
 On Abstract Task Models and
Conversation Policies

Renée Elio
Department of Computing Science

University of Alberta

Edmonton, Alberta T6G 2H1

(1-403) 492-9643

ree@cs.ualberta.ca

Afsaneh Haddadi
DaimlerChrysler AG

Alt-Moabit 96A,

10559 Berlin, Germany

(+49-30) 399 82 201

Afsaneh.Haddadi@daimlerchrysler.com

ABSTRACT
It is possible to define conversation policies, such as
communication or dialogue protocols, that are based strictly
on what messages and, respectively, what performatives
may follow each other. While such an approach has many
practical applications, such protocols support only "local
coherence" in a conversation. In a mixed-initiative dialogue
between two agents cooperating on some joint task, there
must be a "global coherence" in both the conversation and
in the task they are trying to accomplish. Recognition of
agent intentions about the joint task is essential for this
global coherence, but there are further mechanisms needed
to ensure that both local and global coherence are jointly
maintained. This paper presents a general yet practical
approach to designing, managing, and engineering agents
that can engage in mixed-initiative dialogues. In this
approach, we promote developing abstract task models and
designing conversation policies in terms of such models.

1. INTRODUCTION
If software agents are going to cooperate effectively with
humans on complex tasks, then they will need to
participate in mixed-initiative dialogues. In the context of
joint problem solving, this means that both parties can
control the focus of attention, shift to a different goal, or
suggest an alternative method to achieve a current goal.
Cooperation denotes a kind of interaction required when
each of the agents has some, but not all, the information
and abilities required to accomplish a task. It is just in this
instance that cooperative activity via some exchange of
knowledge is necessary. This requires specifying the
semantics and pragmatics of a “conversation”—a sequence
of messages—that enable two agents to bring a task to
completion.

There are various approaches to human-agent dialogue
within the discourse understanding community. These
approaches range from a commitment to full-fledged
understanding of unconstrained speech input [e.g., 1,10] to
screen-based interfaces, in which an underlying discourse

theory determines the set of plausible next-utterances the
human might make, and presents them as menu options
[13,20]. Both such approaches make an explicit
commitment to representing and recognizing intentions as a
crucial feature for mixed-initiative cooperation, consistent
in spirit with theoretical proposals for specifying a
semantics for mental attitudes based on beliefs, desires, and
intentions [e.g., 6, 22]. The run-time recognition and
handling of intentions seems essential for human-agent
cooperation and communication. For while we may define
an agent communication protocol (some scheme that
defines how sub-sequences of messages are to be
exchanged), we cannot assume that the human knows that
protocol or would be inclined to abide by it. This makes the
problem of understanding and structuring conversation for
cooperation more complex.

The matter of mixed-initiative dialogues between software
agents and humans has a place within a broader context of
multi-agent systems work on communication and
conversation. Several proposals exist for defining a
semantics or a set of conversational sub-units as ways of
structuring multi-message sequences between two agents
[3,16,17]. There is also the idea of representing dialogues
and conversations among humans or software agents as
state transition diagrams which dates back at least to
Winograd and Flores [24]. Under this view, dialogues are
automatons or state-transition networks, just like any other
program, except there is more than one actor or agent that
is executing the network. Transitions have to be made
mutually so that conversation can take place coherently.
These networks can be viewed as specifying a
communication protocol, insofar as they define a set of
legal transitions between messages.

However, we believe there are two drawbacks to the
adoption of a state-transition approach to conversation
structure. First, we believe it is insufficiently rich for
specification of the messages that can be exchanged [23] and
the conversation policies that govern them. Secondly, for
dialogue-intensive domains it is impractical to know all the
possible paths of a conversation in advance and represent
them as a protocol. Protocols can only maintain what we

2

call local coherence—some unity between very short
sequences of messages. When a dialogue expands beyond 2-
3 message sequences, there must be some way to ensure
global coherence to the entire conversation, i.e., a coherence
to the way in which very short message sequences are,
crudely put, patched together. Global coherence is required
in settings where we cannot assume that both agents share a
common set of protocols (as with user communication) or
in settings with certain dynamics and/or complexities,
which require a flexibility in agent behavior beyond what
can be anticipated and encoded in a single protocol. An
example might be agents negotiating about the conditions
of a multi-attributed contract, where some of the conditions
require concurrent negotiation with other agents going back
and forth on different terms. Even if a single protocol is
devised, the protocol may be too general to be of much
support for the dialogue needed.

The appeal to global coherence as a feature of a
conversation is implied by Grice's [12] maxim of relation,
which states that speakers aim to make their contributions
relevant to the ongoing conversation. In other words, each
speaker's contribution to the conversation relates to the
utterances that come before and follow it, so that the whole
conversation is about something [19]. Under our view of
mixed initiative dialogues between two agents, that
"something" is what we call an abstract task model. In
brief, our position is that the definition of an abstract task
model essentially defines a conversation policy for a type of
task, by defining ways to recognize and respond to a
delimited set of intentions that speakers can have about the
task.

The ideas presented in this paper can be summarized as
follows. To achieve global and local coherence in a mixed-
initiative dialogue, our work takes something of a middle
approach between full-fledged natural language
understanding, on the one hand, and a menu-driven approach
to the next sensible utterances (as determined, for example,
by a discourse theory) on the other. We address what we are
calling local coherence as many others have, namely by
specifying protocols for conversational sub-units. However,
the realization of these protocols includes an option for a
"violation" or "unexpected message." To maintain global
coherence, we assume that cooperating agents share what
we call an abstract task model. An abstract task model
defines (i) what the agents can talk about (the objects of
discourse), (ii) what they can say about those things, and
most importantly, (iii) how to progress on the task and
when the task is completed. The abstract task model defines
intentions as goals to achieve, a general strategy for goal-
ordering, and methods for achieving those goals.

In order to ensure global coherence for a lengthy
conversation, an agent should be able to recognize change
of conversational context by recognizing intentions. If we
rely on a protocol scheme for defining semantically valid 2-
3 message exchanges, a change of context necessarily
implies that some currently active protocol has been
"violated", in that a received message does not correspond to

any well-defined, expected next state in the protocol. Thus,
an agent must be designed with (i) the notion that protocols
can be violated, (ii) a mechanism for recognizing the
intended new context, and (iii) the ability to evaluate the
implication of the new context for the resumption of the
current protocol (and its associated intention). That these
notions are crucial to multi-agent cooperation has been
argued from a theoretical perspective [7], but solutions
implied by that work require systems that are capable of
very sophisticated reasoning engines. By defining the
objects of discourse and what can be done to or with them,
the abstract task model delimits the set of intentions the
speakers can have. The agent dialogue administration
methods allow deviations from the expected or allowed
responses to a message within a given protocol (which are
local coherence violations), by exploiting the abstract task
model’s definitions of the intentions that might emerge
during run time.

In the remainder of this article, we present an overview of
our approach, situate the key ideas in the related literature,
and outline our conclusions and current directions.

2. AN ABSTRACT TASK APPROACH
We are adopting a pragmatic perspective of intention as a
commitment to goal, with a specification of when and how
the goal is to be pursued and when the goal is abandoned
[14,15]. Intentions move an agent to act and in multi-agent
systems, they can be the impetus to engage in dialogue
with a collaborating agent in order to act. Thus, intentions
drive the conversation and it is these intentions that make
multi-message sequences about some task globally
coherent. In our approach, conversational policies are
defined partially by protocols that define what message
primitives are expected to follow in a given state. The
remainder of the conversational policy rests on the run-time
recognition of intentions as triggered by unexpected
messages. These so-called protocol violations are not
resolved at the level of predefined transitions among
language performatives (i.e., paths in protocols) but instead
through intentions at the level of the task and the status of
execution of the joint task.

We argue that if two agents share an abstract task model,
then their messages to each other—even when a message
falls outside the scope of the currently active protocol—can
be interpreted with respect to intentions about the task.
This brings us to our second major theme, namely that an
abstract task and its analysis define the objects of discourse
for the individual performatives. For us, an abstract task
type is something like "scheduling," "negotiation",
"database search", or "diagnosis." Similar notions of generic
tasks and task models had been developed to support
domain-independent methodologies and architectures for
developing knowledge-based problem-solving systems
[4,5]. We think that it is reasonable to assume that two
agents come to a cooperative venture knowing that their
(abstract) task is one of search, negotiation, diagnosis, or
whatever. Regardless of what the actual domain content and

3

domain ontology is, two cooperating agents must share an
ontology for the abstract task they are jointly solving, and
this ontology is different from the ontology for the actual
domain (e.g., internal medicine, geology, financial
databases). It is this "meta-level" ontology for the abstract
task that defines a solution state and defines how progress
towards that state can be talked about. An abstract task
models can then be used (i) to define and recognize at run-
time a set of intentions that lend global coherence to a
conversation and (ii) to define the ontology and semantics
used in the construction of the actual messages. Without
such a model, we argue that two agents cannot know how
to begin having a conversation about a joint task, whether
progress is being made on the task, or when the
conversation can be ended.

We aim to recognize (abstract) paths in the conversation by
pushing violations of local coherence (i.e., the arrival of a
message for which the local protocol does not define a
transition) to the level of intention recognition. The
abstract task model assists us in this regard by defining the
objects of discourse and what can be said about them.

3. SUCCESSIVE REFINEMENT
SEARCH AS AN ABSTRACT TASK
In this section, we briefly outline aspects of an application
domain that led us to the perspectives described above. The
problem called for a system, which we here call ATS, that
would assist a human (e.g., a driver in an automobile) in a
variety of tasks, which included location and retrieval of
information from various databases.1 Generally speaking,
ATS must identify one or more database entities that satisfy
a set of constraints specified by the user. The database
entities are defined by feature-value tuples. Using a database
of restaurants as an example, a particular database entry
corresponds to a collection of feature-value specifications
like :name Rangoon :location Palo Alto :ethnic-type
Burmese :cost moderate etc.

The first attribute of this problem is that the database is
presumed to be so large that the user cannot specify a
single, simple database query (e.g., "Where is the closest
gas station?") We also assume that the user may not
necessarily have a definitive set of constraints in mind when
starting the task. It may be more accurate therefore, to
characterize the process as one of exploration. This was the
motivation for viewing ATS and the user as two agents
cooperating in a successive refinement search, where the
goal is to identify one or more database entries that satisfy a
particular set (or possibly different sets) of constraints. The

1 ATS is a redesign [9] of a prototype effort called APA on
adaptive user interfaces, pursued by the Adaptive Systems
Laboratory, DaimlerBenz Research and Technology Center,
Palo Alto, California. ATS's focus is not adaptability,
although nothing about the approach requires or precludes it.
We rename the design here to avoid confusion with work on
adaptable interfaces by that laboratory.

following example dialogue illustrates the nature of the
task, where S designates the system and U designates the
user.

S1: What type of location do you want to locate?

Lumber stores? Pharmacies?

U2: I want inexpensive food in San Francisco.

S3: O.K.. There are several hundred inexpensive restaurants in
San Francisco.

S5: What type of food do you want?

U6: What do you mean?

S7: I mean ethnic type such as Hungarian or French.

U8: Italian.

S9: O.K. Do you want a take out or sit-down place?

U11: What about on the Peninsula?

S12: O.K.-- we'll leave San Francisco for a moment.

S13: There are 35 Italian restaurants on the Peninsula.

S14: A particular place or city will rapidly narrow

down this set most rapidly.

U15: Redwood City or Menlo Park.

S16:....

In viewing the above dialogue to be about successive
refinement search (and not about restaurant advising or
locating), we developed an abstract task model that defined
the objects of discourse that characterized dialogues about
this task. These are: (i) a domain: a particular domain
database in which entities are defined by features and values;
(ii) a constraint: any feature that has a particular value
assigned to it; (iii) a search space: a set of database entities
that satisfy a set of constraints; (iv) search-space members:
particular entities within a particular search space.

What can be said about the objects of discourse is restricted
in terms of what can be done to them (and ultimately, the
intentions an agent can have about them). In our analysis
these actions are limited to: (i) loading a database to be
searched, which defines the initial search space, (ii)
contracting, or reducing the search space by specifying
additional constraints that members must satisfy, (iii)
expanding that search space by relaxing one or more
constraints, and (iv) describing information about a
particular member of the search space, about a particular
constraint, or about the search space as a set. These are
traditional database operations. There may be other
capabilities that are unique to each agent (e.g., an agent
might also compute the most-discriminating feature for a
given search space.)

From our perspective, the semantics underlying the
messages being exchanged in the example dialogue are
defined by the ontology of successive refinement search as
an abstract task. What these objects of discourse are and
what can be said about them are intimately defined with

4

what actions can be taken to advance the task. In addition,
often there are certain sub-conversations for sharing and
coordinating information that are only indirectly related to
advancing the task. Utterances U6 and S7 in the sample
dialogue above are an example of such sub-conversations.

Another key aspect about the sample dialogue above is that
either agent can take the initiative in advancing the task in a
new direction. Therefore, ATS must respond effectively to
these "unexpected“ messages. For example, in utterance
U11, the user does not provide an answer to the question
posed in utterance S10, and instead shifts the direction of
the search task. Intention recognition serves to support this
mixed-initiative aspect of cooperation. Intentions that an
agent can have about the task (and presumably express
during the conversation) are limited by the objects of
discourse, what can be done with them, and therefore what
can be said about them. This is crucial to having a
pragmatic but somewhat flexible approach to posting and
recognizing intentions, for these objects of discourse serve
to circumscribe the intention set.

4. THE ABSTRACT TASK DEFINES
OBJECTS OF DISCOURSE
The semantics underlying the language primitives used in
our framework borrow from general speech-act theory and
the semantics are based on a number of pragmatic principles
discussed in Haddadi [15]. A message consists of a specific
message type (which we will call a performative type)2,
specific object of discourse, and partially specific content. It
has the following format:

(performative $agent-name1 $agent-name2 $object-of-
discourse $content)

For brevity's sake, we have omitted many message
parameters such as feature keywords [18] and others for
protocol administration.

The objects of discourse are constrained for each
performative type as will be outlined later. The content of a
performative can be another ("inner") performative or a
functional call. Table 1 presents the set of performatives
defined for ATS. The outermost performatives represent the
general class of an utterance. In ATS, we make use of the
classes request, query, and inform.

The inner performatives given in Table 1 further specialize
the class, by supplying information related to the result of

2 Although this term is appropriated from Austin [2], we
acknowledge it is being used in a different way than he and
subsequent writers [21] employed it. In Austin’s use,
performatives were the sort of thing that a speaker could do in
making an utterance. Here, we use the term to denote the
different message types that initiate or bring about different
changes within the system. Our notion of “inner
performative” reflects only how a further hierarchical
classification of the message class is syntactically mirrored
in the message format.

the task action that has been performed, the task itself or
the action the speaker intends/expects the hearer to perform.
The $agent-name1 parameter refers to the speaker, sender or
generally the actor of the performative, while $agent-name2
refers to the hearer, receiver or generally the agent that
would be effected by the performative.

 Outer Performative Immediately Expected Reply
Request

Inner Performative
Provide (Acknowledge) + Inform
Suggest (Acknowledge) + Inform +

 Accept/Reject
Query

Inner Performative
Provide Inform
Confirm Inform + Confirm/Deny
Suggest Inform + Accept/Reject

Inform
Inner Performative

Provide
Confirm
Deny
Accept
Reject

Table 1: Performatives and their Combination

The second column of Table 1—the immediately expected
reply—designates the performative that would "complete"
the dialogue initiated by the performative in column 1. Put
another way, the information in Table 1 defines a basic
state-transition definition for sub-dialogues. Here we will
not discuss the issues surrounding the recognition of these
performatives from a natural language utterance, and instead
focus primarily on the semantics of these primitives and
their associated objects of discourse.

Request. A request performative is tightly coupled with
advancing the search task. The objects of discourse
associated with request are (i) a system action that enables a
search task to begin or terminate, such as loading a
particular database for searching and (ii) a constraint, which
specifies a feature-value vector according to which database
entities can be identified. Most request performatives
concern constraints.

Following Haddadi [15], we view a request as having an
associated level of commitment. When a request is made by
ATS, the system is making a pre-commitment to how the
progress on the search task might be accomplished and it
prompts the user for information in order to do this.
System requests thus take suggest as an inner performative.
A suggestion refers to a possible task strategy and it must
be accepted or rejected by the other agent, in this case, the
user. By supplying the information asked for, the user is
committing to this computation. When a request is made
by the user, the user is simultaneously committing to a
computation on the search space and delivering the
information necessary to execute it. User requests thus take
provide as an inner performative. The objects-of-discourse

5

that may accompany suggest and provide are (i) the domain
(e.g., restaurants, hospitals); (ii) the value of one or more
specified features that comprise a constraint; and (iii) the
search space. Table 2 provides some examples of system
and user requests.

 (i) ReqU: Lets look for a restaurant in Mid-Peninsula.

 (request U S :action (initiate :task search :domain
restaurants))

 (request U S :constraint (provide U S :value (fv-pairs :feature
location :value Mid-peninsula)))

(ii) ReqS: How about Chinese?

 (request S U :constraint (suggest S U :value (fv-pairs :feature
rest-type :value Chinese)))

(iii) ReqS: What kind of price range?

 (request S U :constraint (provide U S :value (fv-pairs :feature
price :value ?)))

(iv) ReqU: Never mind the price / I don't care about the price

 (request U S :constraint (provide U S :value(expand :space
$space-id (fv-pairs :feature price :value any)))

Table 2: Example Performatives for Requests

Query. A query is not about advancing a task but about
exchanging information indirectly related to advancing the
task. According to our abstract model, information can be
exchanged about (i) system capabilities, that is in what
domains it can assist the user with the search task (ii) the
domain knowledge base, which includes domain-specific
information, such as the range of values on a particular
feature, (iii) the database, which includes queries about the
availability of information about particular entities in the
database, and (iv) task-information, information relevant to
the current state of the task. Queries may take either
provide, suggest, or confirm as an inner performative. A
confirm expresses the truth or falseness with respect to a
property of some object-of-discourse and it must be
confirmed or denied. When a query is sent by the user agent,
the system must respond with an inform followed by an
appropriate inner performative. System queries often take
the form of suggestions, in which case the user response
must be interpreted as providing (at least) an acceptance or
rejection of the suggestion. The objects-of-discourse that
may accompany the inner performatives associated with
queries can be (i) the domain (e.g., restaurants, hospitals);
(ii) the current search space (i.e., the set of members defined
by the current set of constraints); (iii) a particular member
in the current search space or database; and (iv) the
coverage, that is the range of values a feature may have.
These constitute the objects-of-discourse that can
accompany queries. See Table 3 for examples of user and
system queries.

Inform. Inform messages take on the outer and inner
objects-of-discourse, and a content specification, that occur
in the request or query dialogue that they complete.
According to the state and context of the dialogue being
carried out, an utterance can result in more than one

message. For instance, the first sample utterance in Table 2
would result in the two request messages (for loading the
restaurant database and starting the search task with the

(i) QueU: Can you help me with finding movies?

 (query U S :capability (confirm S U :coverage (know-
domain :domain movies)))

(ii) QueU: Do you have the menus for restaurants?

 (query U S :know-base (confirm S U :domain (describe-
domain :domain $domain (has-feature :feature menu)))

(iii) S: There is one Persian restaurant in the Mid-Peninsula
area.

 QueU: Do you have the menu for it?

 (query U S :database (confirm S U :member (has-attribute
:member $member :feature menu)))

 QueU: What are the opening hours for this restaurant?

 (query U S :database (provide S U :member (describe-
member :member $member :feature hours)))

(iv) QueS: Shall I remind you how we've narrowed down
restaurants so far?

 (query S U :task-info (suggest S U :space (describe-space
:space $space-id)))

(v) QueU: What do you mean by restaurant type?

 (query U S :know-base (provide S U :domain (describe-
feature :domain $domain-id feature-list :feature rest-type
:attribute range))

Table 3: Example Performatives for Queries

given constraints), only if the previous dialogue up to that
point was not about searching the restaurant domain. The
details of how natural language interpreter produces these
messages are beyond the scope of this article. Suffice it to
say that the abstract task model can play a large role in
helping the natural language interpreter to achieve this, but
this is not a focus of our concern in this paper.

We now have a representation and semantics for the abstract
task model of successive refinement search and have covered
all possible intentions (i.e., intentions in the sense of
illocutions associated with speech acts) that agents can
express when communicating about the search task. We
cannot overemphasize the role of the abstract task model in
specifying the ontology for these performatives. The
successive-refinement task model defined a semantics for the
general performatives in terms of what could be talked
about. A more general theory of semantics for
performatives in terms of what messages must or may
follow each other derives from [15]. However, the content
of the performatives, i.e., the objects of discourse and what
can be said about them, can only follow from the joint
commitment to a shared abstract task model. What we have
developed here is an abstract task analysis for cooperative
successive refinement search, and let that abstract task
model define these objects, their relations, and the set of
methods that allow progress to be made on the task.

6

5. ABSTRACT TASKS DEFINE
INTENTIONS & GLOBAL COHERENCE
At this point, we have only covered utterances and their
associated intentions in communication (i.e., the illocution
of an utterance). Table 1’s specifications about what
performatives may or must follow each other ensure some
local coherence at the level of 2-3 message sequences, but
they do not structure how short message sequences can be
patched together in a globally coherent way. We now
consider how intentions are internalized for reasoning about
the next course of action (progress on the task vs. progress
in the discourse) and how to maintain a coherent dialogue
between agents (i.e., coherent perlocutions). As for
dialogues, we assume a turn-taking dialogue. The abstract
task model we apply here allows (i) that both the agents can
take the initiative in directing the task and (ii) the user's
initiative always has priority over the system's initiative.
While the user may change the direction or other aspects of
the search at any time, the abstract task model defines that
the system would do so only if the current direction could
not be pursued further. In this case, the system takes
initiative in suggesting a new course of action. The abstract
task model, by specifying strategies for task progress (such
as identifying the most discriminating feature to reduce a
search set), also defines a larger set of intentions that the
system can have and that can in turn be realized as
suggestions to the user.

There must be (i) a means for deciding or recognizing that a
particular message is relevant to advancing either the task,
the exchange of information about the task, or switching to
a completely new task, and (ii) a means for representing
how the semantics of the performative pairs in Table 1
actually advance these goals. The first is accomplished by
relating agent intentions about the task or the discourse to
specific performatives. The second is accomplished by
protocols, which explicitly map sequences of messages to
the fulfillment of a particular intention, and indicate what
must happen when an unexpected message is received. We
now turn to a more detailed discussion of intentions and
protocols, and how they are represented.

5.1. The Interplay of Task Space and
Discourse Space
In previous sections, we have underscored that ATS must
reason about both the task of successive refinement search
and about the task of structuring the discourse with the user
in an intelligent way. These two tasks are not only related,
but at different times, one supports the other. Here, we
introduce the conceptual distinction between "task space"
and "discourse space", and indicate how intentions and
protocols define elements of these two spaces.

Let a state in the discourse space correspond to shared
information held by both ATS and the user. A transition
between one state into another is made by making an
utterance (e.g., "Where do you want to eat?"). When an
utterance is correctly interpreted, its intention is understood

and that intention becomes part of the shared information
between the two agents. The coherence of the discourse is
the coherence of an utterance sequence and this sequence
will be coherent only if the utterance is interpreted correctly
and responded to appropriately.

For the abstract task of successive-refinement search, the
problem at the task level is to identify a set of entities in a
database that meet certain constraints. A state in this task
space is a set of database entities and the constraints that
define them. There are two legal transitions or operators at
this level: the contract operator, which means adding a new
constraint, or the expand operator, which means relaxing an
existing constraint. When either of these operators are
applied within a particular state, a new state results, defined
by a new set of database entities and the feature-value
specifications that uniquely define them. The goal state in
the task space is the set of database entities that the user
deems to be sufficient for his or her purposes.

Discourse Space

a
discourse
intention

a task
intention

a discourse
protocol

Task Space

an action
protocol

 Figure 1: Relation between
Discourse Space and Task Space

A

B

C

X

Y

Z

The interplay of task space and discourse space is
summarized in Figure 1. The crucial feature is this:
whenever an agent cannot proceed in one space, it must
form an intention to make a transition in the other space.
Thus, the failure to move ahead in the task space (e.g.,
contract the search space of entities) requires an intention to
make a transition in the discourse space (e.g., a request for
or suggestion about possible constraints). Conversely, a
transition in the discourse space may require movement in
the task space (e.g., a request to contract).

7

5.2 The Interplay of Intentions and
Protocols
An intention to achieve a goal is represented as a general
plan to advance either the task (in which case it is a task
intention) or the exchange of information (in which case it
is a discourse intention). Whenever the system cannot
proceed in the task space, it adopts a discourse intention
which causes the transition of control to discourse space
until sufficient information has been gathered from the user
to proceed in the task space (e.g., schematically illustrated
as transitions ABC in Figure 1). Similarly, whenever the
system cannot proceed further in the discourse space, a task
intention is formed for a task computation that result in the
information that can then be exchanged with the user by
returning and proceeding in the discourse space (e.g.,
schematically illustrated as transitions XYZ in Figure 1).

An intention is represented as a plan consisting of (i) a
triggering condition, which returns true if the intention is
applicable to the current task context; (ii) a completion
routine, (iii) a method-to-advance routine; and (iv) a
resumption routine. The completion routine checks if there
is enough information to satisfy the intention. If there is, a
transition is made in the current space by executing one of
the protocols specified in the completion routine which is
appropriate in the current task context. Otherwise, the
method-to-advance routine determines a method for adopting
an intention appropriate to the current task context in order
to satisfy the completion condition. The adopted intention
is generally an intention to move in the other space.
Without entering into the architectural requirements for an
ATS framework (see [9] for details), the current task context
is determined by checking the value of relevant task context
variables which hold sufficient information about the
current state in the task space and in the dialogue space.
Finally, the resumption routine indicates whether the
intention, if it had been suspended, can be resumed. We will
return to this later.

A protocol defines a structured exchange of information
between two agents. Protocols are the methods by which an
intention is either completed (its completion routine) or
advanced (its method-to-advance routine). Just as there are
two types of intentions, so too there are discourse protocols
and task protocols. Task protocols govern the exchange of
information between ATS's Dialogue Manager and what we
term ATS's Task Manager that performs task-level
computations such as retrieving information from
databases, creating a search space and computing most
discriminating features in the current space. For the
remainder of this paper, however, we only focus on
discourse protocols.

Discourse protocols are invoked by discourse intentions.
The definition of protocols includes the specifications of the
semantics for short sequences of performatives given in
Table 1. They embody the rules that dictate what
performatives must temporally follow others. Protocols can
also be viewed as plans, whose representation is based on
three critical elements: (i) invocation condition, which is

the name of its invoking intention, (ii) invocation routine,
which is executed upon invocation to create a message of
the appropriate type and send it to the natural language
generator, and (iii) assimilation routine, which awaits one
or more performatives associated with the user’s utterance.

It is in the definition of the assimilation routine that we
allow for "violations" of the protocol, i.e., the arrival of a
message that is unexpected. When a performative arrives
that cannot be interpreted in the context of this protocol,
the protocol and its invoking intention are suspended,
handing over the user performative to ATS’s higher level
discourse management algorithm (see next section). There
the user performative will trigger the recognition of a user
intention. This is the manner in which ATS can switch to a
state in the task space that is not a predefined transition
from its current task state. ATS's modest amount of
"reasoning" allows unexpected performatives (i) to be
recognized as unexpected, (ii) to trigger the recognition of
user intention and (iii) to pass control to responding to that
intention. Exactly what new task intention is being
signaled by the unexpected message requires a scheme for
intention-matching on the part of ATS. But the crucial role
of the abstract task model, in conjunction with the current
task context, is to define a small set of possibilities.

A suspended intention may never be resumed, if the user
intention signals a valid change of direction in the search
task. Here is where the distinction we make between request
and query performatives play an important role. Requests
are directly associated with transitions in the task space and
a commitment to making those transitions. Hence a user
request causes adoption of a new task intention. If the
completion condition of this task intention is true, the
course of the current task context will change and this will
be reflected in the task context variables. The resumption
routine of a suspended intention will check these variables
to determine if the intention may be resumed or abandoned.
We require that a new direction in the search task results in
abandoning a suspended task intention and its associated
protocol. If the user performative, however, was a query,
the suspended intention may be resumed. The resumption
routine of that intention then checks the context variables
to see what the next coherent course of action should be in
the new situation.

5.4 Dialogue Management Algorithm
The interplay of task-level and discourse-level intentions, as
produced and defined by the abstract task model, and the
management of protocols that are called in service of these
intentions is realized by a dialogue management algorithm.
Since both intentions and protocols can be viewed as plans,
the basic control algorithm can be viewed as passing
control from plan to plan, until the task is completed.
While local coherence is maintained within protocols,
global coherence is maintained by the dialogue management
control algorithm. On the abstract level, given the turn-
taking assumption in dialogue, the algorithm follows the
following priority scheme: (i) recognize the need to set or

8

respond to discourse intentions, (ii) react to any user
intentions, and (iii) set and pursue ATS task intentions.
ATS task intentions are set and pursued through the
combination of an intention priority scheme (defined by the
abstract task model) that indicates how features of the
current task context trigger certain types on intentions. For
example, if the search set size has become very small, an
appropriate intention might be to suggest that one or more
of its members be described to the user in more detail. To
give a general flavor of the control scheme Figure 2
presents an abbreviated view of the dialogue management
algorithm.

We note that this sort of dialogue (or conversation)
management algorithm characterizes much of the work in
the discourse processing area. What is new here is our
reliance on formalizing an abstract task model to implement
the crucial aspects of run-time intention recognition in a
practical and domain independent way.

Until dialogue is over

If there are user performatives posted in the discourse
context

Then map these to either a user task-intentions or a user
discourse-intentions

elseif there is a current intention that can be completed

then complete it & remove it as current & pop the
intention stack

elseif there is a current intention that had been suspended

then check its resumption conditions & either resume it
and its associated protocol, or abandon it and its
associated protocols and any intentions for which
it was a necessary subgoal

elseif there is a current intention that can not be satisfied

then transfer control to its "method to advance",
triggering a discourse protocol with the other agent

elseif there is no current intention

then set a task intention by examining the task context

Figure 2: Overview of Discourse Management
A l g o r i t h m

7. DISCUSSION
The framework we have described could be viewed as a two-
level state-transition model: the abstract task model defines
transitions at the level of task intentions and the discourse
protocols define transitions at the level of shorter sub-
conversation messages. Task intentions essentially structure
the problem solving process and in turn, the dialogue that
can ensue about the problem solving process. However, we
allow that certain task intentions may be forever abandoned,
as the initiative between agents shifts during the problem
solving process. Hence, we allow for transitions as well as
"jumps" between intentional states. It is through this sort
of approach that we aim to realize a pragmatic
implementation of notions such as beliefs and intentions.
While mixed initiative dialogues are currently mostly

studied in relation to interacting with users, we envision
mixed initiative dialogues between software agents to be an
important requirement for many applications systems of the
future. In particular, in complex settings such as agent to
agent negotiation, where protocols as they are typically
employed simply cannot provide sufficient flexibility
needed by agents for exploring the negotiations space.

One matter for further consideration is how the idea of an
abstract task model fits with the decomposition of a
complex task into a set of subtasks.3 One issue is whether
the notion of a protocol “violation” is too restrictive a
mechanism for signaling intention changes. When a task
consists of a series of subtasks, any message that signals a
move to the next subtask does not seem like a “violation”
but rather, a natural and well-defined transition. We do not
intend that protocol violations are the only means of
shifting attention to a new intention. In our brief
discussion of the dialogue management algorithm, we noted
that the algorithm’s last step is "set and pursue intentions"
that are appropriate to the current problem status. Those
candidate intentions in turn are specified within the abstract
task model and they can be viewed as a set of subtasks (or
more precisely, they are a set of problem situations about
which the agent can have intentions). In our case, these task
situations and associated intentions are quite simple: (1) as
long as the search space is very large, adopt intentions to
make it more constrained; (2) if the search space is empty,
adopt intentions to relax constraints; (3) if the search space
is smallish (however defined), identify one or more
members to describe in detail. So these sorts of subtasks,
and their associated intentions, are determined by the
abstract model and constitute something like a plan of
attack. A hierarchical task network planning approach is
likely to provide further structure for very complex tasks; at
this point, we do not see any incompatibility between a
hierarchical specification of tasks within an abstract task
model, and the general benefit we see for taking an abstract
task model approach. We use protocol violations merely as
a way to signal whether another intention defined within the
task model might be in play. If the agents are “between”
protocols (and possibly between subtasks), then there is no
sense in which any incoming message is a violation.

A second issue concerns the dominance of the user in the
approach we have advocated here. On the one hand, we are
calling this a 'mixed initiative approach', which makes it
seem as if both agents have equal status. On the other hand,
the ATS's intentions take back seat to any user intention.
Note that this is defined strictly within the discourse
management algorithm and not within the abstract task
model. If both agents are software agents, then the question
naturally arises about which agent steers the conversation,
or whether they both would be searching inefficiently for
sub-conversations. This is a very important concern to

3 We acknowledge one of the reviewers for raising the issues
about subtasks, hierarchical task network planning, and user
dominance that we consider in these paragraphs.

9

raise, for it spotlights an important matter to revisit, if not
solve. Two agents have to cooperate because they each have
access to different sorts of knowledge and different
capabilities. Even if the two agents shared the same abstract
task model (and by definition, this would include the same
strategy or plan of attack outlined in the previous
paragraph), one of them must know something or be able
to do something the other cannot. (In our case, the human
agent has the constraint information and the goal
information, and the ATS agent has the database access and
system functionality to compute the results). If these were
two software agents, there would have to be some exchange
concerning “what do I know" vs. "what do you know" to
define the nature of the cooperation. Who-knows-what
might determine which agent’s intentions have priority
during the conversation. For example, the agent who
possesses the definition of the goal state might have some
kind of intention advantage. This is not a function of the
abstract task model, but of the discourse algorithm that uses
the model. We note that our remarks here are just
speculations, for this matter involves knowledge brokering
among agents, which this work does not address. We
presume that one agent will have the role of declaring a
goal state has been reached; if the agents themselves must
first agree on what would constitute a goal state, that is yet
another matter outside the scope of this work.

We are presently implementing the ATS design presented
here in a PRS framework, which fits well with our view of
intentions and protocols as plans. The critical, more general
issue concerns how to assess the pragmatic advantage that
may be gained by specifying the semantics for abstract
tasks as the semantics that are required to support flexible
multiagent communication. Within the knowledge-based
system arena, Chandrasekaren and his colleagues advanced
the notion that complex tasks could be decomposed into
sub-tasks that were, in some sense, generic, such as
classification, data retrieval, plan selection and refinement,
and so forth. If there are generic ontologies associated with
generic tasks, then those ontologies can be the foundation
for intentions that, in turn, can structure the conversation
and the content of the individual performatives. Thus, a
crucial area for further work is assessing whether and how
this abstract (or generic) task approach can be leveraged to
define semantics for a core set of objects-of-discourse to be
used in the evolution of some standard task languages for
agents.

8. ACKNOWLEDGMENTS

Aspects of this work were developed while A. Haddadi was
seconded to the Adaptive Systems Laboratory, Daimler-
Benz Research and Technology Center, Palo Alto,
California, where R. Elio spent part of a sabbatical during
1997-1998. The support of that group, the University of
Alberta, and NSERC Grant A0089 to R. Elio is gratefully
acknowledged. We also thank two anonymous reviewers for

their comments and suggestions, which helped to improve
the presentation of this work.

9. REFERENCES

[1] Allen, J. F., Schubert, L.K., Ferguson, G. Heeman,
P., Hwang, C.H., Kato, T., Light, M., Martin, N.
G., Miller, B. W., Poesio, M., Traum, D. (1995).
The TRAINS Project: A case study in building a
conversational planning agent. Journal of
Experimental and Theoretical AI 7: 7-48.

[2] Austin, J. (1956). How to do things with words.
Oxford: Oxford University Press.

[3] Bradshaw, J. M., Dutfield, S., Benoit, P., &
Woolley, J. D. (1997). KAoS: Toward an industrial-
strength open agent architecture. In J. M. Bradshaw
(Ed.), Software Agents, 375-418. Menlo Park, CA:
AAAI Press.

[4] Bylander, T. & Chandrasekaren, B. (1987). Generic
tasks for knowledge-based reasoning: The "right“
level of abstraction for knowledge engineering.
International Journal of Man-Machine Studies 26:
231-243.

[5] Chandrasekaren, B. & Johnson, T. R. (1993).
Generic tasks and task structures: History, critique,
and new directions. In D. Krivine & R. Simmons
(Eds.), Second Generation Expert Systems, 232-272.
Berlin: Springer-Verlag.

[6] Cohen, P. R. & Levesque, H. J. (1997).
Communicative actions for artificial agents. In J. M.
Bradshaw (Ed.), Software Agents, 419-436. Menlo
Park, CA: AAAI Press.

[7] Cohen, P. R. (1994). Models of dialogue. In T.
Ishiguro (Ed.) Cognitive Processing for Vision and
Voice: Proceedings of the Fourth NEC Research
Symposium. 181-203. Philadelphia: Society for
Industrial and Applied Mathematics.

[8] Cohen, P.R. & Levesque, H. J. (1990). Intention is
choice with commitment. Artificial Intelligence 42:
213-262.

[9] Elio, R. & Haddadi, R. (1998). Dialogue
management for an adaptive database assistant.
DaimlerBenz North America Research and
Technology Center Report 3-98, Palo Alto, CA.

[10] Ferguson. G., Allen, J.F., & Miller, B. (1996).
TRAINS-95: Towards a mixed-initiative planning
assistant. In Proceedings of the Third Conference on
Artificial Intelligence Systems (AIPS-96), 70-77.
Menlo Park, CA: AAAI Press.

[11] Genesereth, M.R. (1997). An agent-based framework
for interoperability. In J. M. Bradshaw (Ed.)
Software Agents. Menlo Park, CA: AAAI Press.

10

[12] Grice, H.P. (1975). Logic and conversation. In P.
Cole & J.L. Morgan (Eds.) Syntax and Semantics,
Vol 3: Speech Acts, 225-242. New York: Academic
Press.

[13] Grosz, B.J. & Sidner, C.L. (1986). Attention,
intention, and the structure of discourse.
Computational Linguistics 12:175-204.

[14] Haddadi, A. (1998) Towards a pragmatic theory of
interactions. In M. N. Hinghs & M. P. Singh (Eds.)
Readings in Agents, 443-449. San Francisco:
Morgan Kaufmann.

[15] Haddadi, A. (1996). Communication and cooperation
in agent systems: A pragmatic theory. Lecture Notes
in Computer Science, #1056. Berlin: Springer
Verlag.

[16] Labrou, Y. & and Finin, T. (1994). A semantics
approach for KQML—A general purpose
communication language for software agents. In
Third International Conference on Information and
Knowledge Management, 47-455. New York: ACM
Press.

[17] Labrou, Y. & Finin, T. (1998). Semantics and
conversations for an agent communication language.
In M. N. Hinghs & M. P. Singh (Eds.) Readings in
Agents, 235-242. San Francisco: Morgan Kaufmann.

[18] Mayfield, J., Labrou, Y., & Finin, T. (1996).
Evaluation of KQML as an agent communication
language. In M. Woodbridge, J. P. Muller, & M.
Tambe (Eds.) Intelligent Agents II: Agent Theories,
Architectures, and Languages: Lecture Notes in
Artificial Intelligence, # 1037.Berlin: Springer-
Verlag.

[19] Reinhart, T. (1981). Pragmatics and linguistics: An
analysis of sentence topics. Philosophica 27: 53-94.

[20] Rich, C. & Sidner, C. L. (1998). COLLAGEN:
When agents collaborate with people, In M. N.
Hinghs & M. P. Singh (Eds.) Readings in Agents,
117-124, San Francisco: Morgan Kaufmann.

[21] Searle, J.R. (1969). Speech Acts. New York:
Cambridge University Press.

[22] Shoham, Y. (1993). Agent-oriented programming.
Artificial Intelligence 60: 51-92.

[23] Singh, M. P. (1998). Agent communication
languages: Rethinking the Principles. I E E E
Computer 31: 40-49.

[24] Winograd, T. & Flores, F. (1987). Understanding
computers and cognition. New Jersey: Ablex.

