
On Adaptive Attacks Against
Jao-Urbanik’s Isogeny-Based Protocol

Andrea Basso1, Péter Kutas1, Simon-Philipp Merz2, Christophe Petit1,
and Charlotte Weitkämper1(B)

1 University of Birmingham, Birmingham, UK
a.basso@cs.bham.ac.uk, p.kutas@bham.ac.uk, christophe.f.petit@gmail.com,

c.weitkaemper@pgr.bham.ac.uk
2 Royal Holloway, University of London, Egham, UK

simon-philipp.merz.2018@rhul.ac.uk

Abstract. The k-SIDH protocol is a static-static isogeny-based key
agreement protocol. At Mathcrypt 2018, Jao and Urbanik introduced
a variant of this protocol which uses non-scalar automorphisms of spe-
cial elliptic curves to improve its efficiency.

In this paper, we provide a new adaptive attack on Jao-Urbanik’s
protocol. The attack is a non-trivial adaptation of Galbraith-Petit-Shani-
Ti’s attack on SIDH (Asiacrypt 2016) and its extension to k-SIDH by
Dobson-Galbraith-LeGrow-Ti-Zobernig (IACR eprint 2019).

Our attack provides a speedup compared to a näıve application of
Dobson et al.’s attack to Jao-Urbanik’s scheme, exploiting its inherent
structure. Estimating the security of k-SIDH and Jao-Urbanik’s variant
with respect to these attacks, k-SIDH provides better efficiency.

Keywords: Elliptic curves · Isogenies · k-SIDH · Adaptive attack

1 Introduction

With the expected advent of quantum computers, current public key cryptogra-
phy algorithms based on discrete logarithm and factorization problems will have
to be replaced by stronger, so-called post-quantum cryptography algorithms.
Isogeny-based cryptography is among the leading approaches currently consid-
ered for post-quantum cryptography. A major protocol in isogeny-based cryp-
tography is the SIDH key exchange protocol [7], whose principles underlie the
SIKE algorithm recently submitted to the NIST post-quantum standardization
process [6,8].

In internet communication contexts, key exchange protocols are often used in
a semi-static mode, where the server uses the same static secret key to establish
any new session key with a client. Galbraith et al. have shown that the basic
SIDH protocol is vulnerable to adaptive attacks in these contexts [4]. In SIKE
the attacks are defeated by using a variant of the Fujisaki-Okamoto transform.

The k-SIDH protocol is an alternative countermeasure to Galbraith et al.’s
attack suggested by Azarderakhsh et al. [2]. The protocol has the additional
c© Springer Nature Switzerland AG 2020
A. Nitaj and A. Youssef (Eds.): AFRICACRYPT 2020, LNCS 12174, pp. 195–213, 2020.
https://doi.org/10.1007/978-3-030-51938-4_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-51938-4_10&domain=pdf
https://doi.org/10.1007/978-3-030-51938-4_10

196 A. Basso et al.

advantage to allow for static-static key exchange (where both parties use static
keys), but it comes at the cost of a significant efficiency loss as it essentially
involves running k2 instances of the SIDH protocol in parallel for an integer
k > 1, with k = 92 suggested by the authors. Very recently, Dobson et al.
described an adaptive attack against the 2-SIDH protocol [3]. Their attack also
generalizes to the k-SIDH protocol with k > 2, though the required number of
instances of the protocol with the server is exponential in k.

Our Contributions. In this paper, we provide a new adaptive attack on a variant
of the k-SIDH protocol suggested by Jao and Urbanik [10]. The Jao-Urbanik
protocol introduces some redundancy in k-SIDH’s secret keys using the non-
trivial automorphisms of curves with j-invariants 0 or 1728 to increase efficiency.
While the authors of the protocol conjectured that the inherent structure could
be exploited in attacks and chose larger security parameters to account for this,
we provide a concrete attack.

Our attack borrows from Galbraith et al. and Dobson et al.’s attacks, but it
crucially differs from them in the following ways:

– We use the underlying relationship between the kernel generators of corre-
sponding curves to match up triples of candidate curves instead of exhaus-
tively searching over all possibilities when querying for the first key bits.

– Instead of separately computing the key bits and pullbacks at any step of
the attack, we combine these stages by guessing the key bits and computing
candidate pullbacks first to then validate any possible combination using the
oracle.

– Contrasting to the attack in [3], we manage to compute precise pullbacks at
each step instead of having to keep track of multiple candidates which are
indistinguishable to the attacker.

– Overall, we significantly reduce the number of oracle queries by exploiting
the structure underlying the Jao-Urbanik protocol.

We show that our attack requires to run O(32k/3) instances of the protocol with
the server, if the Jao-Urbanik protocol is instantiated with secret isogenies of
degree a power of two. This is almost a cube root speedup compared to Dobson
et al.’s attack on the same instantiation.

While our attack does not break the security level for the parameter sets
recommended by Jao and Urbanik, we give estimated attack costs for their
parameters. Under consideration of currently known attacks against k-SIDH and
Jao-Urbanik’s protocol, we conclude that the former provides a better efficiency-
security trade-off.

Outline. The remaining of this paper is organized as follows. To begin with,
we give some background on isogenies and supersingular isogeny protocols in
Sect. 2. We then recall the Dobson et al. attack on k-SIDH in Sect. 3 and the
Jao-Urbanik protocol in Sect. 4. We continue by describing our attack on Jao-
Urbanik’s scheme in Sect. 5, and conclude the paper in Sect. 6. The Appendix
includes an extension of our attack.

On Adaptive Attacks Against Jao-Urbanik’s Protocol 197

2 Preliminaries

For a full treatment of background information on elliptic curves we refer to
Silverman [9].

2.1 Isogenies

Let Fq be a finite field of characteristic p. In the following we assume p > 3 and
therefore an elliptic curve E over Fq can be defined by its short Weierstrass form

E(Fq) = {(x, y) ∈ F
2
q | y2 = x3 + Ax + B} ∪ {OE},

where A,B ∈ Fq and OE is the point (X : Y : Z) = (0 : 1 : 0) on the projective
curve Y 2Z = X3 +AXZ2 +BZ3. The set of points on an elliptic curve forms an
abelian group with OE being the identity element. The j-invariant of an elliptic
curve is

j(E) = 1728
4A3

4A3 + 27B2
,

and there is an isomorphism f : E → E′ between the curves E and E′ if and
only if j(E) = j(E′).

Given two elliptic curves E1 and E2 over a finite field Fq, an isogeny is a
morphism φ : E1 → E2 such that φ(OE1) = OE2 . The condition implies that
isogenies are also group homomorphisms. If there exists an isogeny φ : E1 → E2,
then there exists a unique isogeny φ̂ : E2 → E1, called the dual isogeny, such
that φ ◦ φ̂ = [n] (where [n] denotes the multiplication-by-n map on E2). If there
exists a non-constant isogeny between two curves, then they are called isogenous.
The degree of an isogeny φ is its degree when treated as an algebraic map. If
the isogeny is separable (which is always the case in this work), the degree is
equal to the size of the kernel of φ. An isogeny from E to itself is called an
endomorphism. Endomorphisms of an elliptic curve form a ring under addition
and composition. If E is defined over a finite field then the endomorphism ring
is either an order in an imaginary quadratic number field (such curves are called
ordinary) or an order in the quaternion algebra ramified at p (the characteristic
of the finite field) and at infinity. The latter curves are called supersingular. In
this paper we will only consider supersingular elliptic curves.

Since an isogeny defines a group homomorphism E1 → E2, its kernel is a
subgroup of E1. Conversely, any subgroup S ⊂ E1 determines a (separable)
isogeny φ : E1 → E2 with ker(φ) = S and E2 = E1/S. Furthermore, if the
degree of the isogeny is smooth, Vélu’s formulae [11] provide a polynomial time
algorithm for computing the isogeny (as a rational map) from its kernel.

The following lemma [9, Chapter III, Corollary 4.11] describes how the iso-
genies corresponding to two subgroups can be related if one subgroup contains
the other:

Lemma 1. Let Ei, i = 1, 2, 3 be elliptic curves and let φ : E1 → E2 and ψ :
E1 → E3 be two isogenies such that ker(φ) ⊆ ker(ψ). Then there exists an
isogeny λ : E2 → E3 such that ψ = λ ◦ φ which is unique up to isomorphism.

198 A. Basso et al.

2.2 SIDH

In this subsection, we recall Jao and De Feo’s original scheme [7].
Let E be a supersingular elliptic curve. In the setup, one chooses two small

primes �A and �B and a prime p which is of the form p = �eA

A �eB

B f − 1, where f
is a small cofactor and eA and eB are large integers. Let PA, QA be generators
of the �eA

A -torsion and let PB , QB be generators of the �eB

B -torsion of E. Then
the protocol is as follows:

1. Alice chooses a random cyclic subgroup of E[�eA

A] of order �eA

A . As PA, QA

form a basis of the �eA

A -torsion, there exist integers xA, yA such that A =
[xA]PA + [yA]QA generates this subgroup. Similarly, Bob chooses a random
cyclic subgroup of E[�eB

B] of order �eB

B generated by B = [xB]PB + [yB]QB

for some xB, yB .
2. Alice computes the isogeny φA : E → E/〈A〉 and Bob computes the isogeny

φB : E → E/〈B〉.
3. Alice sends the curve E/〈A〉 and the points φA(PB) and φA(QB) to Bob and

Bob similarly sends (E/〈B〉, φB(PA), φB(QA)) to Alice.
4. Alice and Bob both use the images of the torsion points to compute the

shared secret which is the curve E/〈A,B〉 (e.g. Alice can compute φB(A) =
[xA]φB(PA) + [yA]φB(QA) and E/〈A,B〉 = EB/〈φB(A)〉).

Due to efficiency reasons in [7], the authors suggested the use of �A = 2 and
�B = 3. They also suggested to use the starting curve E with j-invariant 1728.
In [1], the authors use a variant of the Fujisaki-Okamoto transform [5] to obtain
an IND-CCA secure key encapsulation mechanism. For concrete parameters of
the scheme the reader is referred to [1].

Note that by [4, Lemma 2.1], it is possible for Alice (and analogously for
Bob) to always choose the secret integers xA, yA such that one of them equals
1 given that the generators PA, QA of the 2eA -torsion are independent. Hence
it suffices to choose a single secret instead of two integers. In practice, this is
usually done for efficiency reasons, and we will also use the convention in the
following.

In [4] Galbraith et al. propose an adaptive attack against SIDH, showing that
SIDH is not suitable for static-static key exchange; see Sect. 2.4 for a description
of the GPST attack.

2.3 k-SIDH

Now we recall the k-SIDH scheme of Azarderakhsh et al. [2]. This protocol is
a modification of the original SIDH which is potentially secure against active
attacks. The protocol is as follows. Both parties agree on a curve E as well
as a basis of the 2eA -torsion and a basis of the 3eB -torsion. Alice chooses k
different secret integers α(1), . . . , α(k) modulo 2eA and Bob chooses k different
secret integers β(1), . . . , β(k) modulo 3eB . Let h be a preimage resistant hash
function. The steps of the protocol are the following:

On Adaptive Attacks Against Jao-Urbanik’s Protocol 199

1. Alice computes the curves E
(r)
A = E/〈PA + [α(r)]QA〉 and the corresponding

isogenies φA,r.
2. Bob computes the curves E

(r)
B = E/〈PB + [β(r)]QB〉 and the corresponding

isogenies φB,r.
3. Alice sends E

(r)
A , φA,r(PB), φA,r(QB) to Bob and Bob sends E

(r)
B , φB,r(PA),

φB,r(QA) to Alice.
4. Alice and Bob perform the SIDH key exchange for every pair E

(r)
A , E

(s)
B and

compute the corresponding j-invariant jr,s.
5. The shared secret is the hash h(j1,1||j1,2|| . . . ||jk,k) of all the j-invariants.

2.4 The GPST Attack on Static SIDH

The adaptive GPST attack actively recovers the static SIDH key α of a party, say
Alice, where 〈PA + [α]QA〉 is the subgroup corresponding to her secret isogeny.
An attacker uses the key exchange protocol as an oracle to recover Alice’s static
key bit-wise. For simplicity, we set n := eA in the following.
Definition 1 (Oracle in static SIDH). Upon receipt of an elliptic curve E,
two linearly independent points R,S ∈ E[2n] of order 2n and another elliptic
curve E′, the oracle responds 1 if j(E/〈R + [α]S〉) = j(E′) and 0 otherwise.

To recover Alice’s secret key, an attacker first generates the ephemeral key
(EB , R := φB(PA), S := φB(QA)) honestly as specified by the SIDH key
exchange. Then, they query the oracle on (EB , R, S + [2n−1]R,EAB), which
reveals whether EB/〈R + [α](S + [2n−1]R)〉 is isomorphic to EB/〈R + [α]S〉. By
the following lemma, this reveals the least significant bit of the static secret α.

Lemma 2 [4, Lemma 2]. For linearly independent R,S ∈ E[2n] of order 2n, α
is even if and only if 〈R + [α](S + [2n−1]R)〉 = 〈R + [α]S〉.

Afterwards, the attacker can proceed iteratively for all but the last two bits.
Assume the attacker has recovered the i least significant bits of α, i.e. the partial
key Ki :=

∑i−1
k=0 αk2k such that α = Ki + αi2i + α′2i+1. To learn the next bit

αi ∈ {0, 1}, the attacker queries the oracle on
(
EB , [θ](R − [2n−i−1][Ki]S), [θ]([1 + 2n−i−1]S), EAB

)
. (1)

Here, θ is a suitable scaling parameter to avoid detection of the attack by
Weil pairing validation. We omit further details as this has no relevance to the
methods presented in this paper, and we refer to the original paper [4] for the
computational details. In this exposition we omit such factors for simplicity.

The bit αi is deduced from the oracle’s answer using the following lemma.
Lemma 3 ([4]). The oracle call (1) returns 1 if and only if αi = 0.

Proof. The curve computed by Alice is EB/G′ where G′ = 〈R′ + [α]S′〉 = 〈(R −
[2n−i−1][Ki]S) + [α]([1 + 2n−i−1]S)〉 = 〈R + [α]S + [α − Ki][2n−i−1]S)〉. This is
equal to G if and only if αi = 0.
�

The last two bits αn−2, αn−1 should be brute-forced, as there is no suitable
scaling parameter θ to avoid detection by Weil pairing validation. Note that this
does not require any oracle query.

200 A. Basso et al.

3 The DGLTZ Attack

The DGLTZ attack [3] follows roughly the same methodology as the GPST one.
In this section, let α(r) denote Alice’s k secret keys associated to the kernel

generators A(r) = R+[α(r)]S for some points R,S spanning E[2n]. For simplicity
we will largely only use two secret keys α, β with corresponding kernel generators
A,B. Then we denote by αi the i-th bit of α = K

(a)
i +αi2i +α′2i+1, where K

(a)
i

is the i-th partial key, and analogously for β. Dobson et al. first justify the
existence of the following oracle.

Definition 2 (Oracle in k-SIDH). Let H be some public hash function. Upon
receipt of an elliptic curve E, two points R,S spanning E[2n] and a hash value
h, the oracle reveals whether h = H

(
j(E/〈R+[α(1)]S〉), . . . , j(E/〈R+[α(k)]S〉)).

Note that this oracle provides information related to the k-tuple of static
secret keys (α(1), . . . , α(k)), but it does not immediately reveal information on
each individual secret key separately.

To compensate for this limited information, multiple oracle queries will be
made using the same malicious points but different hash values. After obtaining
the curves EA(i) := E/〈A(i)〉 from Alice’s public keys, the attacker successively
recovers the next bit of all the different secrets simultaneously. This is done
by using malicious points in oracle queries as in the GPST attack, guessing all
the j-invariants computed by Alice as a result of these malicious points, and
verifying each guess with an oracle query.

The attacker recovers the first bit of all secrets with queries of the form(
E,R, [1+2n−1]S,H(j1|| . . . ||jk)

)
, where the ji are guesses on the k shared secret

curves computed by Alice. Candidate tuples for the guess can be restricted by
the following lemma.

Lemma 4. Let α be any of Alice’s secret keys. Consider the isogeny path from
E to EA, and replace the last step in this path by the only other possible step
that leaves the path non-backtracking. Let E′

A be the final curve of this path. Let
s ∈ {0, 1}. Let R′ := R − [s][2n−1]S and S′ := [1 + 2n−1]S. Then the SIDH key
computed by Alice is either EA or E′

A. Moreover, it is EA if and only if α0 = s.

The number of candidate tuples is 7k as for each secret there are 7 possible
curves they have to query (the respective EA(i) and six curves which are 4-
isogenous to it). In the iterative step the attacker uses queries of the form (E,R−
[K(a)

i][2n−i−1]S, [1+2n−i−1]S,H(j1|| . . . ||jk)), which correspond to the following
elliptic curves: E/〈A+[αi][2n−1]S〉, E/〈B+[K(b)

i −K
(a)
i][2n−i−1]S+[βi][2n−1]S〉.

If to recover the next bits one wanted to perform a similar exhaustive search as
for the first bit computation, then one would need an exponential amount of
queries even for k = 2 as the distance (in the isogeny graph) from the second
curves to EA increases as i grows. To remedy this, the authors observe that
E/〈B + [K(b)

i − K
(a)
i][2n−i−1]S + [βi][2n−1]S〉 is 2-isogenous to Ei/〈ψB,i(B +

[K(b)
i − K

(a)
i][2n−i−1]S + [βi][2n−1]S)〉 where Ei is the (n − i)-th curve in the

On Adaptive Attacks Against Jao-Urbanik’s Protocol 201

isogeny path from E to EB and ψB,i is the corresponding partial isogeny. In order
to be able to compute these curves, one has to compute certain intermediate
points on Ei (which the authors refer to as “pullbacks”), namely ψi(B) and
[2n−i]ψi(S). This pullback-computation is required after each key bit has been
recovered, and at the i-th step makes use of the known partial keys with the
following query:

(
E,R − [K(a)

i+1][2
n−i−1]S, [1 + 2n−i−1]S,H(j1, . . . , jk)

)
.

It can be computed that the corresponding curve is Ei+1/〈ψB,i+1(B + [K(b)
i+1 −

K
(a)
i+1][2

n−i−1]S)〉 (and not 2-isogenous to it as in the previous stage). Näıvely,
the attacker would query the oracle with all the possibilities for ψB,i+1(B) and
[2n−i−1]ψB,i+1(S). Note however that when the oracle returns 1, there will be
two possibilities for the correct pullbacks which, due to the oracle model, cannot
be distinguished. One could either have found ψB,i+1(B) and [2n−i−1]ψB,i+1(S)
or ψB,i+1(B)+C and [2n−i−1]ψB,i+1(S)+C, where C generates the kernel of the
isogeny from Ei+1 to Ei. Thus the authors choose one pullback ψB,i(B) for B
and then have to keep a 2-element set of candidates for [2n−i−1]ψB,i+1(S). The
computation of bits uses 24k queries1 and the pullback computation uses 16k

queries under certain technical conditions which are addressed in the appendix
of [3]. At each step, the intermediate isogenies are computed using the following
lemma:

Lemma 5. Let A(i) = P +[α(i)]Q be the generator of the subgroup corresponding
to the i-th secret isogeny and let ψ

(i)
j := φ

(i)
n ◦ φ

(i)
n−1 ◦ · · · ◦ φ

(i)
j+1. Then, we have

ker φ
(i)
j = 〈[2j−1]ψ(i)

j (A(i))〉, ker φ̂
(i)
j = 〈[2n−1]ψ(i)

j−1(Q)〉.

4 The Jao-Urbanik Protocol

In this section, we present the Jao-Urbanik protocol [10], the main target of our
attack.

To reduce the cost associated to k-SIDH [2], Jao and Urbanik propose to
exploit the existence of non-trivial automorphisms on certain elliptic curves for
a non-interactive key exchange by using distinct isogenies between isomorphic
curves. As in the original SIDH proposal [7], the authors suggest choosing param-
eters as follows: Let �A and �B be two small primes, eA and eB integers such that
�eA

A ≈ �eB

B ; then choose a small cofactor f such that p = �eA

A �eB

B f ± 1 is prime.
To simplify our description, we will again set �A = 2 and �B = 3 (as widely used
in discussions of SIDH) when describing the protocol here.

The only elliptic curves with non-trivial automorphisms are curves with
j-invariants j ∈ {0, 1728}; note these are all supersingular over Fp for p =
2eA3eBf − 1 since p ≡ 2 (mod 3) and p ≡ 3 (mod 4). As Jao and Urbanik

1 Note that this estimation is not given in [3].

202 A. Basso et al.

primarily suggest to use the former, we focus on curves with j(E) = 0 in this
exposition. For such curves, there exists an automorphism η6 of order six defined
by η6(x, y) = (ζ3x,−y) for ζ3 a primitive third root of unity. Thus, η6 further
satisfies η2

6 = η6 − 1.
The existence of these automorphisms can be exploited in the following way.

If G ⊆ E is a subgroup, η6(G) and η2
6(G) are also subgroups of E and we may

assume that all three are distinct2. Hence, the isogenies from E associated to the
kernels G, η6(G) and η2

6(G), respectively, are all distinct while the corresponding
quotients are isomorphic. For example, consider φ : E → E/G; the map φ ◦
η−1
6 : E → E/G has kernel η6(G) and hence we have E/G ∼= E/η6(G). In an

SIDH-setting when Alice sends a public key (EA, φA(PB), φA(QB)), we can thus
view this as Alice actually having sent three distinct but related public keys.
These keys all have isomorphic target curves E/〈A〉 ∼= E/〈η6(A)〉 ∼= E/〈η2

6(A)〉,
and hence share the same j-invariant, but the corresponding isogenies are not
isomorphic. The same applies to any of Bob’s public keys.

Lemma 6. Suppose a base curve E with j(E) = 0 together with the parameters
as suggested by Jao and Urbanik [10] is used for SIDH. Then a single exchange
of Alice’s and Bob’s SIDH public keys pkA = (EA, φA(PB), φA(QB)) and pkB =
(EB , φB(PA), φB(QA)), where {PA, QA = η6(PA)} and {PB , QB = η6(PB)} are
bases of E[2eA] and E[3eB] respectively, yields three shared secret (isomorphism
classes of) curves.

It follows that per public key pair, Alice and Bob obtain three shared secret
curves, each identified by its j-invariant, as a secret in the Jao-Urbanik version
of SIDH; see Fig. 1. Hence, in the k′-SIDH setting where each party sends k′

public keys, using the Jao-Urbanik technique results in a shared secret

h = Hash(j1,1||j′
1,1||j′′

1,1|| . . . ||jk′,k′ ||j′
k′,k′ ||j′′

k′,k′),

obtained by hashing the concatenation of the j-invariants corresponding to the
k = 3(k′)2 shared secret curves instead of the (k′)2 curves as in standard k′-
SIDH.

4.1 Parameter Selection

In [10, Section 4] Jao and Urbanik discuss the security of their scheme for general
� := �A. They correctly identify that the relationship between the curves can
be exploited for an attack but do not consider this extra structure fully when
providing an estimate on the security of the scheme. Based on their brief analysis,
they suggest the use of k′ = 18 keys for � = 11 when 256-bit security is required.
We believe the proposed parameters are safe but that their security analysis
could be elaborated on.
2 We have η6(G) = G exactly when G ⊂ ker(η6 + k) for some odd k. Note that

this is impossible since η2
6 − η6 + 1 = 0 implies that deg(η6) = tr(η6) = 1 so that

deg(η6 + k) = (η6 + k)(η̄6 + k) = deg(η6) + ktr(η6) + k2 = 1 + k + k2 is odd and
hence not divisible by 2eA .

On Adaptive Attacks Against Jao-Urbanik’s Protocol 203

∼= EAB
∼=

∼= EAη6(B)
∼=

∼= EAη2
6(B)

∼=

Shared secret:
h = Hash j(EAB), j(EAη2

6(B)), j(EAη6(B))
)

Alice

A ⊆ E[2eA]
with A = 〈PA + [α]η6(PA)〉

φA : E → E/A = EA,
RA := φA(PB), SA := φA(η6(PB))

pkA = EA, RA, SA

)

EB/〈[α]RA + SA)〉
EB/〈−RA + [α + 1]SA〉

EB/〈−[α + 1]RA + [α]SA〉

Bob

B ⊆ E[3eB]
with B = 〈PB + [β]η6(PB)〉

φB : E → E/B = EB ,
RB := φB(PA), SB := φB(η6(PA))

pkB = EB , RB , SB

)

EA/〈[β]RB + SB〉
EA/〈−[β + 1]RB + [β]SB〉
EA/〈−RB + [β + 1]SB〉

pkA

pkB

Fig. 1. Jao-Urbanik’s protocol using one key and automorphism η6; public parameters:
E : y2 = x3 + 1 with j(E) = 0 defined over field of characteristic p = f2eA3eB − 1,
bases {PA, η6(PA)} of E[2eA] and {PB , η6(PB)} of E[3eB].

In their discussion, the authors do not disclose a precise attack model and
consider an oracle which receives a list of curves and returns true if all of them
are on the secret isogeny path E → E/〈A〉.3 However, using such an oracle, the
attack proposed by Jao-Urbanik is not optimal. We will show that the extra
structure can be exploited further by realizing that all intermediate curves on
the three paths associated to one secret are isomorphic. Furthermore, in [3] it is
demonstrated that using the straightforward generalization of the GPST oracle
to k-SIDH would lead to an exponential-time attack even for k = 2. In order
to go around this issue, Dobson et al. compute extra points which increases the
complexity of the attack substantially. In other words, in the k-SIDH setting, the
cost of the call to an oracle which returns true if and only if all the guessed curves
are on the correct path is not constant but exponential in k. This observation
clearly applies to the Jao-Urbanik scheme as well.

4.2 Current Impact of DGLTZ on Jao-Urbanik Protocol

Applying the DGLTZ attack to the Jao-Urbanik protocol is not straightforward.
The DGLTZ attack assumes that all the secret kernels are of the form 〈[α]P +Q〉
which is not the case in the Jao-Urbanik scheme due to the following. To one

3 Note that the GPST attack [4] shows how to implement a similar oracle for SIDH.

204 A. Basso et al.

secret the following three kernels are associated: 〈[α]P + Q〉, 〈−P + [α + 1]Q〉,
〈−[α+1]P +[α]Q〉. The parity of the coefficient of Q in the second and the third
kernel is different, thus in particular, it is impossible that both of them are odd
(hence for every λ-multiple of the kernel the coefficient of Q will be even). This
difficulty could potentially be overcome, however a number of O(24k) queries,
where k = 3k′ and k′ is the number of secrets, will still be required.

Our aim is that instead of treating the three curves independently we use
that the three kernels are related and propose an attack in the next section which
uses O(32

k
3) queries, thus providing a nearly cube root speedup.

5 Adaptive Attack Against the Jao-Urbanik Scheme

In this section, we describe our adaptive attack on the η6 case of the Jao-Urbanik
protocol [10]. Thus, the starting curve E has j-invariant 0 and admits an auto-
morphism of order 6, η6. We want to attack Alice’s �eA

A -torsion, so for simplicity,
we again write � := �A and n := eA, and set � = 2 in our exposition. See Sub-
sect. 5.4 for a discussion on how this attack generalizes to larger �. Let P and
Q = η6(P) be such that {P,Q} form a basis of E[2n] and let α be one of Alice’s
secret keys, to which we associate the following three kernel generators

A = [α]P + Q, A′ = η6(A) = −P + [α + 1]Q,
A′′ = η2

6(A) = −[α + 1]P + [α]Q,

and the three isogenies

ψA,0 : E → EA = E/〈A〉, ψ′
A,0 : E → E′

A = E/〈A′〉,
ψ′′

A,0 : E → E′′
A = E/〈A′〉.

Similarly, we denote with γ any other secret key different from α. The associated
kernels are generated by C, C ′, C ′′, the curves are EC , E′

C , E′′
C and in general

the notation corresponding to γ will have a subscript C. When there is no doubt
about the corresponding secret key or when a property holds for all keys, we
may drop the subscript.

The isogeny ψA,0 can be decomposed into n individual 2-isogenies. We index
intermediate curves by EA,i, with EA,0 = EA and EA,n = E. The intermediate
isogenies are denoted by φA,i : EA,i → EA,i−1. We also call ψA,i the composition
φA,n ◦ . . . ◦ φA,i+1. We introduce similar notations for E′

A and E′′
A, and denote

by ηi the isomorphism between EA and E′
A (see Lemma 8). We summarize all

notations in Fig. 2.
We define

Ai = ψA,i(A), Pi = ψA,i(P).

Our attack is a non-trivial adaption of the GPST and DGLTZ attacks [3,4].
It similarly has two stages. Firstly, we compute the first bit of each key (see
Subsect. 5.2) and we recover the “pullbacks” A1, A′

1, A′′
1 and [2n−1]P1, [2n−1]P ′

1,
[2n−1]P ′′

1 (for every secret A). In the second stage, we show inductively that
given the first i bits of every key and Ai, [2n−i]PA,i (for every secret A), we

On Adaptive Attacks Against Jao-Urbanik’s Protocol 205

E . . . EA,i EA,i−1 . . . EA := E/〈A〉

E . . . E′
A,i E′

A,i−1 . . . E′
A := E/〈η6(A)〉

E . . . E′′
A,i E′′

A,i−1 . . . E′′
A := E/〈η2

6(A)〉

ψA,i

ηA,n:=η6

φA,i

ηA,i

φA,1

ηA,0
ψ′
A,i

η′
A,n:=η6

φ′
A,i

η′
A,i

φ′
A,1

η′
A,0ψ′′

A,i

φ′′
A,i φ′′

A,1

Fig. 2. Isogeny paths between the relevant curves.

can deduce the (i + 1)-th bit and the new pullbacks (see Subsect. 5.3). In other
words, if we write

α = 2i+1α′ + 2iαi + KA,i,

where KA,i indicates the known part of the key, we can recover αi from knowledge
of the i-th pullbacks.

This is not dissimilar to what is done in the DGLTZ attack, but our attack
exploits the additional structure between the shared secrets in the Jao-Urbanik
protocol to recover the exact pullbacks at each step (instead of keeping two
candidates) and reduce the number of queries needed for bit recovery. We thus
show that the security of the Jao-Urbanik protocol with k′ secret keys is only
slightly better than the security of k′-SIDH, thus greatly decreasing the benefits
of the Jao-Urbanik protocol. A more detailed study of the complexity of our
attack can be found at the end of Subsect. 5.3.

We present our attack only by querying with points on the starting curve E,
as in the DGLTZ attack. AppendixA presents a method to extend our attack
to an arbitrary curve, which can also be applied to the DGLTZ attack.

We start by showing essential properties of the partial isogenies ψA,i, ψ′
A,i, ψ

′′
A,i

and of the corresponding curves EA,i, E′
A,i, E′′

A,i in the following two lemmas.

Lemma 7. For simplicity, denote subscripts of the form A, i by i. Then,

ker(ψi) = 〈[2i]A〉, ker(ψ′
i) = 〈[2i]A′〉, ker(ψ′′

i) = 〈[2i]A′′〉,
ker(φi) = 〈[2i−1]Ai〉, ker(φ′

i) = 〈[2i−1]A′
i〉, ker(φ′′

i) = 〈[2i−1]A′′
i 〉,

ker(φ̂i) = 〈[2n−1]Pi−1〉, ker(φ̂′
i) = 〈[2n−1]P ′

i−1〉, ker(φ̂′′
i) = 〈[2n−1]P ′′

i−1〉.
Lemma 8. Let notation be as above. Then EA,i, E′

A,i and E′′
A,i are isomorphic.

Proof. We have that ker(ψA,i) ⊆ ker(ψ′
A,i ◦ ηA,n). Thus, there exists an isogeny

ηA,i : EA,i → E′
A,i such that ψ′

A,i ◦ ηA,n = ηA,i ◦ψA,i. By examining the degrees,
we find that deg ηA,i = 1 and thus ηA,i is an isomorphism. The same reasoning
holds for E′′

A,i.
�

206 A. Basso et al.

The isomorphisms ηA,i and η′
A,i are assumed to be known when EA,i, E′

A,i

and E′′
A,i are known, since they can be easily computed (a 1-isogeny between

two curves can be recovered in O(1)).

5.1 Attack Model: A New Oracle

In this section, we describe our assumptions and our attack model.
Firstly, let k′ denote the number of Alice’s secret keys. We assume that

Alice has a static set of keys α(1), . . . , α(k′) and that the attacker impersonates
Bob to recover Alice’s secret keys. The attacker engages with Alice on sessions
of Jao-Urbanik’s protocol and sends particularly chosen data, not necessarily
conforming to the protocol. By checking whether the two parties have obtained
the same shared secret, the attacker may recover information on Alice’s keys.
We model this information leakage in terms of an oracle and represent each
interaction with Alice as an oracle query.

An adaption of the second oracle presented in [3] to the η6 variant of the Jao-
Urbanik protocol gives an oracle O′(E(1), . . . , E(k′), R(1), S(1), . . . , R(k′), S(k′), h)
that returns true if

h = Hash(j1,1||j1,2|| . . . ||jk′,k′−1||jk′,k′),

where jr,s denotes the concatenation of

j
(
E(r)/〈[α(r)]R(s) + S(s)〉

)
, j

(
E(r)/〈−R(s) + [α(r) + 1]S(s)〉

)
,

j
(
E(r)/〈−[α(r) + 1]R(s) + [α(r)]S(s)〉

)
.

Similarly to what is done for the third oracle in [3], we can simplify the oracle by
assuming that the attacker generates one secret key and sends repeated copies of
the same curve and points. Note that any information that can be recovered with
querying with distinct curves can also be recovered by querying with repeated
copies of the same curve.

Hence, we obtain the following oracle

O(E,R, S, h) = O′(E, . . . , E,R, S, . . . , R, S, h), (2)

which is the one we use in our attack. As noted in [3], the attacker could change
one curve at each iteration, but all but one curves (k′ − 1, in this case) have to
remain constant across iterations for the attack to succeed.

5.2 Exploiting the Additional Structure: First Step

Let us focus on one of Alice’s secrets α. The attack extends straightforwardly to
all the keys. In order to recover the first bits of α, the attacker sends the modified
points P ′ = [1 + 2n−1]P , Q′ = Q, so that Alice uses the following kernels in her
computation of the shared secret:

On Adaptive Attacks Against Jao-Urbanik’s Protocol 207

1. Â = 〈[α]P ′ + Q′〉 = 〈[α]P + Q + [α0][2n−1]P 〉,
2. Â′ = 〈−P ′ + [α + 1]Q′〉 = 〈−P + [α + 1]Q + [2n−1]P 〉,
3. Â′′ = 〈−[α + 1]P ′ + [α]Q′〉 = 〈−[α + 1]P + [α]Q − [α0 + 1][2n−1]P 〉.

Note that, depending on the value of the least significant bit α0, either the
first or third curve computed has not been altered by using the modified points.
Thus the attacker already knows one of j(ÊA) or j(ÊA′′), where ÊA = E/〈Â〉,
although they do not know at this stage which one of the two.

The attacker now computes E∗
A, the sets containing all six proper 4-neighbors

of the curves EA in Alice’s public key, and their respective j-invariants. If α0 = 0,
〈[α]P ′ + Q′〉 = 〈A〉, and hence the first curve Alice obtains is isomorphic to
her original EA. The second curve is independent of α0 and is a 4-neighbor of
E′

A, since they share the 2-neighbor E/〈2A′〉. Similarly, the third curve is a 4-
neighbor of E′′

A since they share 2-neighbor E/〈2A′′〉. Note that the intermediate
2-neighbors in this construction are isomorphic since their kernel generators differ
only by an application of η6. Hence, the three curves EA, E/〈−P ′+[α+1]Q′〉 and
E/〈−[α+1]P ′+[α]Q′〉 are the three distinct 2-neighbors of E/〈2A〉 (distinctness
follows from simple computations on the kernel generators), as depicted in Fig. 3.

E′′
A

∼= EA,2

E/〈2A〉 ∼= EA,1

EA

E′
A

EA,3
. . .

2

2

2

Fig. 3. The isogeny paths between EA, E′
A and E′′

A.

Analogously if α0 = 1, we find that the three computed curves all share a
common 2-neighbor. The attacker proceeds analogously for the choices of any
other curve. This allows the attacker to match up candidate curves for EA, E′

A

and E′′
A among the 4-neighbors of EA, depending on which combination of first

key bits they are querying for at the time: the attacker may choose any curve in
E∗

A as a candidate curve for E′
A, depending on the guessed bit they may select

EA or E′′
A to be equal to EA and then select the unique curve in E∗

A which is also
a 4-neighbor of E′

A as a candidate for the remaining curve. Querying the oracle
for all possible combinations (12k/3 combinations, six for each neighbor and one
for the curve itself) gives the attacker the first bit of each secret.

Now, given the position of EA, E′
A and E′′

A in the isogeny graph, we know
that E/〈2A〉 must be the first intermediate curve EA,1 and similarly E′′

A must
be EA,2. This means the attacker can easily recover the first two intermediate
curves without additional oracle queries, unlike what happens in the DGLTZ
attack. Since the isogenies between EA and EA,1 (i.e. φA,1) and between EA,1

and EA,2 (i.e. φA,2) are known, the attacker can compute the first pullbacks of

208 A. Basso et al.

A and [2n−1]P (up to odd scalar multiplication) by setting A1 to be a generator
of ker(φA,1) and [2n−1]PA,1 a generator of ker(φ̂A,2) (see Lemma 7). Finally, the
attacker obtains the pullbacks A′

1 = ηA,1(A1) and A′′
1 = η′

A,1(A1). This approach
can be easily repeated for every following curve.

5.3 Intermediate Bit and Pullback Computation

Suppose we have recovered the first i bits of each key and have the relevant
pullbacks. Let α be one of Alice’s secrets keys and let γ denote any other secret
key.

Now, we want to recover the (i + 1)-th bit and compute the new pullbacks.
In the DGLTZ attack, the bit recovery and pulling back are two separate stages,
but in order to exploit the additional structure of Jao-Urbanik’s scheme, we
combine them together.

The attacker does not actively recover the (i + 1)-th key bits, but instead
tries all the 2k′

possibilities and uses the pullback queries to validate both the
bit guesses and the pullback candidates.

Using Lemma 7, it is possible to compute φ̂i+1 and thus recover φi+1. With
this information, the attacker can obtain candidates for the pullbacks of A and
P . The same applies to φ′

i+1 and φ′′
i+1.

The attacker then queries the oracle with the following points

P ′ = [1 + 2n−i−1]P, Q′ = Q − [KA,i][2n−i−1]P.

These are the oracle’s internal kernel computations

〈[α]P ′ + Q′〉 = 〈A + [αi][2n−1]P 〉,
〈−P ′ + [α + 1]Q′〉 = 〈A′ − [K2

A,i + KA,i + 1][2n−i−1]P

+ [KA,i][αi][2n−1]Q〉,
〈−[α + 1]P ′ + αQ′〉 = 〈A′′ − [K2

A,i + KA,i + 1][2n−i−1]P

− [KA,i + 1][αi][2n−1]P 〉,

〈[γ]P ′ + Q′〉 = 〈C + [KC,i − KA,i][2n−i−1]P

+ [γi][2n−1]P 〉,
〈−P ′ + [γ + 1]Q′〉 = 〈C ′ − [KC,iKA,i + KA,i + 1][2n−i−1]P

− [KA,i][γi][2n−1]P 〉,
〈−[γ + 1]P ′ + [γ]Q′〉 = 〈C ′′ − [KC,iKA,i + KA,i + 1][2n−i−1]P

− [KA,i + 1][γi][2n−1]P 〉.

All kernels can be shifted with ψi+1 (e.g. E/〈C + [KC,i − KA,i][2n−i−1]P +
[γi][2n−1]P 〉 = EC,i+1/〈Ci+1 + [KC,i − KA,i][2n−i−1]PC,i+1 + [γi][2n−1]P 〉) sim-
ilarly to the DGLTZ attack by applying [9, Chapter III, Corollary 4.11.]. Now,

On Adaptive Attacks Against Jao-Urbanik’s Protocol 209

since the candidate pullbacks for Ai+1 (preimages of Ai via φA,i), Ci+1 (preim-
ages of Ci via φC,i), [2n−i−1]PC,i+1 (preimages of

[
1
2

]
[2n−i]PC,i), [2n−i−1]PA,i+1

(preimages of
[
1
2

]
[2n−i]PA,i) and their isomorphic correspondents are known, the

attacker can query the oracle with the hash values of all 2k′
2k′

8k′
possibilities

(2 for each bit, 2 for the kernel generator pullback candidates and 4 · 2 for the
P pullback candidates). Note that the attacker may try a candidate for the first
curve and then shift it to the second curve using the isomorphisms ηi or η′

i

(therefore reducing an a priori complexity of 32k to 32k′
). We show that if we

find a match, then we have found the correct pullbacks for Ci+1 and PC,i+1 as
well as the correct key bits for C. First we prove a simple lemma about parities.

Lemma 9. Let KA,i, KC,i be natural numbers. Then,

1. K2
A,i + KA,i + 1 is odd.

2. It is not possible that all of (KA,i − KC,i), (KA,iKC,i + KA,i + 1) and
(KA,iKC,i + KC,i + 1) have the same parity.

Proof. The first claim is trivial. For the second claim, observe that the sum
of these quantities is even, thus it is not possible that all three of them are
odd. If KA,i − KC,i is even, then KA,i and KC,i have the same parity and then
KA,iKC,i + KA,i + 1 = KA,i(KC,i + 1) + 1 is odd.
�
Now, we prove our main lemma.

Lemma 10. If the oracle query returns true, then we have found γi, Ci+1 and
PC,i+1.

Proof. Suppose the attacker guesses that αi is 0. It is clear from the above com-
putation that we always get at least one match when we substitute Ci+1, γi and
PC,i+1. If γi = 0, then it follows from the computation of [3, Claim 1], that the
number of matches for the first curve is exactly two. The other match corresponds
to choosing Ci+1 + [2i]Ci+1 as the preimage of Ci and [2n−i−1]PC,i+1 + [2i]Ci+1

as the preimage of
[
1
2

]
[2n−i]PC,i. Due to Lemma 9, it is not possible that

(KA,i − KC,i), (KA,iKC,i + KA,i + 1) and (KA,iKC,i + KC,i + 1) are all odd.
Assume for instance that (KA,i − KC,i) is odd and (KA,iKC,i + KA,i + 1) is
even. Then we show that the second curve will not match as its kernel will be
generated by C ′

i+1 + [KC,iKA,i + KA,i + 1][2n−i−1]PC,i+1 + [2i]Ci+1. Hence it
will be 4-isogenous to the queried curve. The other cases follow similarly.

When γi = 1, then there will be another match for the first curve. Namely
when we pull back

[
1
2

]
[2n−i]Pi as [2n−i−1]Pi+1 + [2n−1]Pi+1. However, again a

similar calculation to [3, Claim 1] (one has to distinguish cases depending on the
parity of KA,i and KC,i) shows that either the second or the third curve will not
match. The calculations when the attacker guesses αi to be 1 are analogous.
�

Lemma 10 implies that for all secrets except α we know the correct bits and
pullbacks (as otherwise we cannot receive 1 from the oracle). However, we have
seen that the coefficient K2

A,i+KA,i+1 is odd, thus there will be multiple matches.

210 A. Basso et al.

In order to retrieve αi and the corresponding pullbacks we do another query with
different points, switching KA,i with KC,i. For this, we can use the previously
computed pullbacks and thus only query the oracle 32 times (corresponding to
the 32 possibilities for the pullbacks and the bit). Since the correct pullbacks are
computed, we are able to recover the isogenies φA,i+1 and φC,i+1 using Lemma 7.
Finally, since the next intermediate curves are computed we compute the isomor-
phisms between them. Thus, we have proven the following theorem.

Theorem 1.

1. There exists an algorithm that recovers the first bit of each secret using
O(12k′

) = O(12
k
3) queries to the oracle defined in (2).

2. There exists an algorithm that recovers the intermediate bits and pullbacks
using O(32k′

) = O(32
k
3) queries to the oracle defined in (2).

5.4 Attack Costs for General �

So far, we have demonstrated our attack on the Jao-Urbanik protocol with
parameter choice � = 2 for simplicity. However, in their proposal, the authors
suggest the use of � = 11 or � = 13 and further compute that k′ = 18 keys
are necessary to obtain security against Grover’s algorithm for � = 11; see [10,
Section 4]. Thus we briefly assess the cost of our attack and the DGLTZ attack
for arbitrary �. We divide the discussion into two parts. First, we estimate the
number of queries needed for computing the first key bits and later the number
of queries needed in the iterative step.

The complexity estimate of our attack is a straightforward generalization of
Theorem 1. During the recovery of the first bit of every key, we query - as before -
for any of the �k′

possible first �-adic digit combinations by first fixing the curve
(either EA or E′′

A using notation as in Subsect. 5.2) corresponding to the guessed
key digit to be the curve given in Alice’s public key. Then we select any of the
�(�+1) �2-neighbors of the correct curve to be E′

A and choose one of the remaining
�−1 curves which are �2-isogneous to both previously selected curves as the third
curve associated to a given key. Hence, for each possible combination of first key
digits we have

(
�(�+1)(�−1)

)k′
choices of curves. Thus, there exists an algorithm

which recovers the first digit of each secret using O(�k′
�3k′

) = O(�4k′
) = O(�

4k
3)

oracle queries.
For the iterative step, we again first guess the i-th �-adic digits and then

compute candidate preimages for the first curve and shift them to the other
two curves using the respective isomorphisms. There are �k′

possibilities for the
digits and �2k′

possibilities for each preimage. This implies that we need O(�5k′
)

queries in total.
Hence, for general �, we can summarize our findings in the following theorem.

Theorem 2.

1. There exists an algorithm that recovers the first digit of each secret using
O(�4k′

) = O(�
4k
3) queries to the oracle defined in (2).

On Adaptive Attacks Against Jao-Urbanik’s Protocol 211

2. There exists an algorithm that recovers the intermediate digits and pullbacks
using O(�5k′

) = O(�
5k
3) queries to the oracle defined in (2).

5.5 Comparison of k′-SIDH and Jao-Urbanik’s Protocol

Theorem 2 does not break the security parameters suggested by Jao and Urbanik.
However, in order to assess the security gain of Jao-Urbanik’s protocol, we com-
pare it with the security of k′-SIDH for arbitrary �. Since the DGLTZ method
requires an extra step which computes the i-th digits and then uses that infor-
mation to compute candidate pullbacks, the overall complexity of the attack is
�4k′

for k′-SIDH. The following table gives an overview of the number of SIDH-
instances and public keys occurring when executing the different protocols, as
well as the respective cost of attacking the �-torsion (Table 1).

Table 1. Comparisons between Jao-Urbanik’s scheme and k-SIDH

SIDH instances # Public key exchanges Attack cost

Jao-Urbanik with k′ keys 3(k′)2 (k′)2 O(�5k
′
)

k-SIDH with k = k′ (k′)2 (k′)2 O(�4k
′
)

k-SIDH with k = 5
4k′ (5

4k′)2≈1.56(k′)2 ≈1.56(k′)2 O(�4
5
4 k′

) = O(�5k
′
)

Therefore, we can observe that the Jao-Urbanik protocol with k′ secrets is
as secure as 5k′

4 -SIDH when comparing necessary oracle queries. Consequently,
it is more efficient to use 5k′

4 -SIDH than the Jao-Urbanik scheme with k′

keys and the same � when measuring security with respect to the currently
known attacks, as the former has a computational cost equivalent to 3(k′)2

SIDH exchanges, whereas the latter has a computational cost equivalent to
1.56(k′)2 SIDH exchanges. Note that the Jao-Urbanik scheme maintains a mod-
erate advantage in public key size, since it requires sharing k′ keys, compared to
the 5

4k′ keys shared in k-SIDH.

6 Conclusion

We have introduced an adaptive attack against Jao-Urbanik’s protocol with
parameter � = 2. While Jao and Urbanik suggest using � = 11 or � = 13, our
attack can be extended to that case as briefly described in the previous section.
The complexity of such an attack increases significantly, possibly reaching levels
where the protocol is secure for the specified parameter sets. However, even in
that case, our attack provides a nearly cubic speedup compared to a generic
application of Dobson et al.’s attack against the Jao-Urbanik scheme. Assessing
security of k-SIDH and Jao-Urbanik’s variant of it with respect to currently
known attacks, we conclude that Jao-Urbanik’s protocol does not seem to offer
a sufficient security improvement over k-SIDH with the same number of secret
keys to justify the roughly two times more computations needed.

212 A. Basso et al.

We leave a more thorough examination of whether a combination of stages in
an attack on k-SIDH can evoke further optimizations to future work. Any poten-
tial improvements in the attack cost would then make it necessary to reevaluate
the efficiency-security trade-off when comparing k-SIDH and the Jao-Urbanik
protocol.

Acknowledgments. We would like to thank David Jao and David Urbanik for their
valuable comments and feedback on this work. Furthermore, we are grateful to Samuel
Dobson, Steven D. Galbraith, Jason LeGrow, Yan Bo Ti, and Lukas Zobernig for their
helpful clarifications regarding the DGLTZ attack.

Work by the second and fourth authors was supported by an EPSRC New Investi-
gator grant (EP/S01361X/1).

A Querying with EB

The following lemma shows how to lift from the path EB → EAB to the path
E → EA.

Lemma 11. Let ψA,i be the partial isogeny from E to Ei and let ψB
A,i be the

corresponding partial isogeny from EB to EAB. Let A be the kernel of the isogeny
from E to EA and let AB = φB(A). Let Ei be the i-th curve in the isogeny path
from E to EA and EB

i be the i-th curve in the isogeny path from EB to EAB.
Let δi : EB

i → Ei be the isogeny which is the SIDH lift of φB. Assume we know
ψ′

i(AB) and ψ′
i(φB(Q)). Then we can compute [3n]ψi(A) and [3n]ψi(Q).

Proof. The proof follows from the observation that δi ◦ ψ′
i = ψi ◦ φ̂B .
�

The Lemma can be applied to compute the relevant pullbacks on the isogeny
paths from E to EA, E′ to E′

A and E′′ to E′′
A in the following manner. First one

computes a pullback candidate on the path starting from EB . Then it is lifted
with the above lemma to the path starting from E (using the fact that 3n is
odd). Then it can further be shifted to the other two isomorphic curves. Finally
these points can be shifted back with φB .

References

1. Azarderakhsh, R., et al.: Supersingular isogeny key encapsulation. Submission to
the NIST Post-Quantum Standardization project (2017)

2. Azarderakhsh, R., Jao, D., Leonardi, C.: Post-quantum static-static key agreement
using multiple protocol instances. In: Adams, C., Camenisch, J. (eds.) SAC 2017.
LNCS, vol. 10719, pp. 45–63. Springer, Cham (2018). https://doi.org/10.1007/978-
3-319-72565-9 3

3. Dobson, S., Galbraith, S.D., LeGrow, J., Ti, Y.B., Zobernig, L.: An adaptive attack
on 2-SIDH (2019). http://eprint.iacr.org/2019/890

4. Galbraith, S.D., Petit, C., Shani, B., Ti, Y.B.: On the security of supersingu-
lar isogeny cryptosystems. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016.
LNCS, vol. 10031, pp. 63–91. Springer, Heidelberg (2016). https://doi.org/10.1007/
978-3-662-53887-6 3

https://doi.org/10.1007/978-3-319-72565-9_3
https://doi.org/10.1007/978-3-319-72565-9_3
http://eprint.iacr.org/2019/890
https://doi.org/10.1007/978-3-662-53887-6_3
https://doi.org/10.1007/978-3-662-53887-6_3

On Adaptive Attacks Against Jao-Urbanik’s Protocol 213

5. Hofheinz, D., Hövelmanns, K., Kiltz, E.: A modular analysis of the Fujisaki-
Okamoto transformation. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017. LNCS, vol.
10677, pp. 341–371. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
70500-2 12

6. Jao, D., et al.: SIKE: Supersingular isogeny key encapsulation (2017). http://sike.
org/

7. Jao, D., De Feo, L.: Towards quantum-resistant cryptosystems from supersingular
elliptic curve isogenies. In: Yang, B.-Y. (ed.) PQCrypto 2011. LNCS, vol. 7071, pp.
19–34. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25405-5 2

8. National Institute of Standards and Technology: NIST post-quantum cryptography
project (2017). http://csrc.nist.gov/groups/ST/post-quantum-crypto/

9. Silverman, J.H.: The Arithmetic of Elliptic Curves, vol. 106. Springer, New York
(2009). https://doi.org/10.1007/978-0-387-09494-6

10. Urbanik, D., Jao, D.: New techniques for SIDH-based NIKE (accepted at Math-
Crypt 2018, to appear in J. Math. Cryptol.; personal communication)

11. Vélu, J.: Isogénies entre courbes elliptiques. CR Acad. Sci. Paris Séries A 273,
305–347 (1971)

https://doi.org/10.1007/978-3-319-70500-2_12
https://doi.org/10.1007/978-3-319-70500-2_12
http://sike.org/
http://sike.org/
https://doi.org/10.1007/978-3-642-25405-5_2
http://csrc.nist.gov/groups/ST/post-quantum-crypto/
https://doi.org/10.1007/978-0-387-09494-6

	On Adaptive Attacks Against Jao-Urbanik's Isogeny-Based Protocol
	1 Introduction
	2 Preliminaries
	2.1 Isogenies
	2.2 SIDH
	2.3 k-SIDH
	2.4 The GPST Attack on Static SIDH

	3 The DGLTZ Attack
	4 The Jao-Urbanik Protocol
	4.1 Parameter Selection
	4.2 Current Impact of DGLTZ on Jao-Urbanik Protocol

	5 Adaptive Attack Against the Jao-Urbanik Scheme
	5.1 Attack Model: A New Oracle
	5.2 Exploiting the Additional Structure: First Step
	5.3 Intermediate Bit and Pullback Computation
	5.4 Attack Costs for General
	5.5 Comparison of k'-SIDH and Jao-Urbanik's Protocol

	6 Conclusion
	A Querying with EB
	References

