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SUMMARY

In this paper a first step is taken to avoid ill-conditioning in adaptive estimation and pole assignment
schemes for the case when there is a signal model overparametrization. Such a situation can occur in
practice when an unknown model order is guessed too high so as to be on the ‘safe’ side. The methods
proposed in the paper are relatively simple compared with on-line order determination, being based on
introducing suitable excitation in the ‘regression’ vectors of the parameter estimation algorithms to ensure
parameter convergence. For the case when the models are non-unique in that pole-zero cancellations can
occur, the algorithms seek to estimate the unique model where the cancellations occur at the origin. Apply-
ing estimates of this (unique) model turns out to avoid ill-conditioning in central tendency adaptive pole
assignment. For the case of one pole-zero cancellation the convergence theory of the algorithm is com-
plete. For the more general case algorithms are readily devised which appear to work well but for which
a complete theory is not available.
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1. INTRODUCTION

In the practice of adaptive estimation and control there is a tendency to overparametrize signal

models (plants) to be on the ‘safe’ side. However, for overparametrized models there is a
danger of ill-conditioning of both the adaptive estimation and the adaptive control algorithms

applied to such plants. Of course, there is the twin danger of underparametrization, particularly
in the absence of appropriate preprocessing of signals. The effects of underparametrization

could be catastrophic and, since this is widely known, overparametrizat ion emerges as a
common problem. This paper shows that (after appropriate preprocessing) certain ill-
conditioning associated with overparametrization can be avoided, without the need to perform
on-line order determination with its associated significant increase in computational
complexity,

For overparametrized signal models there can be a lack of excitation in regression vectors

employed in parameter estimation and consequent ill-conditioning in the algorithms. Also,
insufficient excitation can lead to identification of non-uniquely parametrized models which

include pole-zero cancellations in the complex z-plane. When recursive estimates of the
parameters of such non-uniquely parametrized models are applied for adaptive control, ill-
conditioning leading to excessive controls can easily rise, particularly in adaptive pole assign-
ment schemes.

Adaptive pole assignment schemes are perhaps the simplest schemes for adaptively stabilizing
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linear plants which are possibly non-minimum phase.’ Also, they are the most natural form

of adaptive scheme to use in some applications where it is required that the adaptive scheme
behave as closely as possible to a nominal optimal design. However, a severe limitation for (heir
application in practice has been their failure when the signal models are overparametrized.

Adaptive pole assignment requires the solution of a linear algebraic equation which becomes
ill-conditioned when estimates of the plant have near pole-zero cancellations. This is inevitable
when the signal model is overparametrized. Some authors have proposed methods to cope with

this difficulty using on-line estimation of plant order in some sense. 2 Such an approach
increases the complexity of the adaptive scheme considerably.

The first contribution of this paper, in Section 2, is to introduce excitation signals into the
regression vectors for recursive (least-squares-based) parameter estimation in such a manner as

to avoid ill-conditioning even when the model is overparametrized. For the special case when
there is a potential non-uniqueness in the signal model owing to a pole-zero cancellation on the
real axis, it is shown how the excitation can be designed so that the parameter estimates
converge to those of a unique signal model, if one exists, otherwise to a model with a pole-zero
cancellation at the origin. The introduced excitation does not excite the plant as in the case of
added persistence of excitation signals. The estimation result of Section 2 is useful when applied
in conjunction with the second contribution of the paper, in Section 3, which shows that when

the parameter estimates converge so that the identified plant has a pole-zero cancellation at the

origin, the associated central tendency adaptive pole assignment controller converges without
ill-conditioning.

Section 4 gives a novel property of Sylvester matrices required in the proof of the theory of
Section 3, and Section 5 gives an illustrative simulation study. Conclusions are drawn in
Section 6.

2. ALGORITHMS AND RESULTS – WHITE NOISE CASE

Signal model

Consider the following single-input, single-output (S1S0) input-output (stochastic) signal
model class (piant) in terms of the unit delay operator q-’, input u!f, output Yk and white noise
disturbances wk:

/t(q-’)yk= ~(q-l)uk + Wk

,4(q- 1)= 1 +alq-’+.. +a,,”-” Z3(q-’)=blq-’ + .. +b,,,q-’” (1)

This can be rewritten as

Y/f= eT!ik+ Wk 13T=[al az . .. a,, bi bz .. . b,,,]

‘T= [-yk-l ““” ‘Yk-n Uk-1 ““” Uk-m]x (1’)

The conditions on wk are more precisely:

The sequence {wk ) is independent of uk with ~[ Wk I Fk I ] = O,

E[ w~ {Fk - I] < u~ < CO,where Fk denotes the u-algebra generated by WI, WZ,. . . . wk. 1

(2)

Recursive least-squares (RLS) estimation

Consider that 6 is estimated recursively by minimizing a least-squares criterion

(~k‘; ,$,(-Y–(?T%)2+ ((?- L%)T60(6- (%)
1 )
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via an RLS scheme as

$k=Pk[Bk-lbk-l+%kYk] ~k=~k.~+%ki;

~k=~k., ‘Pk-l%k%;~k.,(] +%kTPk.,xk)-l ‘Bk-l

for some initial conditions t%, ~o >0.
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(3)

Convergence properties review

To achieve a simple analysis making connection with Kalman filter theory as in Reference

3, let us assume:

{wk } is normally distributed and the a priori probability density associated with
0 is NIJo, Po] for some PO = B;’ >0. (4)

This assumption is not needed for a more general theory based on stochastic Lyapunov
functions ek”’~kek in References 4 and 5, where ek = 6 – ok, but then the reSU]tS are nOt qUite

as tidy.
For the model (l), (2) and the RLS scheme (3) under (4), Kalman filter theory tells us that,

with jk =o–ti~,

02Pk=~[8kekT\ ~k-1] ~k=~[dl~k.,] (5)

Moreover, 3 there is almost sure convergence as

lim Pk = p’s lim ok = jls as. (6)
k-m k-m

for random variables PI-S, ~Ls. With xk sufficiently exciting in that ~Ls = O, then Reference 3

tells us that ~1s = 0. Also if 81s = 0, then ekel ~ O as k - m and consequently, under (5),
~k ~ O as k ~ CO.Thus we have the following strong connection between sufficiency of

eXCitatiOII of Xk and parameter convergence.

Lemma 1. For the RLS scheme (3) applied to the signal model (1), (2) under (4), then

Iim~k=O @ lim jk = d (7)
k-m k-m

Proof. The proof is as above based on results in Reference 3

On suf@ient e.vcitation

In this subsection three specific excitation scenarios are studied using known results from
References 4–6. These relate excitation of signal model inputs to outputs or states for reachable

open-loop time-invariant plants, with or without (possibly time-varying) feedback. The first
two cases are a review of known results for the case when there is no overparametrization, while
the third case deals with the case of overparametrized models.

case (i). The simplest case to study is the non-overparamet rized case when

q“A(q-’), q“’B(q-l) are coprime (8)
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and ~.k is suitably exciting in that

k

()

-1

lim ~ UkirkT =0 iikT= [~k-,~k-~ . . . uk_,, _,,,]
k-m I

(9)

This latter condition is achieved when uk includes at least n + m/2 distinct sinusoids decaying

no faster than I/k, as when ~k is white or filtered white noise with a variance decaying no faster

than l/k.

Under (8), the model (1) is uniquely parametrized, ~k is reachable from uk alone and
excitation of the inputs as in (9) implies excitation of the states Xk. 4’5 Thus (8), (9) ensure that

Pk ~ O as k -+ m and in turn Ok --+6 as k + m. For this case then, Wk need nOt be sufficiently
exciting in any sense.

Case (ii). Another simple case to study is when (8) does not necessarily hold, but wk as well
as uk is suitably exciting in that (9) is satisfied and

( )

–1

jj~[d\Fk-,] =0 (lo)
1

Under (9), (10), the model (1) is uniquely parametrized, Xk is reachable from uk, Wk and is
sufficiently exciting to guarantee that Pk ~ O as k ~ C04’5and in turn that ok -0 as k ~ m. For

this case then, the convergence as such is independent of whether or not the coprimeness condi-

tion (8) is satisfied.

Case (iii). The possibility overparametrized signal model situation of particular interest in
this paper is when (8) possibly fails and there is no a priori guarantee of sufficient excitation
of wk as in (10). In this case the model (1) may not be uniquely parametrized, having one or
more pole-zero cancellations in the z-plane. Also, ~k may not be sufficiently exciting to ensure
that Pk ~ O as k -+ CO.Convergence can take place to a signal model with pole-zero cancellation

anywhere in the complex z-plane. We seek to avoid such a situation and propose an RLS
algorithm with additional excitation in the regression vector. It is derived using an alternative
signal model formulation.

Alternative signal model formulation

Consider (1) reorganized as

~k = dTxk + (Wk – 6Tvk) xk=%k+vk (11)

where vk is an excitation term to ensure that xk is suitably exciting. Notice that vk has no

influence on yk, uk. Its selection in the next subsection is in accordance with a parameter esti-
mation error measure, so that when parameter estimates are converging to their true values,
vk converges to zero.

RLS estimation with regression vector excitation

Consider that I? is estimated recursively by minimizing a least-squares criterion

(
yk=~ ,$ (Y, –dTXi)2+ (O– OO)TBO(O&OO)

)

(12)
1
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via an RLS scheme as

8~= Pk[Bk.1t?-1 +Xkyk] Bk=Bk. i+ XkX;

Pk= Pk-l– Pk-lxkd’pk- 1(1 +X:pk.lXk)-l=Bil

for some initial conditions (30,BO>0.
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(13)

Regression vector excitation selection

Consider the signal model (1) formulated as (1 1). Let us assume that either there is no over-

parametrization in that (8) holds, or that there is the possibility of overparametrization which
includes one pole-zero cancellation, leading to a non-uniquely parametrized model. In the latter
case we consider a unique parametrization with the properties (meaningful only when n > 1,
rn>l)

an = b,~j= O 4
n-l A(q-l), 4?1,-1 B(q - 1) are coprime (14)

For such a situation we propose a Vk selection as follows.

The sequence ( vk ] is selected as an independent (Gaussian) zero mean white noise
excitation term such that its covariance ~~ = ~/L- ltr(pk-l) for

D=diag[O O . . . 0 d; O . . . 0 d~+,,, ] where d; <0, d;+,,, >0. Denote the

}

(15)

nOI_I-Zero elements as UZfl, k, U2n+m, k

The Gaussian assumption on Vk is to keep the analysis simple and is not a necessary condition.
In practice a more efficient excitation would be where elements had values in a bounded
domain, Also, results are readily derived for the case when Vk is deterministic but containing
a sufficient number of frequency components.

The following results are now a consequence of a straightforward application of results from
References 4 and 5,

Lemma .2. Consider the linear signal model (l), (2) formulated as (11) with the vk selection

of (15).

(i) Then, under (8), xk is the output of a linear time-invariant system reachable from uk.
Moreover, with Uk selected so that for some a >0

()
-1

Iim (ln /c) ’+cy~ ti,ii, T =0 (16)
k-m 1

then

lim (ln k)l+”P~ = O lim (h ~)’+u~k ‘O as. (17a,b)
k-m k-w

(ii) Also, under (14), Xk is the output of a linear time-invariant system reachable from Uk and
the elements Vfl,k, ufl+,)l,k of vk. Then, under (14), the excitation conditions on uk Of (4) and

vk, namely,

:h:($O;k)-’=:=($u’+’’’=O-’=O
(18)

transkite to excitationof Xk as

hm Pk = O as. (19)
k+m
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Proof
(i) Under the coprimeness condition (8), it is immediate that X& is the output of a linear time-

invariant system driven by uk, vk, wk and is reachable from uk alone. Now should uk be aCting

alone, then Lemma (3.2) of Reference 4 applies to give that, for all k and some K >0,

from which (for some u > O)

k

()

–1

()

–1

lim ~ U,U,T .() * lim $ X,X,T =0
k-cc 1 k-m I

Applying the results of Lemma (3.3) and its Remark 1 of Reference 4 now tells us that when

bounded variance white noise inputs v!f, wk (independent of uk ) are also applied, the same

implications hold, so that (16) implies (17a) as claimed. The result (17b) holds likewise.
(ii) Under (14), the elements ~k_l...~k_,,,, uk_l... uk-,?l _ I of Xk are reachable from uk

alone5 and the remaining elements (Yk–fl + h,k), (Z4k -~11+ Un+l}l, k ) of xk are reachable from the
non-zero elements of vk, namely vn,k and vfl+,,,,k. Thus xk is reachable from uk, vk under (14).
Applying again the Lemma (3.3) and its Remark 1 of Reference 4 gives directly that (4), (18)

together imply (19).

Main results of section

Theorem 1. Consider the signal model (l), (2) which is possibly overparametrized in that
either (8) or (14) holds. Consider an RLS scheme (13) based on the alternative model formula-

tion (11) with vk selected as in ( 15) and (4) holding. Consider also that uk is sufficiently exciting
in that (16) holds. Then there is parameter convergence as

lim Ok=6 as. (20)
k-m

where 6 is the unique parameter associated with (1) under (8) or (14). Moreover (19) also holds.

Proof
Part (i). In the case that (14) is satisfied, so that a,, = b,,, = O, then f?TVk= O. Now Lemma

(1) applies with xk replacing Xk, so that (20) holds if and only if (19) holds. Assume that (19)

does IIOt hold: then since pk < P,L_ I for all k, tr(pk ) converges to a non-zero element and from
(15) the variances of v/( decayataratek“1. Thus (18) holds and in turn (19) holds under Lemma
2. This contradicts the assumption, so that ( 19) and (20) hold.

Part (ii). In the case that (8) is satisfied, Lemma 2 tells us that (16) implies (17). As a con-
sequence from (15) then

k k

lim ~ O~,k < m Iim ~ u~+,),,k < m
k-m I k-m I

In turn we claim that

Ih ~ (f?Tvk)2< m as,
k-cc I

(21)
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This follows since, as is readily established under (15),

$ (Ui,n - Ui,k) $ (U;+wk - U;+,,,,k)

are martingales bounded in Lz and converge almost surely. Under (21) and (17 b), we now claim

lim Pk ~ Wi(V,T6) = O a,s. (22)
k-m I

To see this observe that

[ 1<[: T 21U;
~[kfk2] =E ~ ~ 8TV,E[W,WJI ~mirl,-l,J-l]V~8 ..E ~ (6 vi)

i=lj=l

Thus Mk is a martingale on Fk. 1, bounded in Lz under (21), and so converges almost surely,
so that (17b) implies (22).

Now, under (17 b), Lemma (1) can be applied to yield

The

The

(23)
k

lim Pk ~ ~[~, = O Iim Pk ~ ~k(v~(?) = () as,
k-m 1 k-m 1

first result follows from (7) and the relationships

k

ek = Pk ~ Xryj
I ‘k= -pk($xiwi-BO)

second result follows from the first since (v;O) has the same essential properties as w, in
(2), (4).

The results (22), (23) lead in turn to the following convergence results:

k

pkBk = Pk ~ (X,X7 + i,v~ + V,Xjr + VjV1* ) - [ a.S. aS k + W

k

@k = Pk ,f X,_YI = (Pk Bk)-’pk ~ (X;i:t? + 6TV,X~6 + X;W, + 6TV, W,) -8 as. ask~m
I 1

so that (20) holds as claimed.

Remarks
1.

2.

3.

The specific vk selection of the theorem is for the case when there is one possible pole-zero

cancellation in the model. This is clearly one of the most important cases, since in selecting

a model order there is a tendency when in doubt to merely increase a likely order by one
for safety.

If a bank of estimators is employed conditioned on different model orders, then the results

above tell us that only odd (or even) orders need to be covered. Such a saving is a factor
of two.
Rather than work with banks of estimators as in Remark 2 above, an ad hoc approach
is to relax (15) and have Uk,l, vk,2, . . . . Uk, n each independent and suitably exciting with the
variance of uk,, increasing with i. This would force pole-zero cancellations to occur near

the origin but would lead to biased estimates. We do not study this technique.
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4. The algorithms and results of this section have been analysed for the simplest of stochastic
models, namely, when yk – 6Txk is white. For more general autoregressive moving-

average exogenous input (ARMAX) models, extended least-squares (ELS) based

algorithms can be employed. We claim that the technique of introducing vk also can be

made to extend the capability of ELS-based schemes. In particular, for those which are

globally convergent under the coprimeness condition (9).7 with the modifications they are
globally convergent also when there is a possible overparametrization, as when ( 14) holds.
Essentially the same theoretical approach applies, but the technical details are more
tedious so are not explored here.

3. ADAPTIVE POLE ASSIGNMENT

Pole assignment

Let us seek an adaptive pole assignment scheme associated with the signal model (1) so that

there is asymptotic convergence to

~(q-’)~k = ~~(q-’)rk (24)

where ~(q-’)= 1 +hlq-’ + .. . +lzfl+,,,q‘“““ is specified by the desired closed-loop poles, K is

a constant and rk is a reference input. This can be achieved by the following controller: 2

~(q-’)~(q-’)~k = ‘~(q-’)~(q-’)~~ + Krk (25)

where E(q-l)= 1 + elq-l + ... + e,,,q-’”, F(q-l)=flq-l + . . . +f,lq-” are given from the

solution of the Bezout equation

/l(q-’)E(q-’ )+ B()F(qF1)=l)= 1 or S(n, m)p=a (26a,b)

where

pT= [el ez . . . e,~~l f2 . . . f.] CY‘=[–al –aZ . .. afl O... O]

S(n, m)=

10..00...0’

al 1 0 bl
al . . . b, .

. . .
an 1 b,,, . .
0. 0. bl

. .

O., Oa~O. .” b;,,
~m~ ~n—-----+-

(27)

It is known that solutions of (26) exist if and only if rank [S CY]= rank [S ] . Also,s

S(n, m) is non-singular * q“A (q-l), q“’B(q-l) are coprime (28)

In certainty equivalence adaptive pole assignment, the estimates ok are used in lieu of O in
(27) to compute on-line estimates @fE of the controller parameters, so that in obvious notation

$XE(n,m)@~~ = &~~ (29)

When q“zl (q-1), q’”A (q-1) are coprime, ~k(n, m) is non-singular and the solution of (29)
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exists. Otherwise it may not. Ill-conditioning in ~; 1(n, m) can cause excessive values for @~.

One modification to avoid large ~k is to select ok = ~k., during ill-conditioning, but for
unknown plants it is not ap-iori clear how to quantify ill-conditioning to achieve a useful adap-
tive controller.

Central tendency adaptive control

In central tendency adaptive pole assignment, 9 ill-conditioning in calculating the controller

parameters is avoided without requiring prior information concerning the plant or controller.
Suppose there is a Gaussian a posterior probability density for the model parameters 0 as

~[e~, tiipk ] where;: is an estimate of u*; then there is an associated non-Gaussian probability
density for the pole assignment controller parameters p. A central tendency selection @~T is one
which maximizes this density or at least avoids the tails of this density. Practical implementa-
tions are given in Reference 9. Associated with @FT is some parameter estimate e$T which is
not in general (?k. Thus in obvious notation

~ZT(n, m)~$T = &~T (30)

The estimate ~~T has the property9 that it is ‘close’ to ek but ‘far’ from hypersurfaces for which

qn~k(q- 1), qm~k (q-1) are not coprime. As a consequence, the following property is claimed
for central tendency adaptive pole assignment.

The selections ~~T + O are such that [~~T(n, m)] - * exists for all k, and if 6
belongs to the hypersurface (in O-space) defined by q“xl (q-’), q“’ll(q - 1) not
coprime, then, as k -+ m, ~~T is contained in a cone centred at O which excludes 1(31)

the tangent hyperplane at 0.

Remarks
1.

2.

To give a geometric interpretation of (3 1), consider Figures 1 and 2. The heavy arc is the
pole-zero cancellation singular region for 6 estimates in e-space. The light shaded area
is a zone of all-conditioning control surrounding the singular arc. The heavy shaded area

cones are the conic regions of possible central tendency control estimates @~T of (31).
Figure 1 depicts the situation when the solution (14) is at the conic intersection and the

cones avoid the ill-conditioned regions. Figure 2 depicts a solution not satisfying (14)
when the central tendency estimates @~Tbecome ill-conditioned when converging.
The property (31) can be viewed as a corollary of results rigorously proved in Reference

Figure 1. Avoidance of ill-conditioning
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..
‘.

Figure 2. Ill-conditioned control

9, although specific reference has not been made to (31) there. The property is readily
believable, but since it is not rigorously proved as such in Reference 9 and is beyond the
scope of this paper, we here add the ‘qualification’ to central tendency control that (31)
be satisfied.

Two cases are studied now.

Case (i). Known model order. W’e now claim the following:

Theorem 2. Consider the signal model (1) for the case when it is not overparametrized, so
that q“A (q-1), q’”l?(q- *) are coprime. Consider also RLS parameter estimates e~ from (13)

and associated certainty equivalence (or central tendency) pole assignment with controller
parameters @fE (or @~T) and Sylvester matrices S~E (n, m) (or S$T(n, m)). Consider also that
rk is sufficiently exciting so that 6/ pk -+ O as k + m and there is parameter convergence with

8k+f?ask-m. Then

lim [Sf~(n, m)]-l =S-’(n, m) or lim [!?fT(n, m)]-l =S-l(n, m)
k-m k-w (32)

lim @~~ = p or lim @~T = q
k-~m k-m

Proof. This is immediate from the coprimeness assumption and the property (28). Notice

that there is no need of assumption (31).

Case (ii). Overparametrization. We now claim the following:

Theorem 3. Consider the signal model (1) with n > 1, m > 1 and (14) holding. Consider also
RLS parameter estimates (?kfrom (13) and associated central tendency adaptive pole assignment
controller parameters @fT given from (30) with (31) satisfied. Then, under RLS convergence
of8~Ttot9ask+m,

lim det ~~T(n,m) = O lim @FT= q“ (33)
k+m k-w
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where P* is a unique solution of S(rr, nr)p* = a with zero elements as

9*= [er e: . . . e~-1 O f? f~... f~-1 0]1 (34)

Proof. The proof is given in the Appendix, based on the Sylvester matrix property studied

in Section 4.

Remarks
1. It might be thought that the results can be more directly proved from properties of

Diophantine equations. Although certain progress can be made along these lines, and

indeed the results can be stated in such terms, it does not appear straightforward to

complete any proof without resort to Sylvester matrix properties as in Section 4.
2. This theorem result is dependent on the non-standard nature of the RLS algorithm with

its internal perturbations vk. In the presence of overparametrization, standard RLS
estimation (when Vk = O) will almost surely not converge to the unique limits solution (14).
This means that there is inevitable ill-conditioning. This situation applies even when a
central tendency adaptive control law is implemented, as depicted in Figure 2.

3. The above theorem result is also facilitated by the central tendency property (31) of the
adaptive controller, In the presence of overparametrization, even when the modified RLS
algorithm of the paper is implemented without (31) satisfied, there is a non-zero proba-

bility of ill-conditioning as suggested from Figure 1, at least during transients.
4. The theorem is developed in conjunction with the RLS estimation (4), which copes with

possible overparametrization by the an, b,.. Should some RLS-based scheme cope with
higher orders of overparametrization, the results of this theorem would still hold. The
details of a more general proof are straightforward and are omitted here.

5. The result of the theorem also applies to the situation when (26) is replaced by

/t(q-’)E(q”’ )+ B(q-’)F()= H(q H)q-’) (35)

with H(q - 1) having degree no greater than n + m – 2. This is the usual situation when
A (q-1) is of degree n – 1 and B(q-’ ) is of degree m ‘I. The proof details area mild varia-
tion on that given here when (26) applies. The restriction on H(q -1 ) implies that the

associated u in the algebraic form of (35) corresponding to (26b) has its last two entries
zero.

6. The above result covers the cases when the plant has a delay of unity or greater. In these
cases B(q-’ ) specializes as having a factor q-’v where IV > 1.

4. A PROPERTY OF SYLVESTER MATRICES

First recall (27) which associates with O= [al . . . an bi . . . b,,,] T a SylvestermatrixS(H*m).
Let us denote the adjoint of S(n, m) as M(n, m) and determinant as D(n, m ). Now consider
a (linear) trajectory in O-space parametrized in terms of a scalar variable i as

0(.$)= [al .. . a~-l(at) bI . . . h-l (b’l)T Ial+lbl=l (36)

Also denote the Sylvester matrix associated with O(i) as St(a,,, b,,,), its adjoint matrix as
M<(an, b,,, ) and its determinant as Q(a,,, b,,,). Then we claim the following:

Lemma 3. Consider S; 1(an, b,,, ) = D:’ (u., b,,,)M:(a~, b,,,) for the case that

D(n–l, m–1)#0 ah,,,-, - a.-lb # O (37)
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Then the following limits exist as ~ ~ O for all j < n + m – 1:

{

[S-’(n-l, m-l)l,!j fori<m (38a)
Iim D~l(u~, b,~)[A4~(a., b,,,)] i,j= [S-’(n- l,m-l)]l_l,, m<i<m+n (38b)
:-0 0 fori=mori=m+n (38c)

Proof. We consider in turn expressions for D:(u~, b,,, ) and Mt(a~, b,,, ) in terms of order t
and higher-order terms denoted 0(t2). Simple manipulations give an expression for D:(u~, Ih,l)

in terms of the elements of the last row of S$(afl, b,,, ) and their minors, with the minors likewise
expanded, as

Df(an,b,,,)= (– l)”~(ab,),-l - a,l-lb)D(n - l,m - 1)+ 0(L2) (39)

Noting that [M$(an, b,n)] i,j is a (signed) determinant of a submatrix of S:(a~, b,,,), then again

simple manipulations give an expression in terms of the elements of the last row of the
submatrix of S:(a., b,~) and minors of this submatrix as

[M:(~t,, bm)]i,j=(- l)n(at)M[(a,,,v- l)],,J+ (bi)[Mt(uti, b,,t)]r,j+ O(t’)
fori<m j<n+m–1 (40)

Here Mf(u., m – 1) denotes the adjoint matrix of the lower-dimensioned Sylvester matrix
St(an, m – 1) which associates with the vector

[In+,n-I Old(t)= [c71 . . . CZ,l-I (at) bI .. . b,,,-,] 1

Using derivations similar to those giving (40), then

[Mt(a., m- l)]i, j= b,. -,[i’W(n - 1, m- l)]i,j+ O($)

=b,,l.lD(n –l, r?l-l)[S-’ (n-l, m-l)] i,j+ O(~) fori<m j<n+m - 1 (41)

where S-l(n – 1, m – 1) exists under the assumption (37). The dual form of (41) is

[Mt(n - 1, bm)l,,j=(-1) “-’afl_lD(n -l, m–l)[S-*(n–l, m–I)]i, j+ O(~)

fori<m j<n+ln–1 (42)

Substitution of (41), (42) into (40) yields

[Mt(a~, bt~l)li,j=(-1)’’(ab,tr-l -a~-lb)@(n - 1, m- l)[S-’ (n- 1, m- l)]i, j+ O(t2)

for i<m j<n+m–1 (43)

Dividing (43) by Dt(an, b,,, ) from (39) and taking limits as ~ -+ O, under the assumption (37),
leads to the result (38a). The result (38b) can be established along similar lines.

Similar arguments to the derivation of (40), (41) lead to

[Mt(a~, b,,,) l,,,, J= (b/) [Mt(n - 1, b,,,) ],,,,j+ 0(L2) for j < n + m -1 (44)

[M~(n -1, b,,,) ],,,, j=(bL)O(0) for j < n + w- 1 (45)

where 0(0) denotes a quantity that is bounded in terms of 0. From (44), (45)

[M:(a,,, b,,, )1,,,,, = 0(f2) for j < n+ /n -1

Similarly we have

[Mt(a,,, b,,l)].+,,j,j~ 0(~2) for j< n+ m – 1

(46)

(47)
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Then dividing (46) and (47) by D:(an, b,. ) from (39) and taking limits as ~ + O, under the

assumption (37), we have (38c) as claimed.

Remarks
1. This result can be generalized to the case other ai, b; converge to zero using the same

technique as above. Details are omitted.
2. The above result can be expressed in terms of an (n + m ) x (n + m – 2) matrix

[S+(O, $)];, j= D~l(an, b,,~)[M:(an, b,,, )li, j (48)

Thus under (37)

H
1,,, – 1 0

S+(O, 0)2 lim S+(O, ~)= ~ ~ol S-’(n–l, m–l)
$-0 ?1

o 0

Moreover, simple manipulations yield

[1
1,,,- I o

00
S(n, m) ~

[ 1_S(n–l, m–l)n~m
1.-, – o

00
1

so that

[1
t

S(n, m) S+(O, O= 1“+~-2 n+m
1

(49)

(50)

Corol/ary 1. Consider that A (q-’, ~), B(q-’, ~) are the polynomials associated with the O(t)
as in (36). Consider also that ~(q-’ , t), Hq-’, Z) are the solution to

/l(q-’, ~)E(q-’,:) +B(q-l, ~)F(q-’, g)= 1 (51)

with the degree of E(q-l, ~) being m and the degree of E(q - 1,~) being n. Then, under the same

conditions as in Lemma 3, the last coefficients of E(q - 1, /), F(q - 1,~) converge as

Iim e,,,(:)= O lim~. (~)=0 (52)
[-0 $-0

Proof. The proof is straightforward from the result of Lemma 3 and in particular from (49).

However, to prove it by just using the properties of polynomial equations appears too formid-
able without resort to the result on the Sylvester matrix described in Lemma 3.

Lemma 4. Consider the Bezout equation (26) under (14) with m > 1. Then a unique solution

P* of (42) exists as

W*= S+(O,O)[I,, +,,,-2 O]CY (53)

with the property that q.* has nth and (n + m)th elements which are zero.

Proof. Under (14), of course, S- l(n, m) does not exist, but (37) holds for a suitable selection

of a, b. Also, the last two elements of u are zero. Now Lemma 3 holds under (37) so that (49),
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(50) apply. Thus with p“ uniquely defined from (53)

‘(nm)w’=r+:-’W=a

(54)

and (26) is satisfied. Application of (49) under (51) gives guarantees that the nth and (n + nz)th
elements of 9* are zero.

5. SIMULATIONS

Consider now the application of the adaptive pole assignment scheme discussed in Sections 2
and 3 to the plant taken from Reference 10 with

Yk–1”2Yk- l=uk-l– 3”luk-l+2”2uk-j+wk

K=1O H=l

[

1 k= 1...10, 21...30, 41...50
r(k) =

–1 k=ll . ..20. 31...40,51...60

and variance of wk decaying as k-2.
Three cases are studied:

(i) The plant is overparametrized by one, i.e. the plant is modelled as

Yk+ alyk-1 + a2Yk-2=bluk-i +b2uk-2+ b3uk-~+b4uk-4+ Wk (55)

and standard RLS estimation is used.
(ii) The plant is overparametrized by one too, but the RLS estimation discussed in Section

2 is employed.
(iii) The plant is not overparametrized, i.e. the plant is modelled as

Yk+ U]_Yk-l=biUk-l +b2Uk-2+b3Uk-3+ wk (56)

Figures 3–5 show the poor performance in the output, the estimates of the plant and the

estimates of the controller in case (i). Figures 6–8 give the comparison of the outputs, the
estimates of the plant and the estimates of the controller in cases (ii) and (iii).

Figure 3. Output (y~) in case (i)
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Figure 8. Estimated controllers in cases (ii) and (iii): curve 1.1, .f,k in case (ii); 1.2, fl,k in case (iii); 2, .fz,k in case (ii)

From the figures it is clearly shown that in the overparametrization presence the adaptive pole
assignment scheme based on the standard RLS estimation of the plant could yield quite poor
performance; however, the scheme proposed in this paper works very well. In fact, it converges
to the optimal pole assignment controller as the standard adaptive pole assignment scheme does
without overparametrization.

6. CONCLUSIONS

Non-standard adaptive estimation and control techniques have been proposed to avoid ill-
conditioning which can arise when standard techniques are applied to signal models with over-
parametrization. The techniques avoid ill-conditioning and yield asymptotic optimality in the

case when there is possibly one pole-zero cancellation in the assumed signal model. It seems
reasonable to apply such techniques in conjunction with on-line model order estimation tech-
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niques, since from finite data these possibly lead to overestimation of the order. The tehcniques

have been studied for the case when exact pole-zero cancellation occurs but is known from

simulations to avoid ill-conditioning when there are stable near pole-zero cancellations. The
results of the paper are a starting point from which to cope with higher-order pole-zero

cancellations.

APPENDIX

Consider first the following lemma.

Lemma 5. Under (13), (14), (31) (the conditions of Theorem 3),

lim S+(dfT, tk)= S+(O, O)
k-m

(57)

Proof. With (31) satisfied and (13)

so that when (14) holds

Since I ak I + I bk I = 1, recalling (36), then

lim & = O (58)
k-m

Now, under (31), (13), (14), we have

[1
1,,,-1 0

0
lim S’(@$T, ~~) = S+ (O~T, O) = ~ ~O_, [SFT(n-l, m-l)]-’

(k-o n
00

Also under (31), (13), (14),

lim S+(fjfT, O) = S+(6,0)
k-m

(59)

(60)

From continuity and (58), (57) is established

Remark. Without (31) satisfied, it cannot be guaranteed that S+ (@f’T,.$k) exists for all k.
Also, with S+ (I?k, f~) large, then @k is large and ill-conditioning is said to occur.

Proof of Theorem 3

Consider the central tendency adaptive control with (31) satisfied and define for all k

[S$T(n, m)]-’ = [s+(efT, Z)*] (61)

where * denotes terms not of interest. Thus for the signal model with m > 1, or in other
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last two entries of &fT zero,

a:T= [s:T(n, m)] -’ii:T= [fxT(n, m)] -’[1,1 +,,,-2 01‘[1,,+,)1-2olti:T
(62)

=s+(e:T, t)[Jn+,tl-2olii:T

Now applying (57) when taking limits as k + m, we get

lim @FT= lim S+(O$’,Q)[I,, +,,,-2 O]d’T=S +(0,0 )[I,z+i}t-2 Ola
k-m k-m

The desired results (33), (34) follow from application of Lemma 4.

1,

2.

3.

4.

5.

6.

7,

8.
9.

10.
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