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ABSTRACT 

Monitoring gas turbine combustors' health, in particular, 

early detecting abnormal behaviors and incipient faults, is 

critical in ensuring gas turbines operating efficiently and in 

preventing costly unplanned maintenance. One popular 

means of detecting combustors’ abnormalities is through 

continuously monitoring exhaust gas temperature profiles. 

Over the years many anomaly detection technologies have 

been explored for detecting combustor faults, however, the 

performance (detection rate) of anomaly detection solutions 

fielded is still inadequate. Advanced technologies that can 

improve detection performance are in great need. Aiming 

for improving anomaly detection performance, in this paper 

we introduce recently-developed deep learning (DL) in 

machine learning into the combustors’ anomaly detection 

application. Specifically, we use deep learning to 

hierarchically learn features from the sensor measurements 

of exhaust gas temperatures. And we then use the learned 

features as the input to a neural network classifier for 

performing combustor anomaly detection. Since such deep 

learned features potentially better capture complex relations 

among all sensor measurements and the underlying 

combustors’ behavior than handcrafted features do, we 

expect the learned features can lead to a more accurate and 

robust anomaly detection.  Using the data collected from a 

real-world gas turbine combustion system, we demonstrated 

that the proposed deep learning based anomaly detection 

significantly indeed improved combustors’ anomaly 

detection performance. 

Deep learning, one of the breakthrough technologies in 

machine learning, has attracted tremendous research 

interests in recent years in the domains such as computer 

vision, speech recognition and natural language processing. 

Deep learning, to the best of our knowledge, has not been 

used for any PHM applications, however. It is our hope that 

our initial work presented in this paper would shed some 

light on how deep learning as an advanced machine learning 

technology can benefit PHM applications and, more 

importantly, can stimulate more research interests in our 

PHM community. 

1. INTRODUCTION 

A combustion system is a critical component of gas turbines 

that burns fuel air mixture to create thrust or power.  A 

heavy-duty industrial combustor typically operates under 

high temperature and high flow rate conditions that 

introduce significant thermodynamic stress to combustor 

components. Imbalanced fuel distribution and combustion 

instabilities are the main causes of different combustors’ 

abnormalities, including fuel nozzle faults, liner cracks, 

transition piece defects, excessive vibration due to acoustic 

waves and heat release oscillations, and non-compliant 

emissions (Allegorico & Mantini, 2014). Those 

abnormalities, if not detected early, could lead to 

catastrophic combustor failures or lean blowout, which 

trigger turbine trips; those abnormalities could also 

adversely affect the life of hot gas path components, or 

result in higher NOx and CO emissions. Consequently, 

reliably detecting abnormal behaviors and incipient faults 

earlier is important in ensuring gas turbines operating 

efficiently and in preventing costly turbine trips.  

Combustor anomaly detection is technically challenging 

because gas turbine combustors are an extremely complex 

system, of which the operating conditions are heavily 

dependent on many factors, such as, machine type, fuel 

used, ambient conditions, and equipment aging.  

Monitoring the exhaust gas temperatures measured at the 

gas turbine exhaust section is a popular means for detecting 

the combustor abnormalities (Allegorico & Mantini, 2014). 

Exhaust temperature profiles provide valuable information 
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about thermal performance of gas turbines and combustors, 

thus can be indicative to combustor health conditions.  

Traditionally, for combustor anomaly detection, knowledge-

based rules are applied to the exhaust temperature profiles. 

Such knowledge-based rules not only have inadequate 

detection performance (detection rate and false alarm rate), 

but also are laborious in designing and developing the rules. 

Aiming for more accurate and robust detection of 

combustors’ incipient faults, thus for reducing unplanned 

downtimes and operation costs,  in recent years we at GE 

have been pursuing advancing our anomaly detection 

technologies from the traditional knowledge-based rules to 

knowledge-augmented data-driven approaches. Specifically 

for combustor anomaly detection, we have explored 

different data-driven, machine learning technologies, such 

as SVM, random forests, and neural networks. Using 

advanced machine learning modeling techniques has made 

certain degree of improvement in detection performance, 

but not as significantly as we would like. We observed that 

it is the feature engineering, a process of extracting 

appropriate features or signatures from raw sensor 

measurements, which made bigger difference in 

combustors’ detection performance. 

In our early work we handcrafted a set of features based on 

domain and engineering knowledge of gas turbine 

combustors. Using such handcrafted features for our 

anomaly detection models yielded better detection 

performance than directly using raw exhaust temperatures 

for combustors’ anomaly detection problems; however, 

handcrafting features is a manual process that is very much 

problem-specific and un-scalable. Thus it would be of great 

value if somehow we can automate the feature generation 

process. Deep learning (DL) is a sub-field of machine 

learning that involves learning good representations of data 

through multiple levels of abstraction. By hierarchically 

learning features layer by layer, with higher-level features 

representing more abstract aspects of the data, deep learning 

can discover sophisticated underlying structure and features. 

In recent years deep learning has attracted tremendous 

research attention and proven outstanding performance in 

many applications including image and video classification, 

computer vision, speech recognition, natural language 

processing, and audio recognition (Arel et al., 2010). 

Inspired by the success of deep learning in many other 

domains, in this paper we explore how deep learning can 

benefit PHM applications in general and combustor 

anomaly detection applications in particular. Broadly 

speaking deep learning has two types: supervised and 

unsupervised. Unsupervised feature learning, i.e., using 

unlabeled data to learn features, is the key idea behind the 

self-taught learning framework (Raina et al., 2007). 

Unsupervised feature learning is well suited for machinery 

anomaly detection since for PHM applications abundant 

unlabeled data are available and easily accessible, while 

accurately labeling industrial data is costly and, often time, 

impossible due to uncertainty of true events.  

Deep learning, to the best of our knowledge, has not been 

used for any PHM applications, despite its success in many 

other domains. Our initial work presented in this paper can 

hopefully shed some light on how deep learning, as an 

advanced machine learning technology, can benefit PHM 

applications and, more importantly, our work here can 

hopefully stimulate more research interests in our PHM 

community. 

The remaining of the paper is organized as follows. Section 

2 provides related work on both anomaly detection and 

feature engineering & feature learning as well. We then give 

details on our methodology of using deep learning for 

combustor anomaly detection in Section 3. Use case study 

and its results are given in Section 4.  We conclude our 

paper in Section 5. 

2. RELATED WORK 

2.1. Anomaly detection 

Anomaly detection, a technique for finding patterns in data 

that do not conform to expected behavior, has been 

extensively used in a wide range of applications, such as 

fraud detection in credit card and insurance industries, 

intrusion detection in cyber-security industry, fault detection 

in industrial analytics, to name a few. Survey papers, for 

example, Chandola et al. (2009), provide a comprehensive 

review of different anomaly detection methods and 

applications. 

Anomaly detection has been actively applied to different 

PHM applications including: aircraft engine fault detection 

(Tolani et al., 2006), wind turbine fault detection (Zaher et 

al., 2009), locomotive engine fault detection (Xue & Yan, 

2007), marine gas turbine engine (Ogbonnaya et al., 2012), 

and combined cycle power plants (Arranz et al., 2008), to 

name a few. 

There are a few studies specifically on combustor anomaly 

detection. For example, Mukhopadhyay and Ray (2013) 

used symbolic time series analysis for detecting lean blow-

out in gas turbine combustors. The time series data they 

used for analysis were optical sensor data from the 

photomultiplier tube (PMT). In the work by Chakraborty et 

al (2008), the tailpipe wall friction coefficient was proposed 

as the failure precursor to flame out of thermal pulse 

combustors and several data-driven techniques (information 

theory, symbolic dynamics and statistical pattern 

recognition) were applied to pressure oscillation signals for 

estimating the friction coefficient of the tailpipe wall. One 

work that mostly relates to our study in this paper is by 

Allegorico and Mantini (2014). Similar to ours, they also 

performed combustor anomaly detection based on exhaust 

temperature thermocouples. They formulated the anomaly 
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detection as a classification problem and used traditional 

neural networks and logistic regression as the classifiers. 

However, they didn’t do any feature engineering to extract 

features. Rather they directly used the exhaust temperature 

profile as the inputs to classifier, which showed a reasonable 

detection performance on the small dataset the authors 

picked, but may not generalize well in real applications.  

2.2. Feature engineering 

Feature engineering is the process of transforming raw data 

into features that better represent the underlying problem to 

the predictive models, resulting in improved model accuracy 

on unseen data (Brownlee, 2014). Feature engineering is 

arguably a critically important task in developing predictive 

solutions (Domingos, 2012); and at the same time it is also a 

challenging but the least well-studied topic in machine 

learning and data-mining (Brownlee, 2014). That is because 

feature engineering is a very much problem-specific, 

manual process that is typically performed by machine 

learning experts in conjunction with domain experts. 

As features are highly application dependent, there is almost 

no universal feature set that works well for all applications. 

Over the years, though, many application domains do have 

developed a number of application-specific features that are 

popularly used. For example, frequency of each word in the 

bag-of-words for document classification, scale-invariant 

feature transform (SIFT) for object recognition (Lowe, 

1999), and Mel-frequency cepstral coefficients (MFCC) for 
speech recognition (Davis and Mermelstein, 1980), and 

defect frequencies for vibration analysis. These commonly 

used features serve as a good starting point for feature 

engineering. 

 

In literature, publications specific on feature engineering are 

very sparse as stated by Brownlee (2014) that “feature 

engineering is another topic which doesn’t seem to merit 

any review papers or books, or even chapters in books”. 

Recently there are a few attempts on developing feature 

engineering tools that aim for facilitating the feature 

engineering task. For example, Anderson et al. (2014) 

proposed a feature engineering development environment 

that allows the user to write feature engineering code and 

evaluate the effectiveness of the engineered features.  

Heimerl et al. (2012) developed FeatureForge tool that uses 

interactive visualization for supporting feature engineering 

for natural language processing. 

Feature engineering for PHM applications also attracts 

researchers’ attention. For example, Yan et al. (2008) 

provided a survey on feature extraction for bearing PHM 

applications. 

2.3. Feature (representation) learning 

Feature learning, also called representation learning, is a 

sub-field of machine learning where the focus is to learn a 

transformation of raw data input to a representation that can 

be effectively exploited in machine learning tasks. Feature 

learning becomes an active research topic in recent years as 

deep learning or deep representation learning becomes a hot 

research topic [NIPS (2014), ICML (2013), and ICLR 

(2015)]. Deep representation learning has created great 

impact in the areas such as speech recognition (Deng, et al., 

2010), object recognition (Hinton, et al., 2006), and natural 

language processing (Collobert, et al., 2011). Deep 

representation learning employs deep learning architecture 

for feature learning. By stacking up multiple layers of 

shallow leaning blocks, higher layer features learned from 

lower layer features represent more abstract aspects of the 

data, and thus can be more robust to variations.  

Feature learning can be broadly categorized into 

unsupervised and supervised learning groups (Wikipedia, 

2015). Supervised representation learning includes primarily 

the traditional multi-layer neural networks and supervised 

dictionary learning. Unsupervised representation learning, a 

key idea behind the self-taught learning framework (Raina 

et al., 2007), covers more techniques, ranging from 

traditional methods such as PCA, ICA, and k-means, to 

advanced methods such as autoencoders, RBM, and sparse 

coding. Unsupervised representation learning has several 

advantages. For example, the explicitly learned features can 

be used for different prediction models. Unsupervised 

representation learning can also be an important component 

of transfer learning (Bengio, 2011). Successful feature 

learning algorithms and their applications can be found in 

recent literature using a variety of approaches, such as 

RBMs (Hinton et al., 2006), autoencoders (Hinton & 

Salakhutdinov, 2006), sparse coding (Lee et al., 2007), and 

K-means (Coates et al., 2011). The most popular building 

blocks include autoencoder and restricted Boltzmann 

machines (RBM). Denosing autoencoders (DAE), a variant 

of classic autoencoders, and its deep counterpart, stacked 

denoising autoencoders (SDAE) (Vincent, et al., 2010), 

have been used as a representation learning algorithm for 

several applications, for example, for pose-based action 

recognition (Budiman, et al., 2014), for tag recommendation 

(Wang, et al., 2015), and for handwritten digits recognition 

(Vincent, et al., 2010). SDAE has not been used for PHM 

applications, however. 

3. METHODOLOGY 

For combustor anomaly detection concerned in this paper, 

we adopt unsupervised representation learning scheme. 

Under this scheme, features are explicitly learned un-

supervisingly (without class labels) and the explicitly 

learned features are then used as input for a separate 

supervised model (classifier). There are different shallow 

learning blocks that can be stacked up to form deep feature 

learning structures. For combustor anomaly detection 

concerned in this paper we adopt the SDAE proposed by 

Vincent, et al. in 2010 as the unsupervised representation 
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learning algorithm, which has the denoising autoencoder 

(DAE), a variant of autoencoder (AE), as its shallow 

learning blocks. The main reason we chosen SDAE is that 

denoising autoencoders can learn features that are more 

robust to input noise and thus useful for classification. The 

features learned from the SDAE are then taken as the input 

to a separate NN classifier, extreme learning machine 

(ELM), for anomaly detection. Figure 1 illustrates both the 

SDAE for deep feature learning and the ELM for 

classification for combustor anomaly detection. Both SDAE 

and ELM are described in detail as follows. 

Figure 1. Overall structure of unsupervised feature learning 

for combustor anomaly detection 

3.1. SDAE for unsupervised feature learning 

Stacked denoising autoencoder (SDAE), introduced by 

Vincent et al (2010), is a deep learning structure that has 

denoising autoencoder (DAE) as its shallow learning blocks. 

DAE is a variant of classic autoencoder (AE). While details 

can be found in many references, we provide a brief 

description of AE and DAE as follows. 

 

An auto-encoder (AE), in its basic form, has two parts: an 

encoder and a decoder. The encoder is a function that maps 

an input � ∈ ���  to hidden representation ���� ∈ ��	 , that 

is, ���� 
 ���� � ���, where ��  is a nonlinear activation 

function, typically a logistic sigmoid function. The decoder 

function maps hidden representation h back to a 

reconstruction y: � 
 ����� � ��� , where ��  is the 

decoder’s activation function, typically either the identity 

function (yielding linear reconstruction) or a sigmoid 

function. 

 

Autoencoder training consists of finding parameters 

� 
 �, ��, ��� that minimize the reconstruction error on a 

training set of examples, D. That is:   ������ 

∑ ���, �� ���!�"∈# , where L is the reconstruction error.  

 

The reconstruction error, L, can be the squared error 

���, �� 
 	%∑ ��& % �&�'
��
&()  when �� is linear; or the cross-

entropy loss ���, �� 
 	%∑ �&*+���&� � �1 %��
&()

�&�*+��1 % �&� when �� is the sigmoid. 

 

To prevent autoencoders from learn the identity function 

that has zero reconstruction errors for all inputs, but does 

not capture the structure of the data-generating distribution, 

it is important that certain regularization is needed in the 

training criterion or the parametrization. A particular form 

of regularization consists in constraining the code to have a 

low dimension, and this is what the classical auto-encoder 

or PCA do. 

 

The simplest form of regularization is weigh-decay which 

favors small weights by optimizing the following cost 

function: ���-.���� 
 ∑ ���, �� ���!�"∈# � /∑ &0
'

&0  

 

Another form of regularization is by corrupting input x 

during training the autoencoder. Specifically, corrupting the 

input x in the encoding step, but still to reconstruct the clean 

version of x in the decoding step. This is called denoising 

autoencoder (DAE). The goal here is not for denoising of 

input signals per se. Rather denoising is advocated as a 

training criterion such that the extracted features will 

constitute better high-level representation. 

 

Vincent et al (2010) discussed three ways to corrupt inputs: 

1) additive isotropic Gaussian noise: �1|�~4��, 5'6� ; 2) 

masking noise: a fraction n of the elements of x (chosen at 

random for each example) is forced to 0;  and 3) salt-and-

pepper noise: a fraction n of the elements of x (chosen at 

random for each example) is set to their minimum or 

maximum possible value (typically 0 or 1) according to a 

fair coin flip. While the additive Gaussian noise is a natural 

choice for real valued inputs, the salt-and-pepper noise is a 

natural choice for input domains which are interpretable as 

binary or near binary such as black and white images or the 

representations produced at the hidden layer after a sigmoid 

squashing function. The masking noise is equivalent to 

turning off components that have missing values. Thus DAE 

is trained to fill-in the missing data, which forces the 

extracted features to better capture the dependence among 

the all input variables. 

3.2. ELM for classification 

For combustor anomaly detection problem concerned in this 

paper, we use SDAE to learn features, which are then used 

as the input to the extreme learning machine (ELM) 

classifier. ELM is a special type of feedforward neural 

networks introduced by Huang, et al. (Huang et al., 2006). 
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Unlike in other feedforward neural networks where training 

the network involves finding all connection weights and 

bias, in ELM, connections between input and hidden 

neurons are randomly generated and fixed, that is, they do 

not need to be trained; thus training an ELM becomes 

finding connections between hidden and output neurons 

only, which is simply a linear least squares problem whose 

solution can be directly generated by the generalized inverse 

of the hidden layer output matrix (Huang et al., 2006).  

Because of such special design of the network, ELM 

training becomes very fast. ELM has one design parameter, 

i.e., the number of hidden neurons. Studies have shown that 

the ELM prediction performance is not too sensitive to the 

design parameter, as long as it is large enough, say 1000, 

which simplifies ELM design and makes ELM a more 

attractive model. Numerous empirical studies and recently 

some analytical studies as well have shown that ELM is an 

efficient and effective model for both classification and 

regression (Huang, et al., 2012). Once again the ELM 

classifier takes feature learned from SDAE as the inputs and 

outputs probabilities of abnormality for gas turbine 

combustors. 

4. CASE STUDY AND RESULTS 

4.1. The business application 

The asset of interest for our study is a combustor assembly 

used in heavy-duty industrial gas turbines. The combustor 

assembly is composed of a plural of individual combustion 

chambers. Fuel and compressed airflow is mixed and 

combusted in each combustion chamber, then the expanded 

hot gas is guided through a hot gas path along a number of 

turbine stages to derive work. A number of thermal couples 

(TC) are arranged in the turbine exhaust system to measure 

the exhaust gas temperature. The number of TC 

measurements varies depending on the turbine frames being 

monitored. It is a standard practice using TC temperature 

profile to infer combustor health condition. A typical TC 

temperature profile after mean normalization is shown in 

Figure 2. 

Figure 2. A sample TC profile 

4.2. Data description 

Our database has several years of data sampled at once-per-

minute. For demonstration purpose, in this study, we use 

several months of data for one turbine. Specifically, we use 

three months of event-free data and four months of data 

where 10 events occurred somewhere in the four-month 

window. After filtering out bad data points and those data 

points corresponding to part load condition (TNH<95%), we 

end up with 13,791 samples before the POD events (these 

samples are event-free and are considered to be normal), 

300 samples for the POD events, and 47,575 samples after 

the POD events. The number of thermocouples for this 

turbine is 27, which is equal to the number of combustor 

cans.  

In this study, we treat the 13,791 samples before the POD 

events as event-free (normal) data for unsupervised feature 

learning. And we use the rest of data (both POD events and 

event-free data) for training and testing the classifier. 

4.3. Model design 

For unsupervised feature learning, we use 2-layer SDAE. 

While DAE1 has 30 hidden neurons, DAE2 has 12 hidden 

neurons (See Figure 1). Activation functions for hidden 

neurons of both DAEs are sigmoid function. The noise rate 

is 0.2. The learning rate and momentum are 0.02 and 0.5, 

respectively. The number of epochs for learning is 200 for 

both DAEs. DAEs are implemented in Matlab R2014a. 

The ELM classifier, as discussed in Section 3, has one 

design parameter, that is, the number of hidden neurons. 

Generally setting the number of hidden neurons to a large 

number, i.e., 1000 in this study. 

As described in the previous section, our data is highly 

imbalanced between normal and abnormal classes (with 

majority-to-minority ratio of approximately 150), which 

deserves a special attention in classifier modeling. In 

literature there are many different strategies handling 

imbalanced data. He and Garcia (2009) provided a 

comprehensive review of different imbalance learning 

strategies. In this paper we take advantage of ELM’s 

capability of weighting samples during learning. 

4.4. Results 

To demonstrate effectiveness of unsupervised feature 

learning for combustor anomaly detection, we compare 

classification performance between using the learned 

features and using knowledge-driven, handcrafted features. 

Remember we use the identical setting of the ELM classifier 

for the comparison. In other word, using different feature 

sets is the only difference between the two designs in 

comparing classification performance. We use ROC curves 

as the classification performance measure for comparison. 

We employ 5-fold cross-validation for model training and 

validation. To obtain more robust comparison we run the 5-

fold cross-validation 10 times, each time with different 

randomly splitting of 5 folds of the data. 

The handcrafted features are primarily simple statistics 

calculated on TC profiles. These simple statistics essentially 
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capture engineering knowledge of combustor TC profiles 

associated with different combustor states (healthy and 

fault). The 12 handcrafted features are listed in Table 1 

below. 

Table 1. Handcrafted Features 

ID Feature Description 

1 DWATT Raw turbine load 

2 TNH Raw turbine speed 

3 MAX Max TCs 

4 MEN Mean TCs 

5 STD Standard deviation of TCs 

6 MED Median of TCs 

7 DIF # diff b/w positive  & negative TCs 

8 ZR Zero crossing 

9 KR kurtosis 

10 SK skewness 

11 M3S Max of 3-pt sum 

12 M3M Max of 3-pt median 

 

The ROCs for the 10 runs of 5-fold cross-validation using 

the handcrafted features are shown in blue in Figure 3. 

Figure 3. ROCs comparison 

The 12 learned features are shown in Figure 4. Unlike the 

handcrafted features, each of which is a numerical number, 

the learned features are patterns representing the data (TC 

profiles) underlying structures. As the result, the learned 

features are more powerful in representing the data, thus 

performing better in classification. The ROCs for the 10 

runs of 5-fold cross-validation using the learned features are 

shown in red in Figure 3. 

From the ROC comparison in Figure 3, one can see clearly 

that the deep learned features give significant better 

classification performance than the handcrafted features do. 

Also from the ROCs one can see that using the deep learned 

features yields smaller variation in ROCs than using the 

handcrafted features. For example, when false positive rate 

(1-specifty) is at 1%, the mean and the standard deviation of 

the true positive rates (sensitivity) for both the deep learned 

features and the handcrafted features are approximately 

0.99 : 0.01 and 0.96 : 0.02, respectively. 

Figure 4. The 12 learned features 

 

5. CONCLUSION 

Accurately detecting gas turbine combustor abnormalities is 

important in reducing O&M costs of power plants. 

Traditional rule-based anomaly detection solutions are 

inadequate in achieving the desired detection performance. 

Adopting more advanced machine learning technologies as 

a means of improving combustors’ detection performance is 

in great need. Realizing that generating good features is 

both a critically important and challenging task in 

developing machine learning solutions, in this paper we 

attempt to leverage recently developed unsupervised 

representation learning, a key part of deep learning, for 

finding more salient features from raw TC measurements 

for achieving more accurate and robust combustor anomaly 

detection. More specifically, we want to know if 

representation learning, which has approved to be effective 

in many other applications, can be an effective feature 

generation means for PHM applications. By applying SDAE 

we demonstrated that deep feature learning could effectively 

generate features from the raw time-series TC 

measurements, which thus improved combustor anomaly 

detection. 

Unsupervised representation learning, or deep learning in 

general, has proven to be an effective ML technology in 
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other domains, but has not been used for any PHM 

applications. It is our hope that our initial work presented in 

this paper can shed some light on how deep learning as an 

advanced machine learning technology can benefit PHM 

applications and stimulate more research interests in our 

PHM community. In future we would like to conduct more 

thorough studies of combustor anomaly detection by using 

more real-world data. We would also like to explore other 

deep learning methods other than SDAE for combustor 

anomaly detection and other PHM applications as well. 
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