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Abstract

Assuming a stationary, radial, spherically symmetric solar wind and a

radial magnetic field direction in the vic-ru tty of the sun, an equation of

motion for ions heavier than protons in the solar wind is derived. The ge-

neral properties of this equation are discussed and the results of numeri-

cal integrations are given. These results are based on the assumption of

maxwellian velocity distribution functions for electrons, protons and ions,

but the effects of first order deviations from such distributions are also

presented and discussed. It is shown that dynamical friction, i. e. momen-

tum transfer from protons to heavier ions accounts for the observed fact

that heavier ions - if accelerated at all - normally reach the same velocity

As the protons in the solar wind. Because of the non-linear relation bet-

ween dynamical friction and proton-ion velocity difference a minimum pro-

ton flux is required to carry a certain ion species in the solar wind. For-

mulae comparing the minimum fluxes for different ions are given. It is

shown that elements up to and beyond iron will be carried along in the

solar wind as long as helium is carried along. Substantial isotopic fractio-

nation is possible, in particular in the case of helium. The effects of ion

motion and escape on abundances in the corona and in the outer convective

zone of the sun are discussed.
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-	 1. INTRODUCTION

It has been established for several years (SNYDER and NEUGEBAUER,

1964; WOLFE et al., 1966; HUNDHAUSEN et al., 1967) that 4He
++ 

ions

are present in the solar wind and that their relative abundance is highly

variable, values for He/H between 0.01 and 0.25 having been observed

(HUNDHAUSEN et al., 1967). The average He/H ratio in the solar wind

is about 0.04 - 0.05 (HUNDHAUSEN et al., 1967; SNYDER and NEUGE-

BAUER, 1966; OGILVIE and WILKERSON, 1969; ROBBINS et al., 1969),

which is lower than the value of 0. 1 often assumed for the sun (cf. BISWAS

and FICHTEL, 1964). At least during stationary conditions the bulk velo-

cities of H and He are normally the same within a few percent (HUNDHAU-

SEN et al., 1967; OGILVIE et al., 1968; ROBBINS et al., 1969). Recent-
3

ly, also the presence of He and oxygen has been reported in the solar

wind (BAME et al., 1968). However, as these ion species are observed

only under very favourable conditions, no figures on their abundance ave-

rages and variations can be given. Abundances of still heavier elements

such as Ca, Fe, and Ni have been determined in the corona (POTTASH,

1963), and it appears that these elements are overabundant relative to the

1- hotosphe re.

Both the coronal and the solar wind observations indicate that there are

processes at work which are substantially influencing the relative abundan-

ces of ions. If these processes would be sufficiently understood abundance

measurements in the solar wind could be used to gauge conditions in the

solar atmosphere. A theoretical understanding of enrichment processes

is also important if solar abundances, for instance of isotopes, are to be

inferred from solar wind observations.

PARKER (1961) discussed the static non-convective atmosphere formed by

a multi-component plasma in a gravitational field. He showed that a mass

separation of ions will occur similar but not identical to the mass separa-

tion in an atmosphere composed of neutral molecules. Ions with mass/charge

ratios larger than that of protons will accumulate at the bottom. This re-

sult has sometimes led to the assumption that the abundance of elements of
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higher mass number may be significantly reduced in the solar wind.

JOKIPII (1965) and DELACHE (1965) used the diffusion equation as given

by CHAPMAN and COWLING (1958) for studying the motion of ions in the

corona. The interesting result is that in the lower corona heavier ions

move markedly slower than protons, producing enhanced number densi-

ties of the former. More recently DELACHE (1967) and NAKADA (1969)

have extended these studies and have shown that essentially as a result

of thermal diffusion, very strong enhancements of heavier elements may

occur in the lower corona, unless convective mixing is dominant. Con-

ditions for the occurence orabsence of radial convection in the lower

corona have been discussed by NAKADA (1969).

The diffusion equation as given by CHAPMAN and COWLING (1958) is an

approximation applicable only as long as bulk velocities and their diffe-

rences are small compared to thermal velocities. Thus its applicability is

restricted to the lower corona, since in the coronal expansion protons and

in particular heavier ions reach high Mach numbers.

For the purpose of theoretical study, two fundamental problems may be

distinguished:

1. Do there exist diffusion processes or perhaps other processes

across the photosphere-corona transition region which are en-

hancing the abundance of heavier elements in the corona?

2. Which are the factors determining acceleration and escape of

ions other than hydrogen from the lower corona into interpla-

netary space?

In this paper we address ourselves mainly to the second problem. We

shall derive and discuss a general equation of motion for ions applicable

in the solar wind acceleration region.

A.

T .`



The theory of expansion of the solar corona and of acceleration of the

plasma to supersonic velocities was developed by PARKER (1958, 1962,

1963, 1964) . We shall summarize here those of Parker's results which

are of direct relevance to the discussion in this paper. The equation of

stationary radial motion is given by

Yt  2 . d (4A 4 i +	 - = O	 (2.1)
W 

V is the bulk velocity of the plasma, n is the number density of protons

which is equal to that of electrons. The conservation of mass can be

written as

V eX	̂ ^ rm	(2.2)

where 04 is the proton flux at 
r® = 1 a. u. For radial flow s is equal

to 2, whereas s > 2 corresponds to a flow diverging more rapidly.

In his original work, PARKER ( 1958, 1963) used a pulytropic law to com-

plete the system of equations for the unknowns n(r), V(r) and T(r):

T= coatf. 4t	 (2.3)

By proper choice of a, heat transport can be taken into account. Later

PARKER (1962, 1964), NOBLE and SCARF (1963) and WHANG and CHANG

(1965) solved both the momentum equation and the energy equation by assu-

ming that heat transport is solely conductive. More recently STURROCK

and HARTLE (1966) pointed out that energy partition times between elec-

trons and protons under coronal conditions are large enough as to give

substantial temperature differences between these two components. These

authors have accounted for this in their two-fluid model (cf. also HARTLE

and STURROCK, 1968). For the purpose of this paper, we consider the
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polytropic model adequate, because the refinements mentioned can be

approximated by adjusting a, or even by assuming it to be varying with

solar distance. In fact the polytropic model is very convenient for dis-

cussing the factors determining ion acceleration and therefore, our

discussions will be based on it.

The polytropic law and the continuity equation for -the mass imply

nkT oC (V • rs ) . Inserting this relation in the differential equation (2. 1)

we obtain

r dr (	r	.

where the temperature may be expressed in terms of the velocity as

T oC (V - rs) 1 a. Integrating (2.4) we arrive at the Bernoulli equation

	

Y. * 2.1 kT __E (2.5)
2-	̂-A	r

In order to determine the admissible values of the constant of integration

E we observe with Parker that the differential equation (2.4) is singular

if the velocity V reaches the critical value

A c«r Y a ec 4r	 (2.6)

As this point the gradient dV/dr becomes infinite unless the right hand

side in (2.4) vanishes simultaneously

	

2sw ACT - _G M„a !ta (2.7)
r

The two relations (2.6) and (2. ?) def;.ne the so-called critical point

(rc , Vc , Tc). Parker has shows that the physical solution must pass

through the critical point if the boundary conditions at r-+ 0 and at r-^o•
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are to be satisfied, i. e.

V rc) -^ ve- _ (C? pro /r% )	
(2.8)

T (r') : T. W G f!m k<r / 2 r•c k rG

I /!

This implies that only one particular value of the integration constant E

is acceptable. Evaluating (2.5) at the critical point one finds

♦_ r 1 (2.9)

	

E ^^ ^
	

ff /^Z-4-4

To obtain a convenient representation of the physical solution we express

it in terms of the dimensionless quantities:

r s r` F

Y(r) VC W(f)	 (2.10)

T (r) w Te

The dimensionless temperature T is given by

	

T = C 
WY ) 

A  I	 (2.11)

and the velocity W is the monotonically rising solution of the transcenden-

tal equation

s .4  

2oe - A sOK- 4

The functions W(f ) and Z () are determined uniquely once the poly-

trope index a and the divergence coefficient s have been chosen. With

W(I ) and T (I) known, the physical solution V(r), T(r) is given by (2. 10),r

(2.8) in terms of the position r  of the critical point which is the essential
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parameter in our representation of the physical solutions.

For the particular case of isothermal expansion characterized by a --W 1

(2. 11) and (2. 12) reduce to

r=,4

sr (2.13)

2 1

The following asymptotic relations derived from (2.12) and (2.13) Will

be needed in our further discussions.

a.) f Cc A

.i
a 9+-^,

Hl	,	 A + Q^^)	(2.14)

f

'^ (2.15)

•_

W •	P,x^ - - - - _ + r^	 •t =,A	(2.16)

The condition that W should not P to infinity for -; O places a limit

on a:
eft r̂ r^̂•< <for J'. s, (2.17)

b.) s> A

-.t
W ^ + ^^-K^ (+...^(2.18)

withWOO s 244 A .. v4 (Zt -,1^^ Cet • ^!)	 (2. 19)

Woo	is real only for

^{ t Z`̂.t C r tsr r ! s,(2.20)
It - A	 !

The temperature decrease is given by

z .r ^ (2 .21)

For the limiting case a s 1

W s (: i  
n (2.22)

is obtained.

.
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3. EQUATION OF MOTION FOR IONS

Before we derive an equation of motion for ions in the solar wind a dis-

cussion of the role of magnetic fields is called for. The question is,

whether heavier ions can be swept along by the magnetic field lines

moving with the proton-electron gas. It should be noted that in order

to move with the bulk velocity in the solar wind, heavier ions have to

acquire a kinetic energy many times their original thermal energy. It

is often assumed that the lines of force near the sun in the acceleration

region of the solar wind are approximately radial (cf. PARKER, 1963;

JOKIPII, 1965). This assumption is probably justified under quiet-day

conditions in most of this region. In fact PARKER's (1963) "spiral mo-

del" of the interplanetary magnetic field predicts nearly radial field

lines in the vicinity of the sun. A radial field, even when divergent,

would of course not give an effective radial acceleration. In an exactly

transverse field moving with the plasma any ion would have the same mean

radial velocity as the plasma, irrespective of its initial velocity. However,

in the case of oblique field lines, neglecting collisions the mean radial

velocity of an ion would depend on the initial velocity. If for instance an

ion is placed into the moving plasma with an initial velocity around zero

the radial motion of the ion is slower than that of the plasma and non-ra-

dial ion motion occurs. Thus an ordered magnetic field of spiral configu-

ration cannot accelerate ions to full solar wind veloci r . This, however,

would be in contradiction with the observation that H and He have virtually

identical mean radial velocities (HUNDHAUSEN at al., 1967; OGILVIE

at al., 1968; ROBBINS at al., 1969). A highly disordered magnetic field

would be more efficient in acceleration, but still the magnetic field as the

prime cause of acceleration appears to be insufficient, because the He and

H velocities are so permanently and closely equal. The conclusion is, that

much of the salient features of ion motion in the quiet-day solar wind should

be found in a model neglecting the effects of the magnetic field.

We assume a plasma essentially composed of electrons and protons with a

small abundance of another ion species in addition. The state of the plasma
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.is described by the partition functions of electrons, protons and ions,

fa ($, 71 t), fp(3r, 7, t) and fZ, A(3C Y, t) respectively. Th6 evolution in

time of these partition functions is described by the Boltzmann equa-

tion whose explicit form in the present situation is given in the appendix.

To simplify the problem, we assume that each of the components of the

plasma is in an approximate local thermodynamic equilibrium, i.e. ,

we assume that the velocities of the various components V = (e; p; Z. A)

are distributed according to Maxwell's law around the individual bulk

velocities vV (3T, t) with a spread given by the temperature T f (Z. t):

(3.1)

The quantity n,# (3t, t) denotes the particle density of the component V .

In this approximation thermal diffusion is neglected. Thermal diffusion

•	 is proportional to the temperature gradient and - as pointed out by

JOKIPII (1965) - its effects are relatively small in the corona outside

the sharp temperature rise in the very narrow photosphere corona tran-

sition region which is not included in the quantitative theoretical treatment

of this paper. However, we shall see in Chapter 9 that also in the corona

thermal diffusion may have an effect on the motion of ions.

In order that representation (3. 1) of the partition functions be an approxi-

mate solution of the Boltzmann equation, the quantities n V , v , and Tr

which describe the state of the plasma in this approximation, must satis-

fy the transport equations for particle number, momentum and energy

respectively. The transport equation for the particle number is the fami-

liar conservation law

I&F 
f V. 

(Y'* Aty) ^ a (3.2)

The analogous differential equation describing transport of momentum,

i.e.. the differential equation for v I rz. t) is derived in the appendix.
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The transport equation for T V (x t) is of a similar nature. In the pre-

sent paper we do not attempt to solve this system of differential equa-

tions for n. , vV , and T,,. Instead, we simplify the problem further

by assuming that the energy transfer between the different plasma com-

ponents is sufficiently effective such that to a good approximation the

plasma is characterized by a single local temperature T e=Tp=T Z, A=T.

Actually, as mentioned in Chapter 2, a significant difference between

electron and proton temperatures in the solar wind cannot be ruled out

and the Parker model has been generalised by STURROCK and HARTLE

(1966), to account for this difference. There is no reason, however, to

expect that this modification strongly affects the motion of the ions.

Concerning the equality of proton and ion temperatures we refer the rea-

der to SPITZER ' s (1962) relation for equipartition times between protons

and ions and conclude that under coronal conditions the ion temperature

is indeed closely bound to the proton temperature.

To summarize this discussion, we list the approximations involved in

our treatment of ion transport:

a) Forces die to the magnetic field are neglected.

b) The velocity distribution of each particle species %'alectrons,

protons, ions) is maxwellian around an individual bulk velocity.

c) The local temperatures of electrons, protons and ions are equal.

d) nI 4C n  = n
s 

= a

In this approximation the equations for stationary motion of one particu-

lar ion species are

M= V r s cafe$ ♦.

A..
(3.3)

♦ A fM.l^ 
^' ^c T^ 5.ts _ A li€ _ C' • f^

where v denotes the bulk velocity, nI the density, Z e the charge ,and

Amp the mass of the on species under consideration. The explicit

expression for the collision term C is (cf. BURGERS, 1960).

W
C = 47 94 A ^ = _t 

(Sk-47
 - b V-V)	(3.4).

M'	kT A	44T) l
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•	 A derivation is given in the appendix. In corona and interplanetary plasma

,Lei A is nearly constant, .&- ^ C 22 (PARKER, 1963).

The function G (x) was first introduced by CHANDRASEKHAR (1943) and

is tabulated by SPITZER ( 1962). It is defined as

6(X)'M [ q̂ tic) x O '(1f)] /2 X" (3.5)

Oox) being the error function. The asymptotic behaviour

• (x) = 0.37 x- for x arc 1

G(x)=14x2for xs^-1

shows that "dynamical friction" (CHANDRASEKHAR, 1943), i.e. accele-

ration due to collisions is proportional to the difference in bulk veloci-

ties until V-v approaches the thermal velocity of the protons, beyond

which it is actually decreasing.

Equation (3.4) includes only collisions by protons. The momentum trans-

fer by electrons is smaller by a factor

(mp/me) ]A = 43 for IV-v I tt (2 KT/p)1/2 and T  k Tp. The effects of

electrons become dominant only when the argument of G in (3.4) is larger

than 3.8.

If we neglect the perturbation of the proton and electron motion due to

collisions with ions and use ne p	e p= n = n, v = v = V then the transport

equations for protons and electrons take the form

v ♦ .4^ 
(MkT) + GLM_	̂o

r(3.6)
M d (^^T) + e E ,^ o

In the electron transport equation we have neglected the kinetic term

n. V d V/dr since it is of order me/m as compared to the remainder.
P

Elimination of the electrical field E in (3.6) leads to the basic plasma

equation (2. 1). On the other hand, we may use (3.6) to determine the
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electric geld

ems.^, '! fi 21A + V dV (3.7)
Luis	1

Inserting this expression in the ion equation (3.3) we obtain

r CA
(

	

Ik__ A-^
A / Air C r	fir) (3.8)

t^ Y + C

This equation, supplied with suitable boundary conditions at r—+0 and

at r --+oe , determines the bulk velocity of the ions, once the proton

velocity V(r) and the temperature T(r) are known from a model of the

main solar wind components. In the following we restrict ourselves to

Parker's polytropic model for the proton-electron plasma. We use the

.	 representation (2. 10) of this model and introduce the dimensionless ion

velocity w(f ) as

V(r^V^ W   (3.9)

where V  is the velocity of the proton gas at the critical point. In terms

of this variable the differential equation (3.8) may be rewritten as

C2 w - %1A w)' A +^ dif/ ^ /1 WIF (3.10)

S. + ^ wr 
G (aw)

The dimensionless quantity f denotes the reduced flux



.	 - 12 -

where c 	is a convenient flux unit

p, e & A^ " a- "I(C	2-

X1. 3 x Xct Cuf = rcc ,
	

(3. 12)

and the symbol A W stands for essentially the ratio of the velocity

difference to the thermal velocity

A W w - — ( W– W)
	

(3.13)

Note that the reduced flux f depends on the critical radius of the proton

gas and thus on the temperature in the corona.

Equation ( 3. 10) represents the basic equation for ion transport in the

framework of Parker ' s polytropic model . of the proton- electron plasma;

the following chapters contain a discussion of the properties of this

equation.
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4. DISCUSSION OF EQUATION 3. 10 FOR LIMITING CASE OF f=0

In this Chapter we shall discuss the limit f ^ o- 0, in which case the

collision term in equation (3. 10) becomes negligible. ( 3. 10) is re-

duced to

	

lf (
ZW

- A w ) = A a(f)
(4.1)

with

-4W(2A- i)

(4.2)

dA 4- W -	_ (2A -;a — A) -fScr

W( f ) and r ( f ) are known from the polytropic model, thus g is a

known function of f , and (4. 1) can be integrated. w(f ) determined in

this way includes one free integration constant.

a) Isothermal expansion (a = 1).

As an illustration we shall first discuss the isothermal case. Here

equation (4. 1) can be integrated in closed form:

W
z
_ 4 W = 1+d W"_ A .L W + 2-A-1 I^-+ ^. (4. 3)
A2AAAA

K is the integration constant. Generally for a given K, there exist two

values of w for each f , thus the solution is split into an upper branch

w+ and a lower branch w- . Physical boundary conditions are determi-

ning the choice of K: w should be limited for 
f 

<c 1, and nI should go to

zero for I ---o a* . In order to apply these conditions, the asymptotic be-

haviour of w(f ) has to be analyzed. From (4.3) we obtain for the upper

and lower branches for I << 1
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W4 
aC 

1
(4.4)

W	tx^s^- (1A -^^^ — k+f A	(4.5)
L

of which only the lower branch is acceptable.

For f —^  oe we obtain

W+ a
A2 .L 'Al At 

J
 (4.6)

W_	

_n^;^^ 	
(4.7)

From nI -* 0 follows (w r )_woe , a condition which is fulfilled only by

the upper branch. Thus the solution of physical interest has to cross

over from the lower branch at f << 1 to the upper at f -a o. and there

exists only one solution, the critical solution, with one specific value

of K. passing through the critical point. At this point ( fc We ) the left

and right sides of (4. 1) vanish simultaneously, yielding the relations

WC . { 2A f 4/' (4.8)

;(f,) M O (4.9)

'42A- 1-4)
(4.10)

W1
The critical point for protons falls of course on W(f ), but it is not Won-

tical with the critical point in Parker's theory of the proton-electron gas

(W = 1, 1 = 1). ,There is no contradiction in this result, because the

only solution of physical significance of the families of curves defined by

(4.3) is the critical solution, and for protons this is identical with W(f )

as given in (2. 13),.
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We conclude that for isothermal expansion, heavier ions are accelerated

to supersonic velocities. In the case of low solar wind flux their veloci-

ties remain, however, lower than the solar wind velocity W. From (2.22)

and (4. 6) we obtain

 +.4 1

Al1

I ^,o W OTA_^
(4.11)

Formally there is no limit for A. However, for A--♦ ae and Z/A-^ O

the critical point 
Ic 

goes to infinity,

i.e., it moves to a solar distance where an isothermal approximation

becomes meaningless.

b) Polytropic expansion (a > 1) .

•	 The question to be discussed is whether equation (4. 1) has a solution for

which w is monotonously rising with f . In this case, the left side of

(4. 1) goes through zero for a critical velocity we which is reached at

critical point 
f c'

W^ : (4.13)
2K

g(f ) as defined by (4.2) vanishes at f c . In order to establish the

existance of a monotonously rising solution w (? ), it is sufficient to show

that g(f ) is negative for f c c , 
and positive for 

f 
s t c

 , and that

solutions w(f ) exist which meet the physical boundary conditions. As in

the isothermal case we have generally two branches w+( f ) and w_ (f)

for a single integration constant. From (4.2) and the approximations

given in Chapter 2 we obtain for cc 1

2(j) — f'o
(4. 14)
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For (2 A- Z)» 1, go is positive and g - as required - negative, as long

as

of < (*e< 
s 

for r- 2- ) (4.15)

The upper and lower branches of w for. « 1 are:

Wt 
oC 

7
oe (4.16)

W_ "C'` ". o

The lower branch meets the boundary condition, because g o > 0.

For I >> 1 equation (4.2) gives

w-.M - cE(-4)-4	_ z

S^s^+-4) IL f
	

. _ 2A r f
	(4.17)

g(F ) is positive, again as long as condition (3. 15) for a is fulfilled.

The upper and lower branches of w(f) for f » 1 are:

A -f..+1
♦W6. ?A

-^r(^♦^j
(4.18)

W

Like in the isothermal case the lower branch is not compatible with

n1 0, and the upper branch is the physically acceptable solution, as

nI	
f -9(a- 1) , We conclude that a monotonously rising solution w(f )

exists as long as a< (s+1)4. This condition is identical with the limit

placed on a for polytropic expansion of the proton-electron gas (ef . 2. 17).

6

ff
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5. HIGH SOLAR WIND FLUX

If we let the solar wind flux increase, dynamical friction, i. e. the colli-

sion term in equation (3. 10) forces w closer to W. In the limiting case of

very high fluxes (f *1), W-w will be small compared to W, and w can be

approximated by W in equation (3. 10) everywhere but in the collision term:

0 W s ZAT	 (5.1)

where the function F(f ) is known from the proton-electron model:

In this approximation the original differential equation for the ion velo-

city degenerates into an algebraic equation for which no boundary condi-

tions have to be supplied. Because equation (5. 1) is based on the assump-

tion of maxwellian velocity distributions it does not contain a thermal

diffusion term. In this respect it deviates from the diffusion equation as

given by CHAPMAN and COWLING (1958). The consequences of this

deviation will be discussed in Chapter 9.
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6. DISCUSSION OF THE GENERAL SOLUTION

The equation of motion (3. 10) can be written as:

a

^ s 

2.W  — o(A w

g(f ) is defined by (4. 2), and d W by (3 . 13). The singularities of

equation (6. 1) (simultaneously vanishing nominator and denominator on

the right side), determine the topology of the family of solutions. In.

some cases, one such singularity exists, and the corresponding family

of solutions is sketched in Figure 1. In other cases there are three

singular points, and the family of solutions has a topology as shown in

either Figure 2 or Figure 3. In any case only the one solution passing

through the critical point P c is compatible with the physical boundary

conditions.

The critical velocity we is given by equation (4.13). Inserting w = we

in the collision term, fc 
can be determined. If f is increased P c moves

towards the left along the curve w = ^t(f )/2 ,1 Al l/2 . Thus the colli-

sion term has . the general effect of loweringf c , and bringing w closer

to W.

However, even for strong fluxes the velocity of the ions does not necessa-

rily approach the bulk velocity of the solar wind for large solar distances.

In the limit 
f 

--a. oo there are two conditions to be met, if w is to approach

W.

1.) For f— se the collision term C must dominate the function g(f ) .

Using the approximations (2.19), (2 . 21). and the fact that the function G

is limited we obtain

C ^C
. r(2 -.c)

(6.2)
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Comparing this with the asymptotic behaviour of g(f ) as given in (4.17).

we obtain

oC-As WAk(1 ld	̂ ^_	(.t >.4-2r ofis-&)(6.3)

2.) In order to have an effective collision term, C must rise with rising

W-w (cf. " 4- em d 3. 5). This is assured only if W-w approaches zero

faster than T IV2
, in order that ♦ W (cf. 3 . 13) remains smaller than

unity.

We can study the consequences of this condition by solving the equation

of motion (3. 10) for large solar distances. If we assume an asymptotic

behaviour W-w a T;1 , and introduce

i m W. W.	 (6.4)

we obtain (cf. S. 1, 5.2 and 6. a)

s _

A 2 W
—= 2^1  :F(f)^C 1 ' Gad W)	(6.5)

rf

For f » 1 and A  •C i,/T W« 1 (6.5) is approximated by (cf. 2.21)

aOU ML . 4
01 f	r*4f ik#,t

a and b are positive constants, and

Ce

	

	364) — it

bN s l ^at "A^

(6.6)

(6.7)
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It is easily shown that this first order linear equation has a solution

with

.ttm d . o
	

(6.8)

I--woo

only when n -c 0. From (6.7) follows

oC > "l t 3	A
	

(01 ->A33 f r t 2)	(6.9)

It can be shown that condition (6.9) is applicable not only for PARKER's

(1963) solar wind model but also for the two-fluid model of STURROCK

and HARTLE (1966), if a is replaced by ap , the effective polytropic

index of the protons. According to (6.9) the natural increase of a (res-

pectively ap) with larger solar distances (cf. PARKER, 1963; STURROCK

and HARTLE, 1966), will force heavier ions to travel with the velocity

W of the proton-electron gas, unless somewhere at intermediate distances

the velocity deficit W-w was large enough to make d W it 1, in which case

the collision term became ineffective (cf. 3.5).
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7. ESTIMATE OF "MINIMUM FLUXES"

In this Chapter we shall discuss the general conditions under which heavier

ions will travel with the bulk velocity in the solar wind. It is assumed that

a increases gradually from a value ' ose to 1 near the sun until it approaches

a value around 1.4 to 1 . 5 (cf. STURROCK and HARTLE, 1966). At a cer-

tain solar distance	the value a = 4/3 (6 . 9) will be surpassed. If. because
a

of insufficient flux strength. W-w has become so large at 
fa 

that A  s 1.

then the collision term becomes ineffective beyond t a , and the ion velocity

w will not converge towards the bulk velocity W. A minimum flux fmin

sufficient to bring the velocity of a given ion species up to the solar wind

velocity can be calculated by numerical integration of equation (3. 10). The

actual values of fmin will of course depend on the details of the chosen solar

wind model, and in particular the choice of s will greatly affect the minimum

flux fmin' However, the relative magnitudes of fmin for different ion spe-

cies will depend much less an such details.

As shown above an approximate condition for obtaining ions tr .veling with

W is

d wQ)^ (7. 1)

If we use the high flux approximation (5. 1), we obtain

4A-2-4_ ^^^
Q }	

(7.2)

Because F( I a) is model dependent. equation (7.2) does not readily yield

absolute values ftr minimum fluxes. However, (7.2) should be a valid

approximation if used for calculating ratios  of minimum fluxes of different

ion species:

flu;  a °C rPl
(
j) A) S 

ZA — & —.4	
(7.3)^a

1s
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In the lower corona the times for an atom to approach equilibrium ioni-

zation are short compared to the characteristic times of bulk motion

(JOKIPII, 1965). Hence it can be assumed that all ions have approxima-

tely attained an equilibrium ionization corresponding to the temperature

in the lower corona. For a number of elements and isotopes, these de-

grees of ionization are given in Table 1 assuming To = 10
6o

 K.  They were

calculated by the method of ELWERT (1952) (cf. BILLINGS, 1966) using

the ionization potentials given by LOTZ (1967). Also given is the factor

r (1) (Z, A) which in the approximation discussed here determines the

minimum flux. According to Table 1 isotopic discrimination in solar wind

acceleration can be appreciable for light elements. Particularly the He 3 /He 4

ratio could be changed in favour. of He 3, because the r (1) values of these

two isotopes differ by a factor of 1.7. The important and perhaps somewhat

surprising conclusion is that if medium and heavy elements are present

in the lower corona, they are accelerated to solar wind velocity, as long

as He  is accelerated. With the exception of deuterium, which should not

exist in the, sun anyway, He  is no more likely to be accelerated to solar

wind velocity than all the stable nuclear species up to and beyond iron. We

have not exactly calculated r (1) for heavy elements, because LOTZ's (1967)

table of ionization potentials ends with zinc. However, estimates based

on the Thomas-Fermi model indicate that r (l) for very heavy elements

will not be higher than 1. 25, the value for helium.

If, as asserted in this Chapter, a minimum proton flux is necessary to

carry an ion species in the solar wind, one would expect to observe a corre-

lation between the He/H ratio in the solar wind and the flux. Such a corre-

lation has not been found (ROBBINS et al., 1969) in the Los Alamos Vela 3

data (cf. HUNDHAUSEN et al., 1967). It should be remembered, however,

that the minimum flux is dependent on a number of parameters such as

temperature in the corona, effective radial expansion index s, or polytropic

index at . Moreover, the model presented here is stationary, and non-

stationary processes are likely to affect the He/H ratio. The He abundance

in the solar wind may in part also reflect the variable influence of thermal

diffusion between photosphere and coronal base. All these effects would
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contribute in masking a correlation between abundance of one ion species

and proton flux. However, these effects should cancel out to a large extend

when the behaviour of different ion species is compared.

I
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S. RESULTS OF NUMERICAL INTEGRATION

Numerical integrations of equation (3. 10) were performed for a = 2

and uniform polytropic index a, choosing a = 1. 1 and 1.4. Actually, for

quiet solar conditions the effective value of a will vary from about 1. 1

near the sun to about 1.4 to 1.5 at larger solar distances (cf. the a 

values for protons in the two-fluid model of STURROCK and HARTLE,

1966, 1968). Thus, our results with a = 1. 1 should give a realistic pic-

ture of the physical situation near the sun, while the solutions with a = 1.4

should be a better approximation for larger solar distances.

In Figure 4 the flux values for 4He 2+
0
 20

Ne8+ and 56Fe14+ 
and a= 1.4 are

plotted versus the corresponding critical radii f C . The significance of this

plot will be explained using neon as an example. For f = 0 the solutions

have the topology of Figure 1, and f c is very high (3450). With increasing

f the critical point moves continuously towards the sun until the flux f reaches

a value of 3.4. For 3.4 < f ac 4.8 three singular points exist for a given f.

If f is increased above 3.4 the topology of the solutions is initially of the

type shown in Figure 2, i. e. the critical point remains at very high solar

distances	Somewhere between f = 3.4 and f = 4. 8 the topology changes

to that given in Figure 3. Plots of the direction field of the differential

equation and the numerical integrations show that this always happens for

a flux which is only slightly above the relative minimum in the f - f c plot.

Thus the critical point t c jumps discontinuously from a very high value to

a place slightly to the left of the relative minimum in the f - € c plot, in the

case of neon from f c > 200 down to f c- 2. Figure 4 clearly demonstrates

the idea of a minimum flux for a given ion species. Proton fluxes leading

to a f c on the right side of the discontinuity are not able to carry the ions

in the solar wind stream. If the flux is high enough to place the critical

point to . the left of the discontinuity (left of the relative minimum in the f - 
C

plot) the collision term in equation (3. 10) becomes effective and pulls the

ion velocity w towards the proton velocity W. The flux value at the relative

minimum in the f - T c plot is therefore a good approximation for the mini-

,	mum flux fmin defined in Chapter T. This is born out by the numerical inte-	
f .

grations. Thus for a = 1.4 minimum fluxes can be read off in good approxi-



-25-

mation directly from the relative minimum in the f 
-Ir

; c plot (Figure 4).

When the proton flux is below this minimum value, the corresponding ions

are virtually not accelerated. If the flux reaches the minimum value the

ions are suddenly "locked-in" with the protons.

The behaviour of the ions described here is related to the runaway pheno-

menon of electrons in a strong electrical field (DREICER, 1958). As dis-

cussed by TUCK (1960), ALLIS (1960) and BURGERS (1960) runaway of

electrons occurs when dynamical friction decreases with increasing drift

velocity.

Figure 5 shows results of the numerical integration for 
4He2+ 

and
 56
and

It is seen that the minimum flux for helium in this case is about 6.7 where-

as for iron it is about 3.8. Thus, for the a = 1.4 expansion model the mini-

mum flux for helium is 1.8 times higher than that for iron. Approximation

(7.3) (cf. Table 1) gives 2.5 for the ratio of minimum fluxes for these two

ion species; in fair enough agreement with the numerical result. It should

be reemphasized that we do not attach great significance to the abs_ olute va-

lues for minimum fluxes given here, because they are model dependent.

Nevertheless, it is rewarding that physically reasonable numbers are ob-

tained (cf. Caption of figure 5).

Figure 6 gives the ion velocity w as a function of solar distance	for a

few flux values with a = 1.'1. Here, of course, critical fluxes cannot be

established, because a does not rise above the value 1. 33 which is required

if ion velocities are to converge towards the proton-electron velocity (6.9).

Still it is seen that for a given flux the velocity of iron is much closer than

the helium velocity to the proton-electron velocity. Roughly identical w(? )

are obtained if the flux is 2. 5 times higher in the case of helium than in the

case of iron. This is in good agreement with equation (5. 1).

As pointed out above, a = 1. 1 should be a good approximation for the lower

corona. For Tc = 106 oC. the solar rim is at f = 0.2. It is seen that near

the sun ion velocities can be substantially lower than proton velocities. For

instance for f = 5 the iron velocity near the sun is more than 10 times lower

than the proton velocity. If a were to rise from 1. 1 to about 1.4 in the range
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0.4 4 € 4 0. 8, at this flux the iron velocity would still converge towards

the solar wind bulk velocity. In this case we would have an enhancement

of a factor of 5 to 10 in the number density of iron in the corona as com-

pared to the iron flux abundance in the solar wind at 1 a. u.
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9. INFLUENCE OF NON-MAXWELLIAN DISTRIBUTION FUNCTIONS

The equation of motion for ions (3. 3) is derived from the Boltzmann equa-

tion under the assumption that the velocity distribution functions are lo-

cally maxwellian, which is of course an approximation to the true distri-

bution function. Better approximations of f(x, V, t) have to be calculated

and then used in the pressure and collision terms of (3. 3) in order to

arrive at an equation of motion of higher precision. If the mean free path

X is short compared to the characteristic dimension L of the system (L is

the length over which an appreciable change of say the temperature T(r)

occurs, LT^r ), then the plasma is in an approximate local equilibrium,

i. e. the distribution functions of the plasma components approximately

satisfy Maxwell ' s law with one and the same temperature and a unique bulk

velocity. Of course in this approximation the dynamical friction vanishes.

Short X implies a strong flux, and our high flux expression (5.4) for the

difference of the bulk velocities of protons and ions represents a statement

about the Ration from local equilibrium. The order of magnitude of the

velocity difference given by (5. 1) is y- X/L as to be expected. This small

effect is not necessarily exactly described by our simple method, which is

based on the assumption that the velocity distribution of the individual

plasma components satisfy Maxwell's law. In order to determine the velo-

city difference correctly to first order in X/L we have to account for the

corrections to the velocity distribution which arise in first order. These

modifications may be worked out by expanding the Boltzmann equation in

powers of A/L according to the Enskog-Chapman method given in detail by

CHAPMAN and COWLING ( 1958). Using the general equation of these

authors (8.4.7) we arrive at the following expression for the first order

difference between the bulk velocities of protons and ions ("diffusion equa-

tion"):

d W n A [2A-i —A - s- i --A (9. 1)
^s oC
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The thermal diffusion factor a  (CHAPMAN, 1958) can be approximated

by

z'^/z

It is seen that our high flux approximation ( 5. 1) is equivalent to the Chap-

man-Cowling diffusion equation, except for the thermal diffusion term.

This correction results from the deviations from maxwellian velocity dis-

tributions which were neglected in the derivation of (3. 10) and (5. 1).

In Chapter 7 we have used the high flux approximation (5. 1) in order to

arrive at an expression for the minimum flux f in (7.3). Using the improved

high flux approximation (9. 1) in the same way we obtain

w °^ l'( it, ,A) m 2A —1--4 t -A-4 IC	*, A — -4(9.3)
aL -0< t (; e4

In as much as (9. 1) is a better approximation than (5. 1) to the first order

difference between the proton and ion velocities, equation (9. 3) should

better than equation (7.3) approximate the relation between minimum fluxes

for different ion species.

r (2)(Z, A) factors for several types of ions are listed in Table 1. a = 1.25

is chosen as a reasonable average. For Z = 1 the exact expression of a 

given by CHAPMAN (1958) has been used. It is seen that the 
r42)10 

vary

less than the r" 1 8, i. e. differences between minimum fluxes for different

ions are somewhat smaller when using (9.4) instead of (7. 3). Nevertheless

the general conclusions drawn in the proceeding chapters remain valid.

Thus He  still has the highest minimum flux among all ions up to and be-

yond krypton, except again for the heavy isotopes of hydrogen. Isotopes

have appreciable differences in minimum fluxes. Thus isotopic fractiona-

tion has to be expected. In particular the differences between the minimum



-29-

fluxes of He  and He  are quite large and therefore considerable varia-

tions of the He 3 /He 4 ratio might occur in the solar wind.

Clearly for those regions where the solar wind flux is strong in the sense

that the mean free path A is indeed small compared to the characteristic

geometrical length L the diffusion equation is the appropriate tool to in-

vestigate the behaviour of the ion velocity. An analysis of this equation in

the context of ion transport in the lower corona has been given by JOKIPII,

(1965), DELACHE (1965, 1967) and NAKADA (1969). Our approach, on the

other hand, provides a method to analyze the general case of an arbitrary

solar wind flux. The basic assumption of our method, viz. the assumption

that the velocity distribution of the individual plasma components may be

approximated by a maxwellian distribution must be regarded as a pheno-

menological parametrization of the real velocity distribution in terms of

its center (bulk velocity) its height (particle density) and its width (tempo-

'	 rature). Accordingly we expect our method to describe the main features

of ion transport only; to improve the validity of our approximation we

would have to use a more refined parametrization of the velocity distribu-

tion which . allows for deviations from Maxwell's law.
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10. SUMMARY OF CONCLUSIONS

The model discussed in the proceeding chapters which is restricted to

stationary conditions and assumes spherically symmetric flow and ra-

dial magnetic field lines near the sun, leads to the following conclusions:

For a species of ions heavier than protons there'exists a minimum solar

wind flux above which the ion velocity is virtually equal to the proton-elec-

tron velocity in the solar wind at large solar distances. A condition for

this is, however, that ap, the effective polytropic index for protons rises

above 1. 33 with increasing solar distance. During quiet solar conditions

a  will rise beyond tl.ds value at some distance from the sun (one to a few

solar radii) because of slaw heat transfer between electrons and protons

(STURROCK and HARTLE, 1966). For stationary proton fluxes below the

minimum value ions will normally form a static atmosphere.

The minimum flux for an ion species depends on the temperature in the

corona, the radial expansion index s, and the polytropic index a.

If at times a  should remain below 1.33 throughout the region effective in

solar wind ion acceleration, ion velocities would not reach the proton velo-

city. In this case, the effects of the interplanetary magnetic field moving

with the proton-electron gas have to be considered. If this field has an

ordered spiral configuration (PARKER, 1963), then ions travelling along

the field lines with radial velocities smaller than the proton velocity might

occur in interplanetary space.

The critical fluxes for medium heavy elements are smaller than for helium.

Thus under stationary conditions these elements should be present in the

solar wind as long as helium is present.

In the lower corona ions heavier than protons may travel considerably

slower than protons, giving rise to enhanced number densities for these

ions, compared to their abundance in the solar wind. In addition there

exists the mechanism of an enrichment of heavier ions in the corona by

thermal diffusion between photosphere and corona. This mechanism, if

not obliterated by convection, would not only further enhance number
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densities of heavier ions in the corona but also increase the abundances

of these ions in the solar wind Aux escaping from the sun. It is important

to distinguish these two possible mechanisms for the enrichment of hea-

vier elements in the corona, because only the latter mechanism will de-

plete heavier elements in the sun. Comparison of abundances in photos-

phere and corona with those in the solar wind should bring about this

distinction and decide, whether the solar wind could have significantly

changed the abundances in the outer convective zone of the sun.
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TABLE 1

Minimum proton flux factors r for various ion species. Degree of

ionisation Z is calculated after ELWERT (1952) and LOTZ (1967)

(cf. BILLINGS, 1966); for Kr it is estimated. r 7 (1) is obtained from

equation (7. 3), and r (2) from (9.4). It is seen that in both appro-

ximations minimum fluxes for heavier ions are not higher than for
4He2+.

Degree of Minimum Flux Factor
Nuclide Ionisation (1) (2)

Z r r	(a=1. 25)

H 1 1 0.00 0.00

H2 1 2.00 2.19

H3 1 4.00 4.28

He  2 0.75 1.06

He4 2 1.25 1.61

C 12 5 0.72 1.19

0 16 6 0.69 1.17

Ne20 8 0.48 0.97

Ne22 8 0.55 1.05

S1 
28

10 0.45 0.95

Ar36 9 0.77 1.28
56

Fe 14 0.49 1.01
84

Kr 14 0.78 1.30



Figure 1. Topology of solutions of equation of motion for ions (3. 10)

in the case of one singular point. I , W and w are defined by (2. 10)

and (3.9). The heavy line crossing the critical point (singular point)

Pc is the only solution for w(^) compatible with the boundary con-

ditions.

Figure 2. Topology of solutions of (3. 10) in the case of three singu-

lar points. Here the critical point P c is the singular point on the right,

and the only solution w( ^ ) compatible --dth the boundary conditions

passes through PC.

Figure 3. _ Again three singular points, but now the critical point is

on the left. The solutions change from the topology in Figure 2 to that

in Figure 3 through increase of proton flux.

Figure 4. Dependency of the position of the critical point fc 
on the

proton flux f (cf. 3. 11) for polytropic expansion with a = 1.4. As shown

in Chapter 8, the flux at the relative minimum in the f - T c plot

corresponds approximately to the minimum flux defined in Chapter 7.

Figure S. Proton velocity W( f ) and ion velocities w( f ) for diffe-

rent proton fluxes f and a = 1.4. Proton fluxes in protons/cm2 sec at

1 a. u. (	= 51.5) are given by= 0. 34 x 108 f cm
-2

 sec -1 for

T = 106 °K at Y = 1. W. w = 1 corresponds to V, V = 152 km/sec.

Figure 6. Proton velocity W( F ) and ion velocities w( F ) for diffe-

rent proton fluxes f and a = 1. 1. Proton fluxes in protons/cm2 sec at

1 a. u. ( f = 40.5) are given by f0 = 0.3 x 108 f cm 2 sec -1 for

T = 106 °K at € = 1. W, w = 1 corresponds to V, V = 135 km/sec.

Under the same conditions the solar rim is at 
f = 

0. 19.
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Appendix

BOLTZMANN EQUATION: SMALL ANGLE SCATTERING OF CHARGED

PARTICLES

In this Appendix we briefly sketch the derivation of the transport equation

for the bulk velocity used in our discussion of ion transport. We consider

a plasma consisting of a number of different components a. The state of

the system is described by a set of distribution functions a x, 2, t)

satisfying the Boltzmann equation (cf. HUANG, 1963).

it It Q^ +k,^ • Op f c owl k 1 .  a Z cer (4Z)k { (A. 1)

The quantity Cas (2, it, t) represents the collision term for encounters bet-

ween particles of type a and S and is explicitly given by

(A. 2)

(5r) V" k^

where dQ'aO denotes the differential cross section of the elastic process

a(il) + g('v) ---o a(u) + g(v) . The dominating contribution to the differential

cross section arises from small angle coulomb scattering, described by the

Rutherford formula (c. m. system).

•A

d	_(4 '' W4 di k4+ ) d -a	 (A. 3)

In this expression t o stands for the charge of the particles of type a,

%, denotes the reduced mass

I

IA#wr! like I"?/ Nk+
 hip (A. 4)
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and w is the relative velocity of the two particles,	-U"*-  v If the Ruther-

ford cross section is inserted in (A.2) one obtains an integral that diverges

at 9 w O . As is well - known the singularity of the Rutherford cross

section at 9 m O reflects the long range nature of the coulomb force va-

lid between isolated particles. In a plasma the long range tail is cut off by

shielding effects. One accordingly cuts the integral over the center of

mass scattering angle 9 off at a value 6 min - n	• The precise

mechanism producing the cut-off is of no relevance here since the collision

term depends only logarithmically on the value of the cut-off parameter

The order of magnitude is

A C _-3 	̂L #/ &
	 (A. 5)

2e. er r ^e

For a more detailed account of the shielding mechanism see e. g. TRUB-

MKOV (1965). The values of .64A for various temperatures and elec-

tron densities are tabulated by SPITZER ( 1962).

To evaluate the dominating contribution to the collision term which arises

from scattering by small angles in the range /lam A 6 it it sufficies to

expand the quantity a(7, ie, t) f0 (it,	t) appearing in (A. 2) in powers of

the velocity transfer s u'- I and -V-k'-  up to terms of second order. The

integral over d 
IQP 

may then be worked out with the result

^,f w 2N Ise A 4z;',  tp /to.,
(A. 6)

.1

f ve	11 1 A r)(i ;
e4	

4 
pp ..-ft	I	I

TThis in the desired approximation for the collision term inthe 19the

equation.



•k

1^k f ^4 r ug ^ YKxuk —  4̂ / ^.c ^x J ^^ f^ (A. 9)
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I

TRANSPORT EQUATION FOR BULK VELOCITY

The bulk velocity ^(x, t) is defined by

The Boltzmann equation leads to the following transport equation for

vam t).

I , ♦ vim. v^ ♦	v•	 Aid	̂̂ f ^Jk
	

(A. 8)

(A. T)

where the pressure tensor P (z, t) is defined by
a

Making use of partial integrations the collision integral 
fd

3u / a0 may

be rewritten in the form

J d31̂  ^ s _ 	f I^ju dtV W ^ r M ^ f'^ ^! l / I ^
/	 WS	

1 X Y (A. 10)

To proceed with the evaluation of this integral we now assume that the

partition functions f (z, u t) may be approximated by Maxwellian distri-

butions around the bulk velocity arz, t) characterized by a temperature

Tar. t):

^•e ^x, G! f ) 'R a ,tJ ^6Mie /txP — (M — vM ^g/ Lk(A.11)
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In this case the pressure tensor takes the well-known form

,a (A. 12)

and the collision integral may be evaluated in closed form with the result

J^ d au =	i 4 *,AM^ G 1 I Vn	 (A. 13)
f ,A? 

,^	
J`

where von denotes a mean thermal velocity

2 k i T- + w / (A. 14)
r

and the function G (x) is given by

_r

2X 
i ^xl	 (A. 15)

in terms of the error function 4 (x).

..
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