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ON ADAPTED COORDINATE SYSTEMS

ISROIL A. IKROMOV AND DETLEF MÜLLER

Abstract. The notion of an adapted coordinate system for a given real-
analytic function, introduced by V. I. Arnol’d, plays an important role, for
instance, in the study of asymptotic expansions of oscillatory integrals. In two
dimensions, A. N. Varchenko gave sufficient conditions for the adaptness of
a given coordinate system and proved the existence of an adapted coordinate
system for analytic functions without multiple components. Varchenko’s proof
is based on a two-dimensional resolution of singularities result.

In this article, we present a more elementary approach to these results,
which is based on the Puiseux series expansion of roots of the given function.
This approach is inspired by the work of D. H. Phong and E. M. Stein on the

Newton polyhedron and oscillatory integral operators. It applies to arbitrary
real-analytic functions, and even to arbitrary smooth functions of finite type.
In particular, we show that Varchenko’s conditions are in fact necessary and
sufficient for the adaptedness of a given coordinate system and that adapted
coordinates always exist in two dimensions, even in the smooth, finite type
setting. For analytic functions, a construction of adapted coordinates by means
of Puiseux series expansions of roots has already been carried out in work by
D. H. Phong, E. M. Stein and J. A. Sturm on the growth and stability of real-
analytic function, as we learned after the completion of this paper. In contrast
to their work, however, our proof more closely follows Varchenko’s algorithm
for the construction of an adapted coordinate system, which turns out to be
useful for the extension to the smooth setting.
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2822 I. A. IKROMOV AND D. MÜLLER

1. Introduction

It is an obvious fact that the asymptotic behavior of an oscillatory integral of
the form

I(λ) :=

∫
Rn

eiλf(x)a(x) dx

does not change under a smooth change of variables x = ϕ(y).
This observation is already employed in the proof of van der Corput’s lemma

(see, e.g., [7]), according to which the asymptotic behavior of a one-dimensional
oscillatory integral is determined by the maximal order of vanishing at the critical
points of the phase function f.

In higher dimensions, the problem of determining the exact asymptotic behavior
of an oscillatory integral is substantially more difficult. V. I. Arnol’d conjectured
in [1] that the asymptotic behavior of the oscillatory integral I(λ) is determined by
the Newton polyhedron associated to the phase function f in a so-called “adapted”
coordinate system. For some special cases this conjecture was then indeed veri-
fied by means of Arnol’d’s classification of singularities (see [2]). Later, however,
A. N. Varchenko [8] disproved Arnol’d’s conjecture in dimensions three and higher.

Moreover, in the same paper he was able to verify Arnol’d’s conjecture for two-
dimensional oscillatory integrals. In particular, in two dimensions, Varchenko gave
sufficient conditions for the adaptness of a given coordinate system, proved the
existence of an adapted coordinate system for analytic functions (without multiple
components), and showed that the leading term of the asymptotic expansion of I(λ)
can be constructed from the Newton polyhedron associated to the phase function
f in such an adapted coordinate system. These two-dimensional results were based
on a strong result on the resolution of singularities for this case. Note also that in
dimensions higher than two adapted coordinate systems may not exist, as has also
been shown by Varchenko [8].

The purpose of this article is to present a more elementary and concrete ap-
proach to the latter results in two dimensions, which is based on the Puiseux se-
ries expansion of roots of the given function f but does not require any stronger
two-dimensional resolution result. This approach was inspired by the work of
D. H. Phong and E. M. Stein in their seminal paper [5]. Our methods apply
to arbitrary real-analytic functions and even extend to arbitrary smooth functions
of finite type. Moreover, we show that Varchenko’s conditions are in fact necessary
and sufficient for the adaptedness of a given coordinate system, even in the smooth,
finite type setting.

After completion of this paper, we have learned that a construction of adapted
coordinates by means of Puiseux series expansions of roots has already been carried
out in the work by D. H. Phong, E. M. Stein and J. A. Sturm [6] (compare Theorems
4 and 5, and the remark at the bottom of page 539). In contrast to [6], however, our
proof more closely follows Varchenko’s algorithm for the construction of an adapted
coordinate system, which turns out to be useful for the extension to the smooth
setting.

The results and techniques in this paper are basic to the subsequent article [4] in
which we study estimates for maximal functions, oscillatory integrals and restriction
theorems associated to hypersurfaces in R

3.
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2. Preliminaries

Let f be a smooth real-valued function defined on a neighborhood of the origin
in R

2 with f(0, 0) = 0, ∇f(0, 0) = 0, and consider the associated Taylor series

f(x1, x2) ∼
∞∑

j,k=0

cjkx
j
1x

k
2

of f centered at the origin. The set

T (f) := {(j, k) ∈ N
2 : cjk =

1

j!k!
∂j
x1
∂k
x2
f(0, 0) �= 0}

will be called the Taylor support of f at (0, 0). We shall always assume that

T (f) �= ∅,
i.e., that the function f is of finite type at the origin. If f is real-analytic, so that
the Taylor series converges to f near the origin, this just means that f �= 0. The
Newton polyhedron N (f) of f at the origin is defined to be the convex hull of the
union of all the quadrants (j, k) + R

2
+ in R

2, with (j, k) ∈ T (f). The associated
Newton diagram Nd(f) in the sense of Varchenko [8] is the union of all compact
faces of the Newton polyhedron; here, by a face we shall mean an edge or a vertex.

We shall use coordinates (t1, t2) for points in the plane containing the Newton
polyhedron in order to distinguish this plane from the (x1, x2)-plane.

The Newton distance, or shorter distance d = d(f) between the Newton polyhe-
dron and the origin in the sense of Varchenko is given by the coordinate d of the
point (d, d) at which the bisectrix t1 = t2 intersects the boundary of the Newton
polyhedron.

The principal face π(f) of the Newton polyhedron of f is the face of minimal
dimension containing the point (d, d). Deviating from the notation in [8], we shall
call the series

fp(x1, x2) :=
∑

(j,k)∈π(f)

cjkx
j
1x

k
2

the principal part of f. In the case where π(f) is compact, fp is a mixed homogeneous
polynomial; otherwise, we shall consider fp as a formal power series.

Note that the distance between the Newton polyhedron and the origin depends
on the chosen local coordinate system in which f is expressed. By a local analytic
(respectively smooth) coordinate system at the origin we shall mean an analytic
(respectively smooth) coordinate system defined near the origin which preserves 0.
If we work in the category of smooth functions f, we shall always consider smooth
coordinate systems, and if f is analytic, then one usually restricts oneself to analytic
coordinate systems (even though this will not really be necessary for the questions
we are going to study, as we will see). The height of the analytic (respectively
smooth) function f is defined by

h(f) := sup{dx},
where the supremum is taken over all local analytic (respectively smooth) coordi-
nate systems x at the origin, and where dx is the distance between the Newton
polyhedron and the origin in the coordinates x.

A given coordinate system x is said to be adapted to f if h(f) = dx.
A. N. Varchenko [8] proved that if f is a real-analytic function (without multiple

components) near the origin in R
2, then there exists a local analytic coordinate
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2824 I. A. IKROMOV AND D. MÜLLER

system which is adapted to f, and he mentioned that the condition about multiple
components can be dropped.

It may be interesting at this point to remark that, of course, the notions intro-
duced above extend to smooth functions in more than two real variables. However,
as shown by Varchenko [8], in dimensions higher than two, adapted coordinate
systems may not exist, even in the analytic setting.

2.1. The principal part of f associated to a supporting line of the Newton
polyhedron as a mixed homogeneous polynomial. Let κ = (κ1, κ2) with
κ1, κ2 > 0 be a given weight with an associated one-parameter family of dilations
δr(x1, x2) := (rκ1x1, r

κ2x2), r > 0. A function f on R
2 is said to be κ-homogeneous

of degree a if f(δrx) = raf(x) for every r > 0, x ∈ R
2. Such functions will also be

called mixed homogeneous. The exponent a will be denoted as the κ-degree of f.
For instance, the monomial xj

1x
k
2 has κ-degree κ1j + κ2k.

If f is an arbitrary smooth function near the origin, consider its Taylor series∑∞
j,k=0 cjkx

j
1x

k
2 around the origin. We choose a so that the line Lκ := {(t1, t2) ∈

R
2 : κ1t1 + κ2t2 = a} is the supporting line to the Newton polyhedron N (f) of f.

Then the non-trivial polynomial

fκ(x1, x2) :=
∑

(j,k)∈Lκ

cjkx
j
1x

k
2

is κ-homogeneous of degree a; it will be called the κ-principal part of f. By definition,
we then have

(2.1) f(x1, x2) = fκ(x1, x2) + terms of higher κ-degree.

More precisely, we mean by this that every point (j, k) in the Taylor support of the
remainder term f − fκ lies on a line κ1t1 + κ2t2 = d with d > a parallel to, but
above the line Lκ; i.e., we have κ1j + κ2k > a. Moreover, clearly

Nd(fκ) ⊂ Nd(f).

The following lemma gives an equivalent description of the notion “terms of
higher κ-degree”, which is quite useful in applications, since it may be used to
essentially reduce many considerations to the case of polynomial functions. It will
mostly be applied without further mentioning.

Lemma 2.1. Assume that f is a smooth function defined near the origin, and let
c ≥ 0. Assume that κ1 ≤ κ2, and choose m ≥ 1 in N such that κ1m > c. Then
f consists of terms of κ-degree greater than or equal to c in the above sense (i.e.,
κ1j + κ2k ≥ c for every (j, k) ∈ T (f)) if and only if there exists a polynomial
function F with T (F ) ⊂ {(j, k) ∈ N : κ1j + κ2k ≥ c} and smooth functions ajk, for
j + k = m, such that

(2.2) f(x1, x2) = F (x1, x2) +
∑

j+k=m

xj
1x

k
2ajk(x1, x2).

Notice that κ1j + κ2k > c whenever j + k = m.

Proof. Assume that κ1j + κ2k ≥ c for every (j, k) ∈ T (f). If we then choose for F
the Taylor polynomial of degree m − 1 of f at the origin, the representation (2.2)
follows from Taylor’s formula.

Conversely, it is obvious that the representation (2.2) implies that κ1j+κ2k ≥ c
for every (j, k) ∈ T (f). �
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Sometimes it will be convenient to extend these definitions to the case where
κ1 = 0 or κ2 = 0. In that case, the κ-principal part

∑
(j,k)∈Lκ

cjkx
j
1x

k
2 of f will

just be considered as a formal power series, unless f is real-analytic, where it is
real-analytic, too.

Let P ∈ R[x1, x2] be a mixed homogeneous polynomial, and assume that∇P (0, 0)
= 0. Following [4], we denote by

m(P ) := ord S1P

the maximal order of vanishing of P along the unit circle S1 centered at the origin.
The following proposition will be a useful tool.
Ifm1, . . . ,mn are positive integers, then we denote by (m1, . . . ,mn) their greatest

common divisor.

Proposition 2.2. Let P be a (κ1, κ2)-homogeneous polynomial of degree one, and
assume that P is not of the form P (x1, x2) = cxν1

1 xν2
2 . Then κ1 and κ2 are uniquely

determined by P, and κ1, κ2 ∈ Q.
Let us assume that κ1 ≤ κ2, and write

κ1 =
q

m
, κ2 =

p

m
, (p, q,m) = 1,

so that in particular p ≥ q. Then (p, q) = 1, and there exist non-negative integers
α1, α2 and a (1, 1)-homogeneous polynomial Q such that the polynomial P can be
written as

(2.3) P (x1, x2) = xα1
1 xα2

2 Q(xp
1, x

q
2).

More precisely, P can be written in the form

(2.4) P (x1, x2) = cxν1
1 xν2

2

M∏
l=1

(xq
2 − λlx

p
1)

nl ,

with M ≥ 1, distinct λl ∈ C \ {0} and multiplicities nl ∈ N \ {0}, with ν1, ν2 ∈ N

(possibly different from α1, α2 in (2.3)).

Let us put n :=
∑M

l=1 nl. The distance d(P ) of P can then be read from (2.4) as
follows:

If the principal face of N (P ) is compact, then it lies on the line κ1t1 +κ2t2 = 1,
and the distance is given by

(2.5) d(P ) =
1

κ1 + κ2
=

ν1q + ν2p+ pqn

q + p
.

Otherwise, we have d(P ) = max{ν1, ν2}. In particular, in any case we have d(P ) =
max{ν1, ν2, 1

κ1+κ2
}.

Proof. The proof of Proposition 2.2 is based on elementary number theoretic argu-
ments. Denote by A the set of all solutions (α, β) ∈ N

2 of the linear equation

(2.6) ακ1 + βκ2 = 1.

Then

(2.7) P (x1, x2) =
∑

(α,β)∈A

cα,β x
α
1x

β
2

for suitable coefficients cα,β .
If P is not of the form P (x1, x2) = cxν1

1 xν2
2 , then the equation (2.6) has at

least two different solutions (α1, β1), (α2, β2) ∈ N
2 for which the coefficients cα,β
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2826 I. A. IKROMOV AND D. MÜLLER

in (2.7) are non-vanishing. The corresponding equations α1κ1 + β1κ2 = 1 and
α2κ1 + β2κ2 = 1 determine the numbers κ1, κ2 uniquely and show that they are
rational.

Assume next that κ1 ≤ κ2, and write

κ1 =
q

m
, κ2 =

p

m
, (p, q,m) = 1.

Then choose (α0, β0) ∈ A with α0 maximal. Since pZ+ qZ+mZ = Z, the identity
(2.6), which is equivalent to

αq + βp = m,

implies that pZ+ qZ = Z (since A �= ∅), so that

(2.8) (p, q) = 1.

Notice that (α, β) ∈ A is equivalent to (α − α0)q + (β − β0)p = 0. Then (2.8)
implies that α− α0 = −sp, β − β0 = sq for some s ∈ Z, or, equivalently,

α = α0 − sp, β = β0 + sq.

Since α0 is maximal for A, we have s ≥ 0. Choose s1 ∈ Z maximal with α1 :=
α0 − s1p ≥ 0. Then for any (α, β) ∈ A we have the relation

α = α1 + (s1 − s)p, β = β0 + sq.

Notice that s, s1− s ∈ N. So, every monomial xα
1x

β
2 with (α, β) ∈ A can be written

as

xα
1 x

β
2 = xα1

1 xβ0

2 (xp
1)

s1−s(xq
2)

s.

This in combination with (2.7) yields (2.3).
In order to prove (2.4), write

Q(y1, y2) = cyn2 + c1y
n−1
2 y1 + · · ·+ cny

n
1 ,

where n is the degree of Q. We may then assume that c �= 0, for otherwise we
can pull out some power of y1 = xp

1 from Q in (2.3). Assuming without loss of
generality that c = 1, we can write

Q(y1, y2) = yn1 Q(1,
y2
y1

) = yn1

n∏
j=1

(
y2
y1

− λj) =
n∏

j=1

(y2 − λjy1),

where λ1, . . . , λn ∈ C are the roots of the polynomial Q(1, y2), listed with their
multiplicities. This yields (2.4).

To compute the distance d(P ), observe that the vertices of the Newton poly-
hedron of P are given by X1 := (ν1, ν2 + nq) and X2 := (ν1 + np, ν2), which, by
our assumptions, are different points on the line κ1t1 + κ2t2 = 1. One then easily
computes that

(2.9) κ1 =
q

ν1q + ν2p+ pqn
, κ2 =

p

ν1q + ν2p+ pqn
.

Thus, if the principal face of N (P ) is compact, then it is the interval connecting
these two points and hence it lies on the line κ1t1 + κ2t2 = 1, and we immediately
obtain (2.5). Otherwise, if ν1 ≤ ν2, then the principal face is the horizontal half-line
with left endpoint X1, so that d(P ) = ν2, and similarly d(P ) = ν1, if ν1 ≥ ν2.
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ADAPTED COORDINATE SYSTEMS 2827

From the geometry of N (P ), it is then clear that we always have the identity
d(P ) = max{ν1, ν2, 1

κ1+κ2
}. �

The proposition shows that every zero (or “root”) (x1, x2) of P which does not

lie on a coordinate axis is of the form x2 = λ
1/q
l x

p/q
1 . The quantity

dh(P ) =
1

κ1 + κ2

will be called the homogeneous distance of the mixed homogeneous polynomial P.
Recall that (dh(P ), dh(P )) is just the point of intersection of the bisectrix with the
line κ1t1 + κ2t2 = 1 on which the Newton diagram Nd(P ) lies. Moreover,

dh(P ) ≤ d(P ),

and (2.9) shows that

(2.10) dh(P ) =
ν1q + ν2p+ pqn

q + p
.

Notice also that

(2.11) m(P ) = max{ν1, ν2,max
l∈R

nl},

where the index set R := {l = 1, . . . ,M : λl ∈ R} corresponds to the set of real
roots of P which do not lie on a coordinate axis.

Corollary 2.3. Let P be a (κ1, κ2)-homogeneous polynomial of degree one as in
Proposition 2.2, and consider the representation (2.4) of P. We again put n :=∑M

l=1 nl.

(a) If κ2/κ1 /∈ N, i.e., if q ≥ 2, then n < dh(P ). In particular, every real root

x2 = λ
1/q
l x

p/q
1 of P has multiplicity nl < dh(P ).

(b) If κ2/κ1 ∈ N, i.e., if q = 1, then there exists at most one real root of P on the
unit circle S1 of multiplicity greater than dh(P ). More precisely, if we put
n0 := ν1, nM+1 := ν2, choose l0 ∈ {0, . . . ,M+1} so that nl0 = max

l=0,...,M+1
nl,

and assume that nl0 > dh(P ), then nl < dh(P ) for every l �= l0.
(c) If 1 < κ2/κ1 ∈ N, then there exists at most one real root (x0

1, x
0
2) of P on

the unit circle S1 with x0
1 �= 0, which has multiplicity greater than or equal

to dh(P ).

Proof. If q ≥ 2, then p > q ≥ 2, so that 1
p + 1

q < 1. Hence by (2.10)

dh(P ) ≥ pqn

q + p
> n.

This proves (a).
To prove (b), suppose next that q = 1, and assume that nl1 , nl2 ≥ dh(P ) and

nl1 + nl2 > 2dh(P ), where l1 < l2. If l1 > 0, then we arrive at the contradiction

dh(P ) ≥ p(nl1 + nl2)

p+ 1
>

2pdh(P )

p+ 1
≥ dh(P ).

Similarly, if l1 = 0, then we obtain the contradiction

dh(P ) ≥ n0 + pnl2

p+ 1
>

dh(P ) + pdh(P )

p+ 1
= dh(P ).
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To prove (c), we argue similarly as in case (b), noticing that here we have 0 < l1 <
l2, and p ≥ 2. Then

dh(P ) ≥ p(nl1 + nl2)

p+ 1
≥ 2pdh(P )

p+ 1
> dh(P ).

�

The corollary shows in particular that the multiplicity of every real root of P not
lying on a coordinate axis is bounded by the distance d(P ), unless q = 1, in which
case there can at most be one real root x2 = λl0x

p
1 with multiplicity exceeding

d(P ). If such a root exists, we shall call it the principal root of P.

3. Conditions for adaptedness of a given coordinate system

In [8], Varchenko has provided various sufficient conditions for the adaptedness
of a given coordinate system (at least under certain non-degeneracy conditions),
which prove to be useful. The goal of this section is to provide a new, elementary
approach to these results in the general case. Our approach has the additional
advantage of extending to the category of smooth functions.

3.1. On the effect of a change of coordinates on the Newton diagram. We
have to understand what effect a change of coordinates has on the Newton diagram.
To this end, we shall make use of the following auxiliary result.

Lemma 3.1. Let m ∈ N, m ≥ 1, be given, and denote by μ the weight μ := (1,m).
Moreover, let P be a μ-homogeneous polynomial. Then its Newton diagram Nd(P )
is a compact interval [(A0, B0), (A1, B1)] joining two vertices (A0, B0), (A1, B1)
(which may coincide), where we shall assume that A0 ≤ A1.

Moreover, let x = ϕ(y) be a change of coordinates of the form x1 = y1 and
x2 = y2 + a2y

m
1 (with a2 �= 0) if m ≥ 1, or x1 = y1 + a1y2 and x2 = y2 + a2y1 if

m = 1 (with aj �= 0). Denote by P̃ the polynomial P ◦ϕ. Then P̃ is μ-homogeneous

of the same degree as P, and its Newton diagram Nd(P̃ ) is an interval of the form

[(Ã0, B̃0), (Ã1, B̃1)], with Ã0 ≤ Ã1.
Assume that either

(i) the interval Nd(P ) lies in the closed half-space above the bisectrix, i.e.,
j ≤ k for every (j, k) ∈ Nd(P ) (Figure 1)

(ii) or the point (A0, B0) lies above or on the bisectrix, i.e., A0 ≤ B0, and
m(P ) ≤ d(P ), where m(P ) again denotes the maximal order of vanishing
of P along the unit circle S1 and d(P ) denotes the distance.

Then the point (Ã0, B̃0) lies in the closed half-space above the bisectrix and the point

(Ã1, B̃1) lies in the closed half-space below the bisectrix. In particular, the Newton

diagram Nd(P̃ ) intersects the bisectrix (Figure 2).

Proof. We have to show that conditions (i) or (ii) imply

(3.1) Ã0 ≤ B̃0 and Ã1 ≥ B̃1.

Now, by Proposition 2.2, we can write P in the form

(3.2) P (x1, x2) = xα
1 x

β
2

∏
l

(x2 − clx
m
1 )nl ,
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Figure 1

Figure 2

where the cl’s are the non-trivial distinct complex roots of the polynomial P (1, x2)
and the nl’s are their multiplicities.

It is easy to read from (3.2) that the vertices of the Newton polyhedron of P are
given by (A0, B0) and (A1, B1), where

(3.3) A0 := α, B0 := β +N, A1 := α+mN, B1 := β,

and that

dh(P ) =
A1 +mB1

1 +m
=

α+m(β +N)

1 +m
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(compare also [5]); here, we have put

N :=
∑
l

nl.

Assume first that m ≥ 1 and x1 = y1, x2 = y2 + a2y
m
1 . Then, by (3.2), we have

(3.4) P̃ (y1, y2) = yα1 (y2 + a2y
m
1 )β

∏
l

(y2 − (cl − a2)y
m
1 )nl .

By looking at the terms of lowest power of y1 in (3.4), we see that Ã0 = α, B̃0 =
β +N, i.e.,

(Ã0, B̃0) = (A0, B0),

so that Ã0 ≤ B̃0. We next identify the term of highest power of y1 in (3.4) in order

to determine (Ã1, B̃1).

If a2 �= cl for every l, then Ã1 = α+mβ +mN and B̃1 = 0; hence Ã1 > B̃1.
Assume next that a2 = cl0 coincides with a non-trivial root (which is then

necessarily real). Then we obtain

(3.5) Ã1 = α+mβ +m(N − nl0), B̃1 = nl0 .

Now, if condition (i) holds, then by (3.3) we have

(3.6) α+mN ≤ β,

which by Corollary 2.3 easily implies nl0 ≤ α+m(β +N − nl0). Also, if (ii) holds,
then

nl0 ≤ m(P ) ≤ dh(P ) =
α+m(β +N)

1 +m
,

which is equivalent to nl0 ≤ α+m(β +N − nl0). Thus both conditions imply that

(3.7) Ã1 ≥ B̃1,

so that (3.1) is satisfied.
There remains the case m = 1 and x1 = y1 + a1y2, x2 = y2 + a2y

m
1 , with

a1, a2 �= 0. In this case,

(3.8) P̃ (y1, y2) = (y1 + a1y2)
α(y2 + a2y1)

β
∏
l

(
(1− cla1)y2 + (a2 − cl)y1

)nl

,

where a1, a2 �= 0. Our assumptions imply that either (3.6) holds or that for every l
such that cl is real we have

(3.9) nl ≤ dh(P ) =
α+ β +N

2
.

Notice also that it may happen that cl1a1 = 1 or cl0 = a2, but at most for one l0
and one l1, and that these indices must be different, since ϕ has a non-degenerate
Jacobian at 0.

Now, if cla1 �= 1 for every l, then

Ã0 = 0, B̃0 = α+ β +N,

and if cl1a1 = 1, then

Ã0 = nl1 , B̃0 = α+ β +N − nl1 .

Moreover, if cl �= a2 for every l, then

Ã1 = α+ β +N, B̃1 = 0,
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and if cl0 = a2, then

Ã1 = α+ β +N − nl0 , B̃1 = nl0 .

Using (3.6), respectively (3.9), it is easy to check that Ã0 ≤ B̃0 and Ã1 ≥ B̃1 in all
cases. �

Now fix a smooth function f defined near the origin satisfying f(0, 0) = 0 and
∇f(0, 0) = 0.

Choose κ := (κ1, κ2) with κj ≥ 0 such that the principal face π(f) of the Newton
polyhedron lies on the line κ1t1 + κ2t2 = 1. Notice that κ is uniquely determined
unless π(f) is a vertex. In the latter case, we shall assume that κ1, κ2 > 0. Flipping
coordinates x1 and x2, if necessary, we shall assume without loss of generality that
κ1 ≤ κ2. Notice that then κ1 = 0 if and only if the principal face is non-compact.
In this case, it is a half-line which lies on the horizontal line Lκ given by t2 = 1/κ2.
Also, if κ1 > 0, then the principal face is compact and the principal part fp = fκ
of f is a κ-homogeneous polynomial of degree one.

Next consider a smooth local coordinate system y at the origin given by x = ϕ(y),
and put

f̃(y1, y2) := f(ϕ(y1, y2)).

Flipping coordinates y1 and y2, if necessary, we may assume without loss of gener-

ality that (x1, x2) = (ϕ1(y1, y2), ϕ2(y1, y2)) satisfies
∂ϕj(0,0)

∂yj
�= 0 for j = 1, 2.

Therefore, we can write the functions ϕ1, ϕ2 in the form

(3.10) ϕ1(y1, y2) = y1ψ1(y1, y2) + η1(y2), ϕ2(y1, y2) = y2ψ2(y1, y2) + η2(y1),

where ψ1, ψ2, η1, η2 are smooth functions satisfying

ψ1(0, 0) �= 0, ψ2(0, 0) �= 0, η1(0) = η2(0) = 0.

Since separate scaling of the coordinates x1 and x2 does not change the Newton
polyhedron, we may further assume that ψ1(0, 0) = ψ2(0, 0) = 1.

Denote by kj the order of vanishing of ηj at 0, j = 1, 2. Then clearly kj ≥ 1. We
shall see that if k2 = ∞, i.e., if the function η2 is flat at 0, then the distance will
not change under the change of coordinates; i.e., dx = dy.

On the other hand, if k2 is finite, then according to (3.10), the main term of ϕ2

is of the form y2+a2y
k2
1 , with a2 �= 0. Therefore, we then introduce a second weight

μ := (1, k2). Then the μ-principal part of ϕ2(y1, y2) is given by y2 + a2y
k2
1 , which

is μ-homogeneous of degree k2. Recall that Lμ := {(t1, t2) ∈ R
2 : t1 + k2t2 = d}

denotes the supporting line to the Newton polyhedron N (f). Notice that the line
Lκ has slope κ1

κ2
≤ 1 and that Lμ has slope 1

k2
≤ 1. The effect of the change of

coordinates on the Newton diagram is then related to the interplay between these
two homogeneities κ and μ, in particular the relation between the slopes of the
corresponding supporting lines.

We put κ2

κ1
:= ∞, if κ1 = 0.

Lemma 3.2. In the situation described above, the following hold true:
(a) Assume either that

(i) κ2 > κ1, and either k2 = ∞ or ∞ > k2 > κ2

κ1
(so that the line Lμ is less

steep than the line Lκ), or that
(ii) κ1 = κ2 and k1, k2 > 1.
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Then dy = dx.
(b) If k2 < κ2

κ1
(so that the line Lμ is steeper than the line Lκ), then dy ≤ dx.

In particular, if κ1 = 0, i.e., if the principal face is non-compact, then the
coordinates (x1, x2) are adapted to f.

Proof. (a) The case where κ1 = 0 and k2 = ∞.
In this case n := 1

κ2
∈ N, n ≥ 1, so that the principal face is a half-line lying

on the horizontal line Lκ given by t2 = n, and dx = n. Moreover, η2 is flat at the
origin; i.e.,

(3.11) ∂j
y1
η2(0) = 0

for every j ∈ N. In view of the structure of the Newton polyhedron that we assume,
it is easy to see that f can then be written in the form

f(x1, x2) = xn
2x

n1
1 g(x1) + xn+1

2 h(x1, x2) +

n−1∑
k=0

ak(x1)x
k
2 ,

where g and h are smooth functions and g(0) �= 0, and where a1, . . . , an−1 are flat
functions at the origin. Moreover, n1 < n. This implies that

f̃(y1, y2) = ϕ2(y1, y2)
n ϕ1(y1, y2)

n1G(y1, y2) + ϕ2(y1, y2)
n+1H(y1, y2) +R(y1, y2)

for some smooth functions G,H, and R, where G(0, 0) �= 0, and where R is flat at

the origin. Since ∂ϕk

∂yk
(0, 0) = 1, by the product rule and (3.11) this easily implies

that ∂n1
y1
∂n
y2
f̃(0, 0) �= 0 and ∂l

y1
∂j
y2
f̃(0, 0) = 0 if j < n, or if j = n and l < n1, so

that (n1, n) ∈ N (f̃), but no lattice point below or to the left of this point belongs

to N (f̃). This shows that dy = dx = n.
(b) The case where k2 > κ2

κ1
and κ1 > 0, and either κ2 > κ1, or κ1 = κ2

and k1 > 1.
Let us first state some general observations. If ϕκ denotes the κ-principal part

of ϕ, then it is easily seen, e.g., by Lemma 2.1, that

f̃(y1, y2) = fκ ◦ ϕκ(y1, y2) + terms of higher κ-degree,

so that

f̃κ = fκ ◦ ϕκ.

Moreover, fκ ◦ ϕκ is a κ-homogeneous polynomial, so that its Newton diagram
Nd(f̃κ) is again a compact interval (possibly a single point). In case this inter-

val intersects the bisectrix, too, then the principal face of N (f̃) is contained in
it. Moreover, if ϕκ has κ-degree one, then Nd(fκ) again lies on the line Lκ, and
consequently we have dy = dx.

Notice that the same conclusion holds true if x1, x2 are κ-homogeneous of any
degree δ and if ϕκ has the same κ-degree δ.

Now, if k2 > κ2

κ1
, then k2κ1 > κ2, and thus, by (3.10), x2 = y2, up to terms of

higher κ-degree. Moreover, if κ2 > κ1 or k1 > 1, then also x1 = y1, up to terms
of higher κ-degree, so that ϕκ(y1, y2) = (y1, y2). Thus the reasoning above applies,
and we see that dy = dx.

c) The case where k2 < κ2

κ1
and κ1 ≥ 0.

In this case, the μ-principal part of ϕ2(y1, y2) is given by y2 + a2y
k2
1 , and the

μ-principal part of ϕ1(y1, y2) is given by y1 if k2 > 1 and by y1 + a1y2 if k2 = 1,
with a1 �= 0 if and only if k1 = 1.
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Choose d > 0 such that the line Lμ := {(t1, t2) ∈ R
2 : t1 + k2t2 = d} is the

supporting line to the Newton polyhedron N (f), and let fμ be the μ-principal part
of f. Then obviously d ∈ N. Since the line Lμ is steeper than the line κ1t1+κ2t2 = 1,
it is clear from the geometry of the Newton polyhedron that Lμ∩N (f) is a compact
interval Iμ (possibly a single point) lying in the closed half-space above the bisectrix;
i.e.,

fμ(x) =
∑

(j,k)∈Iμ

cjkx
j
1x

k
2 , where j ≤ k for every (j, k) ∈ Iμ.

Applying Lemma 3.1 to the μ-homogeneous polynomial fμ, we see that the Newton

diagram of f̃μ = fμ◦ϕμ intersects the bisectrix. The principal face ofN (f̃) therefore
lies on the line Lμ, and since this line is steeper than the line Lκ containing the
principal face of N (f), it is clear from the geometry that dy ≤ dx.

Finally, assume that κ1 = 0. Then either k2 = ∞ or k2 < κ2

κ1
, and so we always

have dy ≤ dx. Therefore, the coordinates (x1, x2) are adapted to f. �

Theorem 3.3. Let f be a real-analytic (respectively smooth) function near the
origin, with f(0, 0) = 0 and ∇f(0, 0) = 0. Assume that the given coordinates are
not adapted to f. Then all of the following conditions hold true:

(a) The principal face π(f) of the Newton polyhedron is a compact edge. It thus
lies on a uniquely determined line κ1t1+κ2t2 = 1, with κ1, κ2 > 0. Flipping
coordinates x1, x2, if necessary, we assume without loss of generality that
κ1 ≤ κ2.

(b) κ2

κ1
∈ N.

(c) Any root of fp of maximal order m(fp) on the unit circle S1 lies away from
the coordinate axes, and we have m(fp) > d(f). In particular, there exists
a unique non-trivial real root a of the polynomial fp(1, x2) with multiplicity
na = m(fp) > d(f).

Moreover, in this case, if we put m := κ2

κ1
∈ N, then an adapted coordinate system

for the principal part fp of f is defined by y1 := x1, y2 := x2 − axm
1 . The height of

fp is then given by h(fp) = m(fp).
Conversely, if the conditions (a)-(c) are satisfied, then the given coordinates are

not adapted to the principal part fp of f.

Notice that for mixed homogeneous polynomials f = fp the theorem gives a
necessary and sufficient condition for the adaptedness of the coordinates. We shall
see later that the same is indeed true for general functions f.

Also observe that the root in (c) with multiplicity na > d(f) is the principal root
of fp.

We finally remark that condition (b) is in fact redundant, since it is a consequence
of (a) and (c), in view of Corollary 2.3. We nevertheless included it in order to stress
that (b) is a necessary condition for non-adaptedness.

Proof of Theorem 3.3. Assume that the coordinates (x1, x2) are not adapted to f.
Then there exists a smooth change of coordinates x = ϕ(y) at the origin such that

(3.12) dy > dx.

Arguing similarly as in the proof of Lemma 3.2, we may assume that ϕ satisfies
(3.10), with

ψ1(0, 0) = ψ2(0, 0) = 1, η1(0) = η2(0) = 0.
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Denote again by kj the order of vanishing of ηj at 0, j = 1, 2, and choose the weight
κ = (κ1, κ2) as before in such a way that the principal face of N (f) lies on the line
Lκ. Again, assume that κ1 ≤ κ2.

From (3.12) and Lemma 3.2 it then follows that if κ2 > κ1, then

κ2

κ1
= k2 ∈ N,

and if κ1 = κ2, then k1 = 1 or k2 = 1. In the latter case, by symmetry in the vari-
ables x1 and x2, let us assume without loss of generality that k2 = 1. In particular,
the principal face π(f) is compact, hence either a compact edge or a vertex. It
is therefore an interval [(A0, B0), (A1, B1)] joining two vertices (A0, B0), (A1, B1)
(which may coincide), i.e.,

π(f) = [(A0, B0), (A1, B1)].

We shall assume that A0 ≤ A1. Since this interval intersects the bisectrix t1 = t2,
we then have

(3.13) A0 ≤ B0, A1 ≥ B1.

In the sequel, let us write m := k2 and consider the κ-homogeneous polynomial
fp = fκ. Its Newton diagram is given by the interval [(A0, B0), (A1, B1)].

We next show thatm(fκ) > dx. To this end, assume to the contrary thatm(fκ) ≤
dx, so that fκ satisfies condition (ii) in Lemma 3.1. Observe that the κ-principal
part of ϕ2(y1, y2) is given by y2 + a2y

m
1 , where a2 �= 0, and the κ-principal part of

ϕ1(y1, y2) is given by y1, unless κ1 = κ2 (hence m = 1) and k1 = 1, when it is given

by y1 + a1y2, with a1 �= 0. Therefore, the κ-principal part f̃κ of f̃ is given by

f̃κ(y1, y2) = fκ(y1 + a1y2, y2 + a2y
m
1 ),

where a2 �= 0 and a1 �= 0 if and only if m = k1 = 1. Lemma 3.1 then shows that the
Newton diagram of f̃κ intersects the bisectrix so that the principal face of N (f̃)
lies on the line Lκ; hence dy = dx. This contradicts (3.12).

We have thus seen that our assumptions on f imply that κ2

κ1
∈ N and m(fp) >

d(f). Assuming these properties, write the principal part fp = fκ of f according to
Proposition 2.2 in the form

(3.14) fκ(x1, x2) = xα
1 x

β
2

∏
l

(x2 − clx
m
1 )nl ,

where the cl’s are the non-trivial distinct complex roots of the polynomial fκ(1, x2)
and the nl’s are their multiplicities.

Observe that clearly N (fκ) is contained in the half-plane {t1 ≥ α}, so that
dx = d(fκ) ≥ α. Similarly, we see that dx ≥ β. Consequently, there must be an l0
with real root cl0 so that nl0 = m(fp). Notice that this root is unique, by Corollary
2.3. Let us remark at this point that this excludes the possibility that the principal

face of f is a vertex, for then fp(x) would be of the form cxα
1 x

β
2 , so that fp(1, x2)

has no non-trivial root. Consequently, π(f) is a compact edge.
We show that in this case the change of coordinates x1 := y1, x2 := y2 + al0y

m
1

leads to adapted coordinates. To this end, we shall refer to the notation and results
in the proof of Lemma 3.1, applied to P := fp.

We have seen that the function f̃p representing fp in the new coordinates (y1, y2)
is again a κ-homogeneous polynomial, so that its Newton diagram is a compact

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



ADAPTED COORDINATE SYSTEMS 2835

interval [(Ã0, B̃0), (Ã1, B̃1)] whose endpoints are given by (Ã0, B̃0) = (A0, B0) and
(3.5). Since now nl0 > dx, the order signs ≥ in (3.7) have to be replaced by <, i.e.,

Ã1 < B̃1.

This implies that the interval [(Ã0, B̃0), (Ã1, B̃1)] lies in the half-plane t2 > t1.

Consequently, the principal face of N (f̃p) lies on the horizontal line t2 = B̃1; hence

dy = B̃1 = m(fp). Since this face is non-compact, the coordinates (y1, y2) are
adapted, due to Lemma 3.2.

Notice, however, that the same change of coordinates will in general not lead to
an adapted coordinate system for f – this may require further, higher order terms
in y1, in addition to al0y

m
1 .

Finally, assume conversely that all of the conditions (a)-(c) are satisfied. Then
the coordinates (x1, x2) are not adapted to fp, since, as we have seen, we can change
coordinates for fp in such a way that, in the new coordinates (y1, y2), the distance
is given by dy = m(fp) > dx. This concludes the proof of Theorem 3.3. �

As a corollary, we obtain the following characterization of the height in the case
of a κ-homogeneous polynomial.

Corollary 3.4. Let P be a κ-homogeneous polynomial as in Proposition 2.2. Then

h(P ) = max{m(P ), dh(P )}.

Proof. We adopt the notation from Proposition 2.2. If κ2

κ1
/∈ N, then the coordinates

are adapted to P, and by Corollary 2.3 (a) and (2.11) we have max{m(P ), dh(P )} =
max{ν1, ν2, dh(P )} = d(P ) = h(P ).

So, assume next that κ2

κ1
∈ N. Then, according to Corollary 2.3 (b), there is at

most one real root of P on the unit circle with multiplicity nl0 > dh(P ).
If there is no such root, then m(P ) ≤ dh(P ), and so the coordinates are adapted.

This shows that h(P ) = d(P ) = dh(P ) = max{m(P ), dh(P )}.
If there is such a root, and if it lies on one of the coordinate axes, then nl0 = ν1

or nl0 = ν2, hence m(P ) = max{ν1, ν2}, and the claim follows. We may thus
assume that the root does not lie on a coordinate axis, so that 1 ≤ l0 ≤ M. Then
ν1, ν2 ≤ dh(P ), which implies that the principal face π(P ) of the Newton polyhedron
of P must be a compact edge. Then, by Theorem 3.3, the coordinates are not
adapted to P, and h(P ) = m(P ) > d(P ). Since d(P ) ≥ dh(P ), the conclusion also
follows in this case. �

4. The real-analytic case

In this section we shall provide yet another proof of Varchenko’s result that every
real-analytic function f admits an analytic coordinate system which is adapted to
f. Our proof combines Varchenko’s algorithm for the construction of an adapted
coordinate system with the use of the Puiseux series expansion of roots of f in the
work by Phong, Stein and Sturm [6]. This approach will turn out to be useful for
the extension to the smooth setting.

4.1. Description of the Newton polyhedron in terms of the roots. We
begin by recalling some notions and results from the seminal article [5] by Phong
and Stein.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



2836 I. A. IKROMOV AND D. MÜLLER

Again assume f to be real-analytic and real-valued. By the Weierstraß prepara-
tion theorem we can then write

f(x1, x2) = U(x1, x2)x
ν1
1 xν2

2 F (x1, x2)

near the origin, where F (x1, x2) is a pseudopolynomial of the form

F (x1, x2) = xm
2 + g1(x1)x

m−1
2 + · · ·+ gm(x1)

and U, g1, . . . , gm are real-analytic functions satisfying U(0, 0) �= 0, gj(0) = 0.
Observe that the Newton polyhedron of f is the same as that of xν1

1 xν2
2 F (x1, x2).

We shall also assume without loss of generality that gm is a non-trivial function so
that the roots r(x1) of the equation F (x1, x2) = 0, considered as a polynomial in
x2, are all non-trivial.

It is well known that these roots can be expressed in a small neighborhood of 0
as Puiseux series

r(x1) = cα1

l1
x
al1
1 + cα1α2

l1l2
x
a
α1
l1l2

1 + · · ·+ c
α1···αp

l1···lp x
a
α1···αp−1
l1···lp

1 + · · · ,
where

c
α1···αp−1β
l1···lp �= c

α1···αp−1γ
l1···lp for β �= γ,

a
α1···αp−1

l1···lp > a
α1···αp−2

l1···lp−1
,

with strictly positive exponents a
α1···αp−1

l1···lp > 0 and non-zero complex coefficients

c
α1···αp

l1···lp �= 0, and where we have kept enough terms to distinguish between all the

non-identical roots of F.

By the cluster

[
α1 · · · αp

l1 . . . lp

]
, we shall designate all the roots r(x1), counted

with their multiplicities, which satisfy

(4.1) r(x1)− cα1

l1
x
al1
1 + cα1α2

l1l2
x
a
α1
l1l2

1 + · · ·+ c
α1···αp

l1···lp x
a
α1···αp−1
l1···lp

1 = O(xb
1)

for some exponent b>a
α1···αp−1

l1···lp . We also introduce the clusters

[
α1 · · · αp−1 ·
l1 . . . lp−1 lp

]

by [
α1 · · · αp−1 ·
l1 . . . lp−1 lp

]
:=

⋃
αp

[
α1 · · · αp

l1 . . . lp

]
.

Each index αp or lp varies in some finite range which we shall not specify here.
We finally put

N

[
α1 · · · αp

l1 . . . lp

]
:= number of roots in

[
α1 · · · αp

l1 . . . lp

]
,

N

[
α1 · · · αp−1 ·
l1 . . . lp−1 lp

]
:= number of roots in

[
α1 · · · αp−1 ·
l1 . . . lp−1 lp

]
.

Let a1 < · · · < al < · · · < an be the distinct leading exponents of all the roots

of F. Each exponent al corresponds to the cluster

[
·
l

]
so that the set of all roots of

F can be divided as
n⋃

l=1

[
·
l

]
. Then we may write

f(x1, x2) = U(x1, x2)x
ν1
1 xν2

2

n∏
l=1

Φ

[
·
l

]
(x1, x2),
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where

Φ

[
·
l

]
(x1, x2) :=

∏
r∈[

·
l
]

(x2 − r(x1)).

We introduce the following quantities:

(4.2) Al = A

[
·
l

]
:= ν1 +

∑
μ≤l

aμN

[
·
μ

]
, Bl = B

[
·
l

]
:= ν2 +

∑
μ≥l+1

N

[
·
μ

]
.

Notice that Bl is just the number of all roots with leading exponent strictly greater
than al (where here we interpret the trivial roots corresponding to the factor (x2−
0)ν2 in our representation of f(x1, x2) as roots with exponent +∞).

If Nall denotes the total number of all roots of f away from the axis x1 = 0,
including the trivial ones and counted with their multiplicities, then we can also
write

(4.3) Bl = Nall −
∑
μ≤l

N

[
·
μ

]
.

Then, similarly as for the reduced Newton diagram in [5], the vertices of the
Newton diagram Nd(f) of f are the points (Al, Bl), l = 0, . . . , n, and the Newton
polyhedron N (f) is the convex hull of the set

⋃
l((Al, Bl) + R

2
+).

Notice also that

Al + alBl = Al−1 + alBl−1.

Let Ll := {(t1, t2) ∈ N
2 : κl

1t1 + κl
2t2 = 1} denote the line passing through the

points (Al−1, Bl−1) and (Al, Bl). It is easy to see that it is given by

κl
1 =

ΔBl

AlΔBl − BlΔAl
=

1

Al + alBl
,

κl
2 =

ΔAl

AlΔBl − BlΔAl
=

al
Al + alBl

,

(4.4)

where ΔAl := Al −Al−1,ΔBl := Bl −Bl−1. This implies that

(4.5)
κl
2

κl
1

= al,

which in return is the reciprocal of the slope of the line Ll. The line Ll intersects
the bisectrix at the point (dl, dl), where

dl :=
Al + alBl

1 + al
.

Moreover, the vertical edge of the Newton polyhedron, which passes through the
point (A0, B0) = (ν1, ν2 + m), intersects the bisectrix at (ν1, ν1), and the hori-
zontal edge, which passes through the point (An, Bn) = (An, ν2), intersects the
bisectrix at (ν2, ν2). We therefore conclude that the distance d(f) is given by
d(f) = max{ν1, ν2,maxl=1,...,n dl}.

Finally, fix l, and let us determine the κl-principal part fκl of f corresponding to
the supporting line Ll. To this end, observe that f has the same κl-principal part
as the function

U(0, 0)xν1
1 xν2

2

∏
α,μ

(
x2 − cαμx

aμ

1

)N

[
α
μ

]
.
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Moreover, the κl-principal part of x2 − cαμx
aμ

1 is given by cαμx
aμ

1 if μ < l, and by x2

if μ > l. This implies that

(4.6) fκl(x1, x2) = cl x
Al−1

1 xBl
2

∏
α

(
x2 − cαl x

al
1

)N

⎡
⎣α
l

⎤
⎦
.

In view of this identity, we shall say that the edge [(Al−1, Bl−1), (Al, Bl)] is associ-

ated to the cluster of roots

[
·
l

]
. We collect these results in the following lemma.

Lemma 4.1. The vertices of the Newton diagram Nd(f) of f are the points (Al, Bl),
l = 0, . . . , n, with Aj , Bj given by (4.2), and its edges are the intervals [(Al−1, Bl−1),
(Al, Bl)], l = 1, . . . , n. Moreover, the distance between the Newton polyhedron and
the origin is given by

(4.7) d(f) = max

{
A0, Bn, max

l=1,...,n

Al + alBl

1 + al

}
,

and the κl-principal part of f corresponding to the supporting line Ll through the
edge [(Al−1, Bl−1), (Al, Bl)] is given by (4.6).

4.2. Existence of adapted coordinates in the analytic setting.

Theorem 4.2. Let f be a non-trivial real valued real-analytic function defined on a
neighborhood of the origin in R

2 with f(0, 0) = 0, ∇f(0, 0) = 0. Choose κ1, κ2 ≥ 0
such that the principal face π(f) of the Newton polyhedron of f lies on the line
κ1t1+κ2t2 = 1. Without loss of generality, we may assume that κ2 ≥ κ1. Then there
exists a real-analytic function ψ(x1) of x1 near the origin with ψ(0) = 0 such that an
adapted coordinate system (y1, y2) for f near 0 is given by y1 := x1, y2 := x2−ψ(x1).

The function ψ can in fact be chosen as one of the roots, respectively a leading
partial sum of the Puiseux series expansion of one of the roots, of the equation
f(x1, x2) = 0, considered as an equation in x2.

Notice that Theorem 4.2 was proved by A. N. Varchenko in [8] for analytic
functions (without multiple components) by means of a two-dimensional resolution
of singularities result, and by D. H. Phong, E. M. Stein and J. A. Sturm [6] by
means of the Puiseux series expansion of roots of f. Our proof will be based on the
Puiseux series expansion of roots too, and will in fact give an explicit description
of an adapted coordinate system in terms of these roots. However, in contrast to
[6], we shall follow more closely Varchenko’s algorithm for constructing adapted
coordinates, which will become useful for the extension to the smooth setting.

Proof. We may and shall assume without loss of generality that U ≡ 1. If the
coordinate system is adapted, then we can choose ψ = 0. According to Theorem
3.3, this applies in any of the following three cases:

(a) The principal face is unbounded. Since we are assuming that κ2 ≥ κ1, by
Lemma 4.1 this means that An < Bn, i.e., that

(4.8) ν1 +

n∑
l=1

alN

[
·
l

]
< ν2.
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Figure 3

(b) π(f) consists of a vertex. Then choose 0 ≤ λ ≤ n so that π(f) =
{(Aλ, Aλ)}. This happens iff

(4.9) ν1 +
∑
l≤λ

alN

[
·
l

]
= ν2 +

∑
l≥λ+1

N

[
·
l

]
.

(c) π(f) is a compact edge [(Aλ−1, Bλ−1), (Aλ, Bλ)], but

(4.10) aλ =
κλ
2

κλ
1

/∈ N

or

(4.11) aλ ∈ N and N

[
α
λ

]
≤ d(f) whenever cαλ ∈ R.

There remains the case where the principal face π(f) is a compact edge π(f) =
[(Aλ−1, Bλ−1), (Aλ, Bλ)] ( 1 ≤ λ ≤ n), aλ ∈ N and there is an index β such that

(4.12) m(fp) = N

[
β
λ

]
> d(f) =

Aλ + aλBλ

1 + aλ
and cβλ ∈ R

(Figure 3). Notice that in view of Corollary 2.3 the index β is unique, and cβλx
aλ
1

is the principal root of fp.
We then apply an algorithm due to Varchenko [8].

Step 1 (Figure 4). We apply the real change of variables x = ϕ(y) given by y1 :=

x1, y2 := x2 − cβλx
aλ
1 and again put f̃ := f ◦ ϕ. In order to describe the effect

of this change of variables to the Newton polyhedron, let us denote all quantities
associated to f̃ with a superscript .̃

Observe first that the roots r̃ of f̃ are of the form

(4.13) r̃(y1) = cα1

l yal
1 − cβλy

aλ
1 + cα1α2

ll2
y
a
α1
ll2

1 + · · · ,
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Figure 4

respectively r̃(y1) = −cβλy
aλ
1 (namely those corresponding to the trivial roots of f).

This shows that the leading exponents

ã1 < ã2 < · · · < ãl < · · ·

of these roots are given by ãl = al for l < λ, with the same multiplicities N

[̃
·
l

]
=

N

[
·
l

]
(where

[̃
·
l

]
denotes the cluster of roots r̃ associated to the index l).

For the vertices (Ãl, B̃l) of N (f̃) we thus obtain from (4.2), (4.3) that

(4.14) (Ãl, B̃l) = (Al, Bl) for l < λ.

Moreover, any root r belonging to a cluster

[
·
l

]
with l > λ is transformed into a

root r̃ with the leading exponent aλ. Finally, if r belongs to

[
·
λ

]
, then either the

leading exponent of r̃ is aλ (namely if α1 �= β) or it is of the form aβλl2 > aλ. We
therefore distinguish two cases.

Case 1. ν2 +Bλ +
(
N

[
·
λ

]
−N

[
β
λ

])
> 0.

Then there exists at least one root r̃ with the leading exponent aλ, so that
ãλ = aλ. Moreover, since B̃λ is the number of roots r̃ with leading exponent strictly

greater than aλ, we see that B̃λ = N

[
β
λ

]
. Similarly, the number N

[̃
·
λ

]
is the same

as the number of roots r with leading exponent strictly greater than aλ or equal

to aλ, but then with index α1 �= β; hence N

[̃
·
λ

]
= Bλ−1 − N

[
β
λ

]
. This implies
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Ãλ = Ãλ−1 + ãλN

[̃
·
λ

]
= Aλ−1 + aλ

(
Bλ−1 −N

[
β
λ

])
= Aλ + aλBλ − aλN

[
β
λ

]
. In

combination, we thus have

(4.15) (Ãλ, B̃λ) =
(
Aλ + aλBλ − aλN

[
β
λ

]
, N

[
β
λ

])
.

But, estimate (4.12) is equivalent to

Ãλ < B̃λ,

so that the edge [(Ãλ−1, B̃λ−1), (Ãλ, B̃λ)], which lies on the same line as the edge
π(f) = [(Aλ−1, Bλ−1), (Aλ, Bλ)] and has the same left vertex, is not the principal

face of the Newton polyhedron of f̃ . Finally, it is evident from (4.13) that in this

case ãλ+k = aβλk if k > 0 (unless there is no cluster

[
·
l

]
with l > λ).

This shows that in this case the principal face of N (f̃) is either associated to a

cluster of roots r̃ which corresponds to a cluster of roots

[
β ·
λ λ2

]
in the original

coordinates or is a horizontal, unbounded edge (so that the new coordinates are
adapted).

Case 2. ν2 +Bλ +
(
N

[
·
λ

]
−N

[
β
λ

])
= 0.

Then there is no root r̃ with the leading exponent aλ, and so again the conclusion
stated at the end of the previous case applies.

In both cases we see that the principal face of the new Newton polyhedron N (f̃)

will be less steep than the one of N (f), so that d(f̃) > d(f).

Subsequent steps. Now, either the new coordinates y are adapted, in which case we
are finished, or we can apply the same procedure to f̃ . Composing the change of
coordinates from the first step with the one from the second step, we see that we
then can find a change of coordinates x = ϕ(2)(y) of the form

x1 := y1, x2 := y2 − (cβλx
aλ
1 + cββ2

λλ2
y
aβ
λλ2

1 ),

with aβλλ2
∈ N and cββ2

λλ2
∈ R, such that the following holds: If the function f(2) :=

f ◦ ϕ(2) expresses the function f in the new coordinates, then the principal face
of the Newton polyhedron of f(2) is either associated to a cluster of roots which

corresponds to a cluster of roots

[
β β2 ·
λ λ2 λ3

]
in the original coordinates or is a

horizontal, unbounded edge (so that the new coordinates are adapted).

Now, if we iterate this procedure, then either this procedure will stop after finitely
many steps or it will continue infinitely. If it stops, it is clear that we will have
arrived at a new, adapted coordinate system of the form

x1 := y1, x2 := y2 − (cβλy
aλ
1 + · · ·+ c

ββ2···βp

λλ2···λp
y
a
ββ1···βp−1
λλ2···λp

1 ),

and Theorem 4.2 holds with a polynomial function ψ(y1).
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Figure 5

Final step (Figures 5, 6). Assume that the procedure does not terminate. Then,
in each further step we pass to a new Newton diagram with a principal face as-

sociated to a cluster of roots (in the original coordinates)

[
β β2 · · · ·
λ λ2 . . . λk+1

]
,

which is a sub-cluster of the previous cluster

[
β β2 · · · ·
λ λ2 . . . λk

]
. In particular, the

corresponding muliplicities Nk := N

[
β · · · ·
λ . . . λk+1

]
form a decreasing sequence,

which eventually must become constant. Choose N, k0 ∈ N such that Nk = N for
every k ≥ k0. Replacing the original coordinate system by the one obtained in the
k0-th step, we may assume without loss of generality that k0 = 0, i.e.,

(4.16) N = N

[
·
λ

]
= N

[
β ·
λ λ2

]
= · · · = N

[
β β2 · · · ·
λ λ2 . . . λk+1

]
= · · · .

This clearly implies that N

[
β β2 · · · ·
λ λ2 . . . λk+1

]
= N

[
β β2 · · · βk+1

λ λ2 . . . λk+1

]
for ev-

ery k and that each of the clusters

[
β β2 · · · ·
λ λ2 . . . λk+1

]
contains exactly one and

the same root (of multiplicity N), namely

(4.17) ρ(x1) := cβλx
aλ
1 + · · ·+ c

ββ2···βk+1

λλ2···λk+1
x
a
ββ1···βk
λλ2···λk+1

1 + · · ·

(so that in fact λk = βk = 1 for every k ≥ 2). Moreover, our procedure shows that
all cofficients in this series must be real and all exponents positive integers, so that
ρ(x1) is a real valued, real-analytic function of x1.

If we apply our first change of coordinates y1 := x1, y2 := x2 − cβλx
aλ
1 in this

situation, then we see that the leading exponents of the new roots r̃ are given by
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Figure 6

ã1 = a1, . . . , ãλ = aλ and ãλ+1 = aβλλ2
in Case 1, and by ã1 = a1, . . . , ãλ−1 = aλ−1

and ãλ = aβλλ2
in Case 2. Moreover, it is clear from our discussion that the last

edge, associated to the cluster of roots with the biggest leading exponent aβλλ2
,

must be the principal edge. Moreover, in the new coordinates y, the function f̃ can

have no vanishing root, since such a root would have corresponded to a root cβλx
aλ
1 ,

which, by (4.17), cannnot exist in the cluster

[
·
λ

]
.

By passing to these new coordinates, we may therefore assume in addition to

(4.16) that the cluster

[
·
λ

]
is the cluster associated to the principal face of the

Newton polyhedron of f and that ν2 = 0, i.e., that

(4.18) fp(x1, x2) = cxν1
1 (x2 − cβλx

aλ
1 )N .

The Newton polyhedron of f thus has vertices (A0, B0), . . . , (Aλ, Bλ), and the prin-
cipal edge is given by [(Aλ−1, Bλ−1), (Aλ, Bλ)], where, according to (4.2), (4.16),

(4.19) Aλ−1 < Bλ−1 = N and Bλ = 0.

Let us finally apply the change of coordinates y1 := x1, y2 := x2 − ρ(x1). The

non-zero roots r̃ of f̃ are then given by r̃ = r− ρ, with r ∈
[
·
l

]
for some l < λ, and

they have the same multiplicities and leading exponents as the corresponding roots
r. In view of (4.2), the vertices of the Newton diagram N (f̃) are thus given by the
points (A0, B0), . . . , (Aλ−1, Bλ−1), i.e., the effect of the change of coordinates on
the Newton diagram is the removal of the last vertex (Aλ, Bλ). Since, by (4.19),
the vertex (Aλ−1, Bλ−1) lies above the bisectrix, we see that the principal face of

N (f̃) is the horizontal half-line emerging from the point (Aλ−1, Bλ−1) along the
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line t2 = N, a non-compact set. According to Theorem 3.3, the coordinates y are
thus adapted to f and the height h(f) is given by

(4.20) h(f) = N.

�
The proof suggests the following definitions. If

r(x1) = cα1

l1
x
al1
1 + cα1α2

l1l2
x
a
α1
l1l2

1 + · · ·+ c
α1···αp

l1···lp x
a
α1···αp−1
l1···lp

1 + · · ·
is any root of f (more precisely, of F ), then any leading part

K∑
p=1

c
α1···αp

l1···lp x
a
α1···αp−1
l1···lp

1 ,

with 1 ≤ K ≤ ∞, which is real analytic, i.e, where all exponents appearing in this
series are positive integers, will be called an analytic root jet.

We have seen that the function ψ constructed by Varchenko’s algorithm in a
unique way is indeed an analytic root jet, which we call the principal root jet.

Our proof even reveals that the conditions (a)-(c) in Theorem 3.3 are necessary
and sufficient for the adaptedness of the given coordinate system for arbitrary
analytic functions f. In the statements of the following corollaries we shall always
make the following

General Assumptions. The function f(x1, x2) is a real valued real-analytic func-
tion defined on a neighborhood of the origin in R

2 with f(0, 0) = 0, ∇f(0, 0) = 0.
Choose κ1, κ2 ≥ 0 such that the principal face π(f) of the Newton polyhedron of f
lies on the line κ1t1 + κ2t2 = 1, and assume that κ2 ≥ κ1.

Corollary 4.3. The given coordinates (x1, x2) are not adapted to f if and only if the
conditions (a)-(c) in Theorem 3.3 are satisfied. In particular, the given coordinates
are adapted to f if and only if they are adapted to the principal part fp of f.

Moreover, we always have h(f) ≤ h(fp).

Proof. The necessity of these conditions for non-adaptedness has been proved in
Theorem 3.3. Assume conversely that (a)-(c) hold true. In that case, we have seen
in the proof of Theorem 4.2 that there exists a change of coordinates which strictly
increases the height, so that the original coordinates are not adapted.

Since the conditions (a)-(c) depend in fact only on fp, we see in particular that
the given coordinates are adapted to f if and only if they are adapted to the
principal part fp of f.

Finally, if the coordinates (x1, x2) are adapted to f (hence also to fp), then we
clearly have h(f) = h(fp). Otherwise, the proof of Theorem 4.2 shows that the first

change of coordinates y1 := x1, y2 := x2 − cβλx
aλ
1 that we considered reduces the

principal edge π(f) = [(Aλ−1, Bλ−1), (Aλ, Bλ)] to the shorter interval (possibly of

length zero) [(Aλ−1, Bλ−1), (Ãλ, B̃λ)] on the same line, but lying above the bisectrix.
Notice that the coordinates (y1, y2) are already adapted to the principal part fp and

that, by (4.15), (4.12) and Theorem 3.3, we have B̃λ = N

[
β
λ

]
= m(fp) = h(fp).

But the point (Ãλ, B̃λ) will be contained in the Newton diagrams of f associated
to all subsequent systems of coordinates that we constructed by our algorithm
(compare (4.14), applied to the coordinates y), which means that the principal face
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of f in our final, adapted coordinate system must lie in the half-space t2 ≤ h(fp),
so that h(f) ≤ h(fp). �

Corollary 4.4. (a) We can always find a change of coordinates x = ϕ(y) at 0 of
the form y1 := x1, y2 := x2 − ψ(x1), such that the coordinates (y1, y2) are adapted

to f̃ := f ◦ ϕ and the following hold true:
If the principal face π(f̃) is compact and lies on the line κ̃1t1 + κ̃2t2 = 1, with

κ̃1 ≤ κ̃2, then ψ is a polynomial of degree strictly less than κ̃2/κ̃1.
This applies, in particular, if the height h(f) of f is a non-integer rational num-

ber.
(b) There always exists a change of coordinates x = ϕ(y) of the form y1 :=

x1, y2 := x2 − η(x1) at the origin, with a polynomial function η(y1), such that

in the new coordinates y we have h(f) = h(f̃) = h(f̃p). Here, we have again put

f̃ := f ◦ ϕ.

Proof. Indeed, the algorithm that we devised in the proof of Theorem 4.2 in order
to construct an adapted coordinate system shows that we can arrive at an adapted
coordinate system with a polynomial function ψ, unless we have to choose for ψ one
of the roots r with infinitely many non-trivial terms in its Puiseux series expansion.
In the latter case, the principal face in the adapted coordinate system that we
constructed is non-compact and the height is an integer, as we have seen. Thus,
if the principal face in the adapted coordinate system is compact, the algorithm
must terminate after a finite number of steps. Also, in Step 1, the degree of the
polynomial used in the change of coordinates is given by aλ, where by (4.10) aλ =
κ2/κ1 is just the inverse of the slope of the principal edge of the Newton polyhedron
of f. However, the proof shows that the slope of the principal face strictly decreases
by the change of coordinates in Step 1, and the same applies to all subsequent
steps. If we apply this to the last change of coordinates before achieving adapted
coordinates, we see that the function ψ is a polynomial of degree m < κ̃2/κ̃1. This
proves (a).

Moreover, in the case where our algorithm does not terminate after finitely steps
in our algorithm (which all consist of polynomial changes of coordinates), we may

assume that the polynomial f̃p corresponding to the principal face of the Newton
diagram has a unique root of multiplicity N = h(f) (compare (4.16), (4.17) and
(4.20)). If we choose the coordinates y which we obtain at this stage, we then have

h(f̃p) = m(f̃p) = N = h(f) = h(f̃), so that (b) is also proven. �

5. The smooth case

We shall finally extend Theorem 4.2 to the smooth setting.

Theorem 5.1. Let f be a real valued smooth function of finite type defined on a
neighborhood of the origin in R

2 with f(0, 0) = 0, ∇f(0, 0) = 0. Choose κ1, κ2 ≥ 0
such that the principal face π(f) of the Newton polyhedron of f lies on the line
κ1t1 + κ2t2 = 1. Without loss of generality, we may assume that κ2 ≥ κ1. Then
there exists a smooth function ψ(x1) of x1 near the origin with ψ(0) = 0 such that an
adapted coordinate system (y1, y2) for f near 0 is given by y1 := x1, y2 := x2−ψ(x1).

Proof. We shall proceed in a very similar way as in the analytic setting, again
following the idea of Varchenko’s algorithm [8] and adopting the same notation as
before.
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If the coordinates are adapted to f, then we may choose ψ := 0 and we are
finished.

Otherwise, again by Theorem 3.3, the principal face π(f) is a compact edge.
Moreover, we have κ2/κ1 =: m1 ∈ N and m(fp) = m(fκ) > d(f). Let us then
choose a real root x �→ b1x

m1
1 of the principal part fp of f of maximal multiplicity

N0 := m(fp), i.e., the principal root. Then b1 �= 0, again by Theorem 3.3,

Step 1. We apply the real change of variables x = ϕ(y) given by y1 := x1, y2 :=

x2 − b1x
m1
1 , and put f̃ := f ◦ ϕ. Let us again endow all quantities associated to

f̃ with a superscript .̃ Now, if the coordinates y are adapted to f, we choose
ψ(x1) := b1x

m1
1 and we are finished.

Otherwise, the principal face π(f̃) is a compact edge, and we have κ̃2/κ̃1 =: m2 ∈
N and N1 := m(f̃p) > d(f̃). Recall that the principal part f̃p of f̃ is κ̃-homogeneous
of degree one. We claim that

(5.1) m2 > m1 and N1 ≤ N0.

Indeed, recall that the effect of our change of coordinates ϕ on the Newton
polyhedron is such that it preserves all lines κ1t1 + κ2t2 = c. Let us therefore
choose m ∈ N so big that we have j+k ≤ m for every point (j, k) lying on any such

line passing through any point in the Newton diagram Nd(f̃) of f̃ , and denote by
F the Taylor polynomial of order m of f. Then it is clear that f and F have the
same principal faces and parts, and the same applies to f̃ and F̃ := F ◦ ϕ. I.e., we
have fp = Fp and f̃p = F̃p. We can therefore apply our results for the analytic case
to the polynomial function F and obtain (5.1).

This argument also shows that the change of coordinates increases the distance,
i.e., d(f̃) > d(f).

Subsequent steps. Now, either the new coordinates y are adapted, in which case we
are finished, or we can apply the same procedure to f̃ , etc. In this way, we obtain

a sequence of functions f(k) = f ◦ ϕ(k) with f(0) := f and f(k+1) := f̃(k), which can
be obtained from the original coordinates x by means of a change of coordinates
x = ϕ(k)(y) of the form

y1 := x1, y2 := x2 −
k∑

l=1

blx
ml
1 ,

with positive integers m1 < m2 < · · · < mk < mk+1 < · · · and real coefficients
bl �= 0. Moreover, if Nk := m((f(k))p) denotes the maximal order of vanishing of

the principal part of f(k) along the unit circle S1, then we have

N0 ≥ N1 ≥ · · · ≥ Nk ≥ Nk+1 ≥ · · · .
Either this procedure will stop after finitely many steps or it will continue

infinitely. If it stops, say, at the k-th step, it is clear that we will have ar-
rived at an adapted coordinate system x = ϕ(k)(y), with a polynomial function

ψ(x1) =
∑k

l=1 blx
ml
1 .

Final step. Assume that the procedure does not terminate. Since the maximal
multiplicitiesNk of the roots of the principal part of f(k) form a decreasing sequence,
we again find some k0, N ∈ N such that Nk = N for every k ≥ k0. By comparing
the effect of the change of coordinates in each step of order k ≥ k0 with the effect
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on the Taylor polynomial of sufficiently high degree, we see from the corresponding
result (4.18) in the analytic case that the principal part of f(k) is of the form

(f(k))p(x) = ckx
ν1
1 (x2 − bk+1x

mk+1

1 )N ,

where ν1 < N. It is mixed homogeneous of degree one with respect to the weight
κ(k), given by

κ
(k)
1 :=

1

ν1 +Nmk+1
, κ

(k)
2 :=

mk+1

ν1 +Nmk+1
,

so that, for k ≥ k0,

(5.2) f(k)(x) = ckx
ν1
1 (x2 − bk+1x

mk+1

1 )N + terms of higher κ(k)-degree.

Now, according to a classical lemma of Borel (cf. [3], Theorem 1.2.6), we can
find a smooth function ρ(x1) near the origin whose Taylor series is the formal
series

∑∞
l=1 blx

ml
1 . Consider the smooth change of coordinates x := ϕ(y) given by

y1 := x1, y2 := x2 − ρ(x1), and put f̃ := f ◦ϕ. We claim that the coordinates y are

adapted to f̃ .
Indeed, we have

f̃(y) = f(k) ◦ (ϕ−1
(k) ◦ ϕ)(y) = f(k)

(
y1, y2 + (ρ(y1)−

k∑
l=1

bly
ml
1 )

)
,

where ρ(y1)−
∑k

l=1 bly
ml
1 has the Taylor series

∑∞
l=k+1 bly

ml
1 . In view of (5.2), this

shows that

(5.3) f̃(y) = cky
ν1
1 yN2 +R(y),

where R is a smooth function consisting of terms of κ(k)-degree strictly larger than
one, for every k ≥ k0; i.e.,

(5.4)
1

ν1 +Nmk+1
j1 +

mk+1

ν1 +Nmk+1
j2 > 1 for every (j1, j2) ∈ T (R).

Since mk → ∞ as k → ∞, this implies that j2 ≥ N. Moreover, if j2 = N, then the
left-hand side of (5.4) is bounded by 1 if j1 ≤ ν1, so that we must have j1 > ν1. In

combination, (5.3) and (5.4) show that the Newton polyhedron N (f̃) of f̃ contains
the point (ν1, N), but no further point on the left to this point on the line t2 = N,

and that all other points of N (f̃) are contained in the open half-plane above this

line. Since ν1 < N, this shows that the principal face of N (f̃) is the unbounded
horizontal half-line given by t1 ≥ ν1, t2 = N ; hence the coordinates are adapted to
f̃ . �

The following corollary is immediate from the proof of Theorem 5.1 and the
proofs of Corollaries 4.3 and 4.4, which carry over to the smooth setting.

Corollary 5.2. Let f be a real valued smooth function of finite type defined on a
neighborhood of the origin in R

2 with f(0, 0) = 0, ∇f(0, 0) = 0. Then the height
h(f) is a rational number.

Moreover, if we choose κ1, κ2 ≥ 0 such that the principal face π(f) of the Newton
polyhedron of f lies on the line κ1t1 + κ2t2 = 1 and if we assume without loss of
generality that κ2 ≥ κ1, then Corollaries 4.3 and 4.4 remain true in this smooth
setting.
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