(r)dr <∞, then Px0(θ <∞) = 1.

(ii) If
∫∞
‖x0‖ rs

−1(r)dr =∞, then Px0
(θ =∞) = 1.

Proof. Due to [16, Theorem 2] and [42, Corollary 3], for every locally bounded Borel
function z : R+ → R+ the following are equivalent:

(a) Wx0
(
∫∞

0
z(‖Xs‖)ds <∞) > 0.

(b) Wx0(
∫∞

0
z(‖Xs‖)ds <∞) = 1.

(c)
∫∞
‖x0‖ zz(z)dz <∞.

The claims now follow directly from Theorem 2.2.

Finally, we give a precise integrability condition, which is, in contrast to the conditions
above, not completely analytic, because it involves probability via transient sets of
Brownian motion. Let T be the collection of all sets G ∈ B(Rd) such that Gc is transient,
i.e.,

Wx(Xs ∈ G for all s ∈ R+) > 0 for some x ∈ Rd.

We stress that any Borel subset of Rd whose complement is bounded belongs to T .
However, there are examples of sets in T with unbounded complement, see the comment
below the following corollary. For more comments on T we refer to [2, pp. 470 – 471].
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Corollary 3.8. Suppose that g is locally Hölder continuous. The following are equivalent:

(i) Px0
(θ =∞) = 1.

(ii)
∫
G
g−1(x)‖x‖2−ddx =∞ for all G ∈ T .

Proof. According to [2, Proposition 3.1, Theorem 3.5], part (ii) is equivalent to

(iii) Wx(
∫∞

0
g−1(Xs)ds =∞) = 1 for Lebesgue a.a. x ∈ Rd.

The claim now follows from Theorem 2.2 and Lemma 2.11.

Note that Proposition 3.6 is in line with Corollary 3.8: Let G be as in the proof of
Proposition 3.6. Then, (3.3) yields that

W0(Xs ∈ G for some s ∈ R+) ≤
∞∑
n=1

3−n =
1

2
,

which implies Gc ∈ T . Thus, (ii) in Corollary 3.8 is violated in case of Proposition 3.6,
because g(x) = 2 + ‖x‖4 on Gc and therefore∫

Gc

‖x‖2−ddx
g(x)

≤ Cd

∫ ∞
0

rdr

2 + r4
<∞.

3.3 On the absence of arbitrage in diffusion markets

In this section we outline applications to mathematical finance. We start by intro-
ducing a stochastic model for a financial market. Let a : Rd → Sd and b : Rd → Rd

be locally bounded Borel functions and fix an initial value x0 ∈ Rd. We assume that
the MP (a, ab, x0) has a unique conservative solution Px0

. In the following we consider
(Ω,F ,F, Px0

) as underlying filtered probability space. Providing an intuition, possibly on
an extension of (Ω,F ,F, Px0

), there exists a d-dimensional standard Brownian motion
B = (B1, . . . , Bd) such that

dXt = a
1
2 (Xt)(dBt + a

1
2 (Xt)b(Xt)dt), X0 = x0, (3.4)

see Proposition B.2 and Remark B.3 in Appendix B. For each i = 1, . . . , d we define
Si to be the stochastic exponential of Xi, i.e., the unique solution to the stochastic
differential equation dSit = SitdX

i
t with initial value S0 = 1. We think of S = (S1, . . . , Sd)

as discounted price process in a financial market with d risky assets.
It is an important question in mathematical finance whether there are certain arbi-

trage opportunities in the market. A probabilistic characterization of the existence is
given by so-called fundamental theorems of asset pricing, which state that the absence
of certain arbitrage opportunities is equivalent to the existence of a so-called equivalent
(local) martingale measure (E(L)MM), i.e., a probability measure which is on one hand
equivalent (i.e., mutually absolutely continuous) to the real-world measure Px0

and on
the other hand turns the discounted asset price process S into a (local) UI martingale,
see, e.g., [8, Corollary 5.2] and [15, Corollary 9.1.2]. Let us assume that the MP (a, 0, x0)

has a unique solution Qx0
. Because any equivalent change of measure preserves the

quadratic variation, and continuous local martingales have necessarily zero drift, Qx0
is

the only candidate for an ELMM. Clearly, because Px0
is assumed to be conservative,

Qx0
is conservative whenever Px0

and Qx0
are equivalent. Consequently, we have the

following:

Proposition 3.9. The following are equivalent:

(i) There exists an ELMM.
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(ii) Qx0
is an ELMM.

(iii) Qx0
is equivalent to Px0

.

The plan for the next two subsections is the following: In Section 3.3.1 we consider
diagonal diffusion coefficients and deduce analytic conditions for the existence of an
ELMM from Corollary 2.4, Proposition 3.9 and results from [3]. In Section 3.3.2 we use
Corollary 2.8 to formulate explosion criteria for an ELMM to be an EMM.

3.3.1 On the existence of equivalent local martingale measures

We assume that a = g Id, where g : Rd → (0,∞) is locally bounded away from zero and
infinity. In this case, (3.4) means that

dXi
t =
√
g(Xt)(dB

i
t +
√
g(Xt)b

i(Xt)dt), Xi
0 = xi0, i = 1, . . . , d.

Due to Proposition C.1 in Appendix C, there exists a unique solution P ◦x0
to the MP

(Id, b, x0). Corollary 2.4 and Proposition 3.9 yield the following:

Corollary 3.10. (i) – (iii) from Proposition 3.9 hold if and only if P ◦x0
is equivalent to the

d-dimensional Wiener measureWx0 with initial value x0.

For a more general continuous setting with finite time horizon, a comparable char-
acterization of the absence of arbitrage is given in [26]. More precisely, it is shown in
[26, Proposition 2.3] that the existence of an ELMM is determined by the equivalence
of a probability measure to the Wiener measure. Next, we use Corollary 3.10 to obtain
analytic criteria for the existence of an ELMM. We start with a comment on the recurrent
regime of Brownian motion. The Lebesgue measure is denoted by λ\.

Corollary 3.11. If d = 1, 2, then an ELMM exists if and only if λ\-a.e. b = 0.

Proof. In case λ\(b 6= 0) = 0 we have P ◦x0
= Wx0

and Theorem 2.2 yields that the real-
world measure Px0

is an ELMM. To see that P ◦x0
=Wx0

, recall the uniqueness of P ◦x0
and

note that for any Borel function f : Rd → R+ with λ\(f 6= 0) = 0

EWx0

[ ∫ ∞
0

f(Xs)ds
]

=

∫ ∞
0

EWx0

[
f(Xs)

]
ds = 0,

because Xs is normally distributed underWx0 .
If λ\(b 6= 0) > 0, then [35, Proposition X.3.11] yields Wx0

-a.s.
∫∞

0
‖b(Xs)‖2ds = ∞,

and Proposition 2.6 and Corollary 3.10 show that no ELMM exists.

This observation is different for our exponential model and the (one-dimensional)
diffusion model studied in [30] for which an ELMM might exist for non-trivial cases, see
[30, Theorem 3.5].

We now consider the transient regime of Brownian motion. Corollary 3.10 and [3,
Corollary 4] imply the following:

Corollary 3.12. Suppose that d ≥ 3, that b is locally Hölder continuous and that
supx∈Rd ‖b(x)‖(1 + ‖x‖) < ∞. Then, (i) – (iii) from Proposition 3.9 hold if and only
if
∫
Rd
‖b(x)‖2‖x‖2−ddx <∞.

Of course, the assumption supx∈Rd ‖b(x)‖(1 + ‖x‖) < ∞ implies that b is bounded.
While P ◦x0

andWx0 are locally equivalent whenever b is bounded, this is not necessarily
true for global equivalence. Indeed, the strong law of large numbers shows that the
laws of Brownian motion with and without non-trivial linear drift are singular. This easy
example also hints why we require ‖b(x)‖ → 0 as ‖x‖ → ∞.
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3.3.2 On the existence of equivalent martingale measures

Assume that b = 0 and that a is continuous and maps into the set of strictly positive
definite d× d matrices. In this case, the real-world measure Px0 is already an ELMM and
we ask for a condition when Px0

is even an EMM. Note that Si equals Z as given in (2.2)
when −c is defined to be the i-th unit vector ei. Thus, we are in the setting of Section 2
with b set to be aei. In particular, (S1) – (S5) from Section 2 hold by Proposition C.1 in
Appendix C and the assumptions on a. Consequently, Corollary 2.8 implies the following:

Corollary 3.13. Si is a UI Qx0
-martingale if and only if Qix0

(θ < ∞) = 1, where Qix0
is

the unique solution to the MP (a−1
ii a, a−1

ii aei, x0).

Applying this corollary for all i = 1, . . . , d, we obtain an equivalent explosion test for
Qx0 to be an EMM. Based on results from [27, 33, 40] one can also formulate analytic
conditions.

We stress that the results for finite and infinite time horizons are quite different. For
example, in case d = 1 the probability measure Q1

x0
solves the MP (1, 1, x0), which corre-

sponds to Brownian motion with linear drift. Thus, Q1
x0

is conservative and consequently,
S = S1 is no UI Qx0

-martingale, while it is a Qx0
-martingale if and only if

∫∞
0

dx
a(x) =∞,

see [10, Proposition 5.2].

4 Proof of Theorem 2.2

In this section we prove Theorem 2.2, i.e., we prove the following:

Theorem. Assume (S1), let f : Rd → (0,∞) be Borel and locally bounded away from zero
and infinity and let x0 ∈ Rd. There exists a measurable map V : Ω → Ω such that for
every solution Px0

to the MP (a, b, x0) the following hold:

(i) P ◦x0
, Px0

◦ V −1 solves the MP (f−1a, f−1b, x0).

(ii) For all Borel sets A ⊆ [0,∞]

Px0

(∫ θ

0

f(Xs)ds ∈ A
)

= P ◦x0
(θ ∈ A).

Moreover, if P ◦x0
is the unique solution to the MP (f−1a, f−1b, x0), then Px0

is the unique
solution to the MP (a, b, x0).

Let x0 ∈ Rd and let Px0 be a solution to the MP (a, b, x0). To simplify the notation, we
denote P ≡ Px0 . We first define a right-continuous measurable process Y via a random
time-change. For t ∈ R+ we set

Tt ,
∫ t∧θ

0

f(Xs)ds, Lt , inf(s ∈ R+ : Ts > t).

The functions T, L : R+ → [0,∞] are increasing. Because f is locally bounded, we have
Tθn∧n <∞ for all n ∈ N. Using this and the strict positivity of f, we see that T is finite,
absolutely continuous and strictly increasing on [0, θ). Moreover, because limt↗θ Tt = Tθ
by the monotone convergence theorem, T is everywhere continuous. We also note that
L is finite, continuous and strictly increasing on [0, Tθ), everywhere right-continuous,
and that LTs = s for s < θ and TLt = t for t < Tθ, see [35, pp. 7 – 9]. In particular, we
have

lim
t↗Tθ

Lt = lim
t↗θ

LTt = θ.
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For t ∈ R+ we define

Yt ,

{
XLt , t < Tθ,

∆, t ≥ Tθ.

It is easy to see that Y is an Rd∆-valued right-continuous measurable process. Because
{t < Tθ} = {Lt < θ}, we have Yt ∈ Rd for every t < Tθ and consequently, Tθ ≤ θ(Y ).
Noting that θ(Y ) ≤ Tθ by definition, we obtain that

Tθ = θ(Y ) = inf(t ∈ R+ : Yt = ∆). (4.1)

The next step is to show that Y has almost surely continuous paths, i.e., that P -a.s.
YTθ− = ∆ on {Tθ <∞}. This observation allows us to modify Y on a null set in order to
define V as in Theorem 2.2.

Discussion. On {Tθ <∞, θ <∞} we simply have YTθ− = Xθ = ∆, but on {Tθ <∞, θ =

∞} it is necessary to understand the behavior of Xt as t → ∞. We stress that θ = ∞
does not exclude Tθ <∞ in a pathwise sense. To see this, consider the following simple
example:

f(x) = I(−∞,0)(x) +

∞∑
k=1

akI[k−1,k)(x), x ∈ R, 0 < ak ≤ 1.

Clearly, f is locally bounded away from zero and infinity and for ω(t) = t the integral

∫ ∞
0

f(Xs(ω))ds =

∞∑
k=1

ak

converges or diverges depending on whether (ak)k∈N is summable or not. To understand
why P -a.s. YTθ− = ∆ on {Tθ < ∞} holds, note that problems with the limit of Xt as
t→∞ occur for paths which either stay in a bounded subset of Rd or have a recurrent
behavior, where we think for instance of a one-dimensional Brownian path. These cases
are excluded by considering the set {Tθ < ∞}, because for some compact set U ⊂ Rd
the positive value infx∈U f(x) will contribute to Tθ for an infinite time.

For every n,m ∈ N we define

σm1 , 0, τm1 , inf(t ∈ R+ : ‖Xt‖ ≥ m+ 1),

σmn+1 , inf(t > τmn : ‖Xt‖ ≤ m), τmn+1 , inf(t > σmn+1 : ‖Xt‖ ≥ m+ 1).

Set

O ,
∞⋂
m=1

∞⋃
n=1

{τmn <∞, σmn+1 =∞},

and note that O ⊆ {YTθ− = ∆} = {Xθ− = ∆}. The proof of the following lemma borrows
ideas from [19, Lemma IV.2.1].

Lemma 4.1. P -a.s. Oc ⊆ {Tθ =∞}.
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Proof. We obtain

Oc =

∞⋃
m=1

∞⋂
n=1

(
{τmn =∞} ∪ {σmn+1 <∞}

)
=

∞⋃
m=1

∞⋂
n=1

(
{τmn =∞, σmn <∞} ∪ {σmn =∞} ∪ {σmn+1 <∞}

)
⊆
∞⋃
m=1

(( ∞⋃
k=1

{τmk =∞, σmk <∞}
)
∪
( ∞⋂
n=1

(
{σmn =∞} ∪ {σmn+1 <∞}

)))
=

∞⋃
m=1

(( ∞⋃
k=1

{τmk =∞, σmk <∞}
)
∪
( ∞⋂
n=1

{σmn <∞}
))

⊆
( ∞⋃
m=1

∞⋃
k=1

{τmk =∞, σmk <∞}
)
∪
( ∞⋃
i=1

∞⋂
n=1

{σin <∞}
)

, O1 ∪ O2.

Take ω ∈ O1. Then, there exist m = m(ω), n = n(ω) ∈ N such that σmn (ω) < ∞ and
‖Xt(ω)‖ ≤ m+ 1 for all t ≥ σmn (ω). Consequently, θ(ω) =∞ and

Tθ(ω)(ω) =

∫ ∞
0

f(Xs(ω))ds ≥
∫ ∞
σn(ω)

f(Xs(ω))ds ≥ inf
‖y‖≤m+1

f(y)

∫ ∞
σn(ω)

ds =∞.

This implies O1 ⊆ {Tθ =∞}.
Set

Θ ,
∞⋃
m=1

{
σmn <∞ for all n ∈ N and

∞∑
k=1

(
τmk − σmk

)
=∞

}
.

Take ω ∈ Θ and let m = m(ω) ∈ N be as in the definition of Θ. Then,

Tθ(ω)(ω) ≥
∞∑
k=1

∫ τmk (ω)

σmk (ω)

f(Xs(ω))ds ≥ inf
‖y‖≤m+1

f(y)

∞∑
k=1

(τmk (ω)− σmk (ω)) =∞.

This implies that Θ ⊆ {Tθ =∞}.
Next, we show that P -a.s. O2 = Θ, which then implies that P -a.s. Oc ⊆ {Tθ = ∞}

and thereby completes the proof. We fix m,n ∈ N. Clearly, we have on {σmn <∞}

τmn − σmn = inf(t ∈ R+ : ‖Xt+σmn
‖ ≥ m+ 1) , γ.

We set

Kt , ‖Xt‖2 − ‖X0‖2 −
∫ t

0

(
2〈Xs, b(Xs)〉+ tr(a(Xs))

)
ds, t < θ,

and on {σmn <∞} we define

M , K·∧γ+σmn
−Kσmn

, I ,
∫ ·∧γ+σmn

σmn

(
2〈Xs, b(Xs)〉+ tr(a(Xs))

)
ds.

Using that for every t ∈ R+ on {σmn <∞}

{‖Xt∧γ+σmn
‖ ≥ m+ 1} ⊆ {|Mt| ≥ 1

2} ∪ {|It| ≥
1
2},

we obtain that

γ ≥ inf(t ∈ R+ : |Mt| ≥ 1
2 ) ∧ inf(t ∈ R+ : |It| ≥ 1

2 ) on {σmn <∞}. (4.2)
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Because
|It| ≤

(
sup

‖y‖≤m+1

∣∣2〈y, b(y)〉+ tr(a(y))
∣∣ ∨ 1

)
t , αt on {σmn <∞},

we obtain that

inf(t ∈ R+ : |It| ≥ 1
2 ) ≥ 1

2α
on {σmn <∞}. (4.3)

For every t ∈ R+ we have t ∧ γ + σmn < θ on {σmn <∞}. Consequently,

(t ∧ γ + σmn ) ∧ θk ∧ k ↗ t ∧ γ + σmn as k →∞ on {σmn <∞}. (4.4)

Applying the definition of the martingale problem with f(x) = ‖x‖2 yields that for every
k ∈ N the process K·∧θk∧k is a P -martingale. Note that for every t ∈ R+

sup
k∈N

∣∣K(t∧γ+σmn )∧θk∧k −Kσmn ∧θk∧k
∣∣I{σmn <∞} ≤ 2(m+ 1)2 + αt. (4.5)

It is well-known that σmn and τmn are (Fot )t≥0-stopping times, see [17, Proposition 2.1.5].
We note that t ∧ γ + σmn , which is set to be ∞ in case σmn = ∞, is an (Fot )t≥0-stopping
time, too. To see this, note that for all s ∈ R+

{t ∧ γ + σmn ≤ s} = {t+ σmn ≤ s, σmn <∞, t+ σmn ≤ τmn }
∪ {τmn ≤ s, σmn <∞, τmn ≤ t+ σmn } ∈ Fos ,

which holds due to the following facts: For any (Fot )t≥0-stopping times ρ and τ it holds
that Foρ ∩ {ρ ≤ s} ⊆ Fos , {ρ ≤ τ} ∈ Foρ ∩ Foτ , and Foρ ⊆ Foτ whenever ρ ≤ τ .

Let s < t and take A ∈ Fos+σmn and G ∈ Foσmn . Recalling (4.4) and (4.5), the dominated
convergence and the optional stopping theorem yield that

EP
[
MtIAIGI{σmn <∞}

]
= lim
k→∞

EP
[(
K(t∧γ+σmn )∧θk∧k −Kσmn ∧θk∧k

)
IAIGI{σmn <∞}

]
= lim
k→∞

EP
[(
EP
[
K(t∧γ+σmn )∧θk∧k|Fs+σmn

]
−Kσmn ∧θk∧k

)
IAIGI{σmn <∞}

]
= lim
k→∞

EP
[(
K(s∧γ+σmn )∧θk∧k −Kσmn ∧θk∧k

)
IAIGI{σmn <∞}

]
= EP

[
MsIAIGI{σmn <∞}

]
.

We conclude the existence of a P -null set N(s, t, A) such that

EP
[(
Mt −Ms

)
IAI{σmn <∞}|F

o
σmn

]
(ω) = 0

for all ω 6∈ N(s, t, A). Because Fos+σmn = σ(Xt∧(s+σmn ), t ∈ Q+), see [38, Theorem I.6],
there exists a countable system Cs of generators of Fos+σmn . Set

N ,
⋃
t∈Q+

⋃
Q+3s<t

⋃
A∈Cs

N(s, t, A),

which is a P -null set. Now, we conclude that for all ω 6∈ N ∪ {σmn = ∞} the process
M is a continuous P (·|Foσmn )(ω)-martingale for the shifted filtration (Fot+σmn )t≥0 and, by
the backwards martingale convergence theorem, also for its right-continuous version
Fσmn , (Ft+σmn )t≥0, see also [21, Lemma 6.2].

Fix ω 6∈ N ∪ {σmn = ∞}. It follows similar to the proof of [35, Proposition VIII.3.3]
that P (·|Foσmn )(ω)-a.s.

[M,M ] = 4

∫ ·∧γ+σmn

σmn

〈Xs, a(Xs)Xs〉ds.
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The Dambis, Dubins–Schwarz theorem (see, e.g., [21, Theorem 16.4]) yields that on a
standard extension of the filtered probability space (Ω,F ,Fσmn , P (·|Foσmn )(ω)), which we
ignore in our notation for simplicity, there exists a one-dimensional Brownian motion B
such that P (·|Foσmn )(ω)-a.s. M = B[M,M ]. Because P (·|Foσmn )(ω)-a.s.

4

∫ t∧γ+σmn

σmn

〈Xs, a(Xs)Xs〉ds ≤ 4
(

sup
‖y‖≤m+1

〈y, a(y)y〉 ∨ 1
)
t , βt, t ∈ R+,

we have P (·|Foσmn )(ω)-a.s.

inf(t ∈ R+ : |B[M,M ]t | ≥ 1
2 ) ≥

inf(t ∈ R+ : |Bt| ≥ 1
2 )

β
,
τ

β
. (4.6)

In summary, (4.2), (4.3) and (4.6) imply that

EP
[
e−(τmn −σ

m
n )|Foσmn

]
(ω) ≤ E

[
e−

τ
β∧

1
2α
]
, C.

We note that the law of τ under P (·|Foσmn )(ω) only depends on the Wiener measure, which
means that C is a constant independent of n,m and ω. Note also that C < 1. Now, we
obtain for all n ∈ Z+

EP
[ n+1∏
k=1

I{σmk <∞}e
−(τmk −σ

m
k )
]

= EP
[
I{σmn+1<∞}E

P
[
e−(τmn+1−σ

m
n+1)

∣∣Foσmn+1

] n∏
k=1

I{σmk <∞}e
−(τmk −σ

m
k )
]

≤ CEP
[ n∏
k=1

I{σmk <∞}e
−(τmk −σ

m
k )
]
.

By induction, we conclude

EP
[ n∏
k=1

I{σmk <∞}e
−(τmk −σ

m
k )
]
≤ Cn, n ∈ N.

Letting n→∞ and using the dominated convergence theorem yields that

EP
[ ∞∏
k=1

I{σmk <∞}e
−(τmk −σ

m
k )
]

= 0.

This implies that P -a.s. for all m ∈ N

e−
∑∞
i=1(τmi −σ

m
i )
∞∏
k=1

I{σmk <∞} =

∞∏
k=1

I{σmk <∞}e
−(τmk −σ

m
k ) = 0.

We conclude that P -a.s. O2 = Θ. The proof is complete.

Remark 4.2. In case the MP (a, b, x) has a unique solution Px for all x ∈ Rd and x 7→ Px
is continuous, the proof of P -a.s. O2 = Θ in Lemma 4.1 simplifies substantially: We equip
Ω with the usual local uniform topology, which renders it into a Polish space, see [33,
pp. 33 – 34] for details. Because ω 7→ τm1 (ω) is lower semi-continuous (see [33, Exercise
2.2.1]), the map ω 7→ e−τ

m
1 (ω) is upper semi-continuous. Thus, [1, Theorem 15.5] yields

that also x 7→ Ex[e−τ
m
1 ] is upper semi-continuous. Consequently, because on compact sets

upper semi-continuous functions attain a maximum value, C , sup‖x‖≤mEx[e−τ
m
1 ] < 1.
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Now, using the strong Markov property, which is implied by uniqueness of (Px)x∈Rd , we
obtain

Ex0

[ n+1∏
k=1

I{σmk <∞}e
−(τmk −σ

m
k )
]

= Ex0

[
I{σmn+1<∞}Ex0

[
e−(τmn+1−σ

m
n+1)

∣∣Foσmn+1

] n∏
k=1

I{σmk <∞}e
−(τmk −σ

m
k )
]

= Ex0

[
I{σmn+1<∞}EXσmn+1

[
e−τ

m
1
] n∏
k=1

I{σmk <∞}e
−(τmk −σ

m
k )
]

≤ CEx0

[ n∏
k=1

I{σmk <∞}e
−(τmk −σ

m
k )
]
≤ Cn+1 → 0 as n→∞.

The previous proof of Lemma 4.1 requires no uniqueness assumption on P and no
continuity assumptions on b and/or a. Latter are often imposed to obtain continuity of
x 7→ Px, see, for instance, [33, 40].

We now set

V ,

{
Y, on {Tθ =∞} ∪ ({Tθ <∞} ∩O),

x0, on {Tθ <∞} ∩Oc.

Clearly, V is a measurable map from Ω into Ω. Furthermore, Lemma 4.1 implies P -a.s.
V = Y . For n ∈ N set γn , Tθn∧n and note that Lγn = θn ∧ n. It follows from [35,
Proposition V.1.4] that for all t ∈ R+ and n ∈ N

Lt∧γn =

∫ Lt∧γn

0

f−1(Xs)dTs =

∫ t∧γn

0

f−1(XLs)dTLs =

∫ t∧γn

0

f−1(XLs)ds.

In other words, we have for all n ∈ N

I{t≤γn}dLt = I{t≤γn}f
−1(XLt)dt. (4.7)

Using (4.7) and again [35, Proposition V.1.4], we obtain for every locally bounded Borel
function g : Rd → R that for all t ∈ R+ and n ∈ N∫ t∧γn

0

g(Ys)ds

f(Ys)
=

∫ t∧γn

0

g(XLs)ds

f(XLs)
=

∫ t∧γn

0

g(XLs)dLs =

∫ Lt∧γn

0

g(Xs)ds. (4.8)

Note that Lt is an F-stopping time and define the time-changed filtration G = (Gt)t≥0 ,
(FLt)t≥0. Because (Lt)t≥0 is right-continuous, also G is right-continuous, and, because
θn ∧ n is an F-stopping time, [20, Lemma 10.5] implies that γn = Tθn∧n is a G-stopping
time and that t 7→ Lt∧γn is an increasing sequence of F-stopping times. We set

Kf , 〈∇f, b〉+ 1
2 tr(∇2fa), f ∈ C2(Rd).

By the definition of the MP (a, b, x0), the process

f(X·∧θn)− f(x0)−
∫ ·∧θn

0

Kf(Xs)ds

is a P -martingale. Recall further that Lt∧γn ≤ θn ∧ n. Using (4.8) and the optional
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stopping theorem, for s < t, n ∈ N and f ∈ C2(Rd) we obtain that P -a.s.

EP
[
f(Yt∧γn)− f(x0)−

∫ t∧γn

0

Kf(Yr)dr

f(Vr)

∣∣Gs]
= EP

[
f(XLt∧γn∧θn∧n)− f(x0)−

∫ Lt∧γn∧θn∧n

0

Kf(Xr)dr
∣∣FLs]

= f(XLt∧γn∧θn∧n∧Ls)− f(x0)−
∫ Lt∧γn∧θn∧n∧Ls

0

Kf(Xr)dr

= f(XLs∧γn
)− f(x0)−

∫ Ls∧γn

0

Kf(Xr)dr

= f(Ys∧γn)− f(x0)−
∫ s∧γn

0

Kf(Yr)dr

f(Yr)
.

This yields that

f(V·∧γn)− f(x0)−
∫ ·∧γn

0

Kf(Vr)dr

f(Vr)

is a P -martingale for the P -augmentation of G, which we denote by GP . Note that θn(V )

is a GP -stopping time. Recalling that P -a.s. γn ↗ Tθ = θ(V ) and t ∧ θn(V ) < θ(V ), the
dominated convergence theorem yields for all s < t, n ∈ N and f ∈ C2(Rd) that P -a.s.

EP
[
f(Vt∧θn(V ))− f(x0)−

∫ t∧θn(V )

0

Kf(Vr)dr

f(Vr)

∣∣GPs ]
= lim
m→∞

EP
[
f(Yt∧θn(V )∧γm)− f(x0)−

∫ t∧θn(V )∧γm

0

Kf(Vr)dr

f(Vr)

∣∣GPs ]
= lim
m→∞

(
f(Vs∧θn(V )∧γm)− f(x0)−

∫ s∧θn(V )∧γm

0

Kf(Vr)dr

f(Vr)

)
= f(Vs∧θn(V ))− f(x0)−

∫ s∧θn(V )

0

Kf(Vr)dr

f(Vr)
.

Using the tower rule, we conclude that

f(V·∧θn(V ))− f(x0)−
∫ ·∧θn(V )

0

Kf(Vr)dr

f(Vr)

is a P -martingale for the filtration generated by V . Consequently, the push-forward
P ◦ V −1 solves the MP (f−1a, f−1b, x0), which is part (i) of Theorem 2.2. Recalling (4.1)
shows the formula (2.1), i.e., part (ii) of Theorem 2.2.

To prove the uniqueness claim in Theorem 2.2, we introduce a right-continuous
measurable process U . We define

St ,
∫ t∧θ

0

f−1(Xs)ds, At , inf(s ∈ R+ : Ss > t), t ∈ R+,

and

Ut ,

{
XAt , t < Sθ,

∆, t ≥ Sθ.

Using (4.1) and (4.7), we obtain P -a.s. for all t ∈ R+

St ◦ V =

∫ t∧Tθ

0

f−1(Ys)ds = lim
n→∞

∫ t∧γn∧n

0

f−1(XLs)ds = lim
n→∞

Lt∧γn∧n = L(t∧Tθ)−.
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In particular, P -a.s. Sθ ◦ V = θ. We deduce P -a.s. At ◦ V = Tt for all t < θ, which implies
P -a.s. XAt ◦ V = XLTt

= Xt for all t < Sθ ◦ V = θ. We conclude that P -a.s. U ◦ V = X.
To prove the last claim in Theorem 2.2, suppose that P ◦V −1 is the unique solution to

the MP (f−1a, f−1 b, x0). For n ∈ N let 0 ≤ t1 < t2 < · · · < tn <∞ and G1, . . . , Gn ∈ B(Rd∆).
Let Q be a second solution to the MP (a, b, x0). Then, the push-forward measures P ◦V −1

and Q ◦ V −1 both solve the MP (f−1a, f−1b, x0) and we deduce from the uniqueness
assumption that

P (Xt1 ∈ G1, . . . , Xtn ∈ Gn) = P ◦ V −1(Ut1 ∈ G1, . . . , Utn ∈ Gn)

= Q ◦ V −1(Ut1 ∈ G1, . . . , Utn ∈ Gn)

= Q(Xt1 ∈ G1, . . . , Xtn ∈ Gn).

By a monotone class argument, P = Q. The proof is complete.

A Proof of Propositions 2.6 (i) and 2.9

In this appendix we explain that Propositions 2.6 (i) and 2.9 can be deduced from [12,
Corollary 3.4]. The difference between the setting in [12] and ours is that the underlying
path space in [12] is slightly bigger and allows explosion in a discontinuous manner. We
now introduce the continuous version of the path space in [12]. Let Σ be the space of
right-continuous functions ω : R+ → Rd∆ which are continuous on [0, θ(ω)) and ω(t) = ∆

for t ≥ θ(ω) = inf(t ∈ R+ : ω(t) = ∆). Let Y be the coordinate process on Σ and define
A , σ(Yt, t ∈ R+),Aot , σ(Ys, s ∈ [0, t]) and At ,

⋂
s>tAos for t ∈ R+. The MP (a, b, x0)

on (Σ,A,A = (At)t≥0) is defined in the same manner as on the filtered space (Ω,F ,F)

with the additional requirement that a solution P has to satisfy P -a.s. θn(Y ) < θ(Y ) on
{θ(Y ) <∞} for all n ∈ N.

Equivalently, one could define the martingale problem as follows: Using the conven-
tion that all functions f on Rd are extended to Rd∆ by setting f(∆) ≡ 0, we say that P
solves the MP (a, b, x0) on (Σ,A,A) if P (X0 = x0) = 1 and for all f ∈ C2

c (Rd) the process

f(Y·∧θn(Y ))− f(x0)−
∫ ·∧θn(Y )

0

(
〈∇f(Ys), b(Ys)〉+ 1

2 tr(∇2f(Ys)a(Ys))
)
ds

is a P -martingale. In this case, it always holds that P -a.s. θn(Y ) < θ(Y ) on {θ(Y ) <∞}
for all n ∈ N and consequently, the definitions are equivalent. This follows from an
argument in the proof of [7, Lemma 3.1]: Let fk ∈ C2

c (Rd) be such that 0 ≤ fk ≤ 1 and
fk(x) = 1 whenever ‖x‖ ≤ k. The process fk(Y·∧θn(Y )) − fk(x0) is a P -martingale for
all k > n, because ∇fk(Ys) and ∇2fk(Ys) vanish for all s < θn(Y ). Thus, by dominated
convergence,

0 = lim
k→∞

EP
[
fk(Yt∧θn(Y ))− fk(x0)

]
= P (t ∧ θn(Y ) < θ(Y ))− 1, t ∈ R+.

This shows that P -a.s. θn(Y ) < θ(Y ) on {θ(Y ) <∞} for all n ∈ N.
A third equivalent definition is the following: A probability measure P on (Σ,A) solves

the MP (a, b, x0) if P (Y0 = x0) = 1 and for all n ∈ N the stopped process Y·∧θn(Y ) is an
Rd-valued continuous semimartingale with semimartingale characteristics (Bn, Cn, 0),
where

Bn =

∫ ·∧θn(Y )

0

b(Ys)ds, Cn =

∫ ·∧θn(Y )

0

a(Ys)ds,

see [20, Theorem 13.55] for more details. This relates the martingale problem to the
semimartingale problem defined in [12, Definition 2.1].

Lemma A.1. The path space Ω is a measurable subset of the path space Σ, i.e., Ω ∈ A.
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Proof. Let d be a metric on Rd∆ (which implicitely induces the topology) and set Zt ,
lim sups→t−,s∈Q+

d(Ys,∆) for t > 0. Due to [14, Theorem IV.17], the process (Zt)t>0 is
progressively measurable for the filtration A. Moreover, [17, Lemma 2.2.8] yields that

Ω = {θ(Y ) 6∈ (0,∞)} ∪ {Zθ(Y ) = 0, θ(Y ) ∈ (0,∞)}.

Hence, the claim follows.

We define the following well-posedness condition:

(C) a and b are locally bounded and for all x ∈ Rd the MP (a, b, x) on (Ω,F ,F) has a
unique solution Px.

The following lemma relates the martingale problems on the path spaces Σ and Ω.

Lemma A.2. Suppose that (C) holds. Then, Px, extended to (Σ,A), see Lemma A.1, is
also the unique solution to the MP (a, b, x) on (Σ,A,A).

Proof. On an intuitive level, any solution to the MP (a, b, x) on (Σ,A,A) should coincide
locally with Px and consequently, explosion should happen in the same manner for both
problems. We now make this intuition precise.

The following local uniqueness property of well-posed martingale problems can be
proven similar to [11, Lemma 9.1], cf. [40, Exercise 11.5.1] and [17, Theorem 4.6.1].

Lemma A.3. Suppose that (C) holds, let τ be an (Fo)t≥0-stopping time and let R be a
probability measure on (Ω,F) with R(X0 = x) = 1 and with the property that for all
n ∈ N and f ∈ C2(Rd) the process

f(X·∧τ∧θn)− f(x)−
∫ ·∧τ∧θn

0

(
〈∇f(Xs), b(Xs)〉+ 1

2 tr(∇2f(Xs)a(Xs))
)
ds

is an R-martingale. Then, R = Px on Foτ .

Note that θn and θn(Y ) are stopping times for the filtrations (Fot )t≥0 and (Aot )t≥0,
respectively. In the first case this is a well-known fact ([35, Proposition I.4.5]), because
the coordinate process on Ω has continuous paths. On Σ the coordinate process is not
continuous and the classical result does not apply, but its proof can be adapted easily:

{θn(Y ) ≤ t} =
{

inf
q∈Q∩[0,t]

d(Yq, B
c
n) = 0, Yt 6= ∆

}
∪ {Yt = ∆} ∈ Aot , t ∈ R+,

where d is a metric on Rd∆ and Bcn , {x ∈ Rd : ‖x‖ ≥ n} ∪ {∆}.
Let Q be a solution to the MP (a, b, x) on (Σ,A,A). By definition of the martingale

problem, the push-forward R ≡ Q ◦ Y −1
·∧θn(Y ) satisfies the assumptions in Lemma A.3 for

τ ≡ θn. Thus, Lemma A.3 implies that R = Px on Foθn . Provided Px is extended to (Σ,A),
this implies that Q = Px on Aoθn(Y ). Now, because

∨
n∈NAoθn(Y )− = Aoθ(Y )−, a monotone

class argument shows that Q = Px on Aoθ(Y )−. Finally, note that Aoθ(Y )− = A, which
follows from the observation

{Yt ∈ G} =

{
{θ(Y ) ≤ t} ∪ ({Yt ∈ G} ∩ {θ(Y ) > t}), ∆ ∈ G,
{Yt ∈ G} ∩ {θ(Y ) > t}, ∆ 6∈ G,

for all t ∈ R+ and G ∈ B(Rd∆). The proof is complete.

We are in the position to deduce Propositions 2.6 (i) and 2.9 from [12, Corollary 3.4].
Note that [12, Standing Assumption 3.1], which is only concerned with the existence
of Qx0 , is implied by (S3), and that [12, Standing Assumption 3.2] and the first part of
[12, Standing Assumption 3.3] are not needed in our continuous setting. Note that (S4)
implies [12, Standing Assumption 3.4]. Thus, Propositions 2.6 (i) and 2.9 follow from
[12, Corollary 3.4], because its uniqueness assumption is implied by Lemma A.2.
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Remark A.4. Using Lemma A.3, Propositions 2.6 (i) and 2.9 could have been proven
directly without [12, Corollary 3.4]. We think it is interesting to relate the setting in [12]
to ours.

B Martingale problems and stochastic differential equations

In this appendix we recall the relation of martingale problems and weak solutions of
stochastic differential equations. The following definition can be viewed as a multidi-
mensional version of [22, Definition 5.5.1].

Definition B.1. Let b : Rd → Rd and s : Rd → Rd×r be locally bounded Borel functions
and denote the adjoint of s(x) by s∗(x). We call a triplet ((Σ,A,A, P ), Y,W ) a weak
solution to the SDE (s, b, x0), if the following hold:

(i) The triplet (Σ,A, P ) is a complete probability space, A is an augmented filtration on
(Σ,A, P ), and Y = (Yt)t≥0 and W = (Wt)t≥0 are measurable processes on (Σ,A).

(ii) The process Y is Rd∆-valued, continuous and A-adapted, and W is an r-dimensional
standard A-Brownian motion.

(iii) For every n ∈ N the process Y satisfies P -a.s.

Y·∧θn(Y ) = x0 +

∫ ·∧θn(Y )

0

b(Ys)ds+

∫ ·∧θn(Y )

0

s(Ys)dWs,

where the integrals are well-defined due the local boundedness of b and s. Moreover,
we stipulate that Yt = Yθ(Y ) for all t ≥ θ(Y ).

The following is a version of [17, Corollary 5.3.4] or [22, Corollary 5.4.8] for possibly
explosive MPs and SDEs, see [19, Theorem IV.6.1] for a statement in a non-conservative
setting with continuous coefficients. The proof is identical to the non-explosive case and
omitted.

Proposition B.2. Suppose that b : Rd → Rd and s : Rd → Rd×r are locally bounded Borel
functions.

(i) If ((Σ,A,A, P ), Y,W ) is a weak solution to the SDE (s, b, x0), then the push-forward
P ◦ Y −1 solves the MP (ss∗, b, x0).

(ii) If Q solves the MP (ss∗, b, x0), then there exists a weak solution ((Σ,A,A, P ), Y,W )

to the SDE (s, b, x0) and Q = P ◦ Y −1.

Remark B.3. In case one starts with a coefficient a : Rd → Sd it is always possible to find
a decomposition a = ss = ss∗, where s : Rd → Sd is Borel, locally bounded or continuous
whenever a is Borel, locally bounded or continuous, respectively. Let us explain this
in more detail: It is well-known that for a matrix A ∈ Sd there exists a unique matrix
A

1
2 ∈ Sd such that A = A

1
2A

1
2 . Moreover, the map S : Sd → Sd defined by S(A) = A

1
2 is

continuous (for the matrix-norm topology on Sd). In fact, S is even Hölder continuous
with exponent 1

2 , which follows from the Powers–Størmer inequality ([34, Lemma 4.1]):

‖A 1
2 −B 1

2 ‖2 ≤
√
‖A−B‖1 ≤ d

1
4

√
‖A−B‖2, A,B ∈ Sd,

where ‖ · ‖1 denotes the trace norm and ‖ · ‖2 denotes the Hilbert–Schmidt norm. The
function s ≡ S(a) has the claimed properties. Although continuity transfers from a to its
root s = S(a), the same is not necessarily true for higher regularities, see [18, Section
6.1] or [40, Section 5.2] for comments.
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C A few existence and uniqueness results

In this appendix we collect some existence and uniqueness results for martingale
problems. We assume that b : Rd → Rd and a : Rd → Sd are locally bounded Borel
functions and we formulate the following conditions:

(A1) b and a are continuous.

(A2) {x ∈ Rd :
∫
Br(x)

dy
det(a(y)) = ∞ for all r > 0} ⊆ {x ∈ Rd : b(x) = 0, a(x) = 0}, where

Br(x) = {y ∈ Rd : ‖x− y‖ < r} denotes the open ball with center x and radius r.

(A3) a is continuous and 〈ξ, a(x)ξ〉 > 0 for all x ∈ Rd and ξ ∈ Rd\{0}.

(A4) b is locally Lipschitz continuous and a has a decomposition a = ss∗, where s : Rd →
Rd×r is locally Lipschitz continuous.

We use this opportunity and illustrate that Theorem 2.2 can be used to prove conditions
for existence and uniqueness of martingale problems.

Proposition C.1. Let x0 ∈ Rd. If (A1) or (A2) holds, then there exists a solution to the
MP (a, b, x0). If (A3) or (A4) holds, then there exists a unique solution to the MP (a, b, x0).

Proof. The following strategy is borrowed from the proof of [19, Theorem IV.2.3]. Let
f : Rd → (0,∞) be a continuous function such that fa and fb are bounded. Such a function
can be constructed as follows: Set

g ,
∞∑
k=1

a−1
k I[k−1,k), where ak , sup

‖x‖≤k
‖b(x)‖ ∨ sup

‖x‖≤k
‖a(x)‖ ∨ 1,

and let z : R+ → (0,∞) be a continuous function z ≤ g. Then, f(x) , z(‖x‖) has the
claimed properties. In case one of (A1) – (A3) holds, the MP (fa, fb, x0) has a (conservative)
solution and in case (A3) holds the solution is even unique. With these observations at
hand, Theorem 2.2 implies that existence holds for the MP (a, b, x0) under either of (A1)
– (A4) and that uniqueness holds under (A3). That uniqueness also holds under (A4) is
well-known, see [19, Theorem IV.3.1]. Finally, we provide references for the existence
and uniqueness statements concerning the MP (fa, fb, x0): For existence under (A1) see
[40, Theorem 6.1.7], and for existence and uniqueness under (A3) see [40, Theorem
7.2.1]. Recalling Proposition B.2 and Remark B.3, existence under (A2) is implied by [36,
Theorem 2].

Remark C.2. Existence under (A1) is also implied by [19, Theorem IV.2.3] and existence
and uniqueness under (A3) is implied by [33, Theorem 1.13.1]. Under (A2), existence
of a solution with not necessarily continuous paths (more precisely with paths in Σ as
defined in Appendix A) is implied by [25, Theorem 4.4].

Finally, we recall that Girsanov’s theorem is helpful in the study of uniqueness, see
also [22, Proposition 5.3.10] and [21, Proposition 18.12].

Proposition C.3. Let b, c : Rd → Rd and a : Rd → Sd be Borel functions such that a, b, ac
and 〈c, ac〉 are locally bounded. Assume that for all x ∈ Rd the MP (a, b, x) has a unique
solution Px. Then, for every x ∈ Rd the MP (a, b + ac, x) has at most one solution.

Proof. Lemma A.3, Proposition B.2 and [21, Proposition 18.12] yield that all solutions to
the MP (a, b + ac, x) coincide on Foθn for all n ∈ N. By a monotone class argument, this
implies the claim.
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