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On Adaptive HMM State Estimation
Jason J. Ford and John B. Moore,Fellow, IEEE

Abstract—In this paper new online adaptive hidden Markov
model (HMM) state estimation schemes are developed, based on
extended least squares (ELS) concepts and recursive prediction
error (RPE) methods. The best of the new schemes exploit the
idempotent nature of Markov chains and work with a least
squares prediction error index, usinga posteriorestimates, more
suited to Markov models then traditionally used in identification
of linear systems.

These new schemes learn the set ofN Markov chain states, and
the a posteriori probability of being in each of the states at each
time instant. They are designed to achieve the strengths, in terms
of computational effort and convergence rates, of each of the two
classes of earlier proposed adaptive HMM schemes without the
weaknesses of each in these areas. The computational effort is of
order N .

Implementation aspects of the proposed algorithms are dis-
cussed, and simulation studies are presented to illustrate conver-
gence rates in comparison to earlier proposed online schemes.

Index Terms—Hidden Markov model, parameter estimation,
recursive estimation.

NOMENCLATURE

, Unnormalized conditional estimates.

Unknown parameters, i.e., state levels.

, Estimates of state levels.

Collection of estimates.

Error in estimate.

, Gradients.
Parameterized HMM model.
Column vector of all ones.

, Stochastic transition matrix, elements.
, Matrix of observation probabilities, elements.

Unit vector.
Filtration of .
Martingale increment.
Number of states.
Number of parameters.
Normalization factor.
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Approximation of the Hessian.

, Estimates of .

Markov state at time .

, th element.

Diagonal matrix with on the diagonal.

,

, Conditional expectations of .

, Cost functions.
, Noise terms.

Observations.
Collection of observations up until time.
Filtration of .

ELS Extended least squares.
EM Expectation-maximization.
HMM Hidden Markov model.
ODE Ordinary differential equation.
RLS Recursive least squares.
RPE Recursive prediction error.
QAM Quadrature amplitude modulation.
WGN White Gaussian noise.

Inner product.
diag Diagonal matrix from a vector.

, Expectation operation.

I. INTRODUCTION

H IDDEN Markov models (HMM’s) are a powerful tool
in the field of signal processing [1], [2] with application

to speech processing [4], digital communication systems [3],
and biological signal processing [6]. The major limitation
of schemes for the estimation of HMM parameters revolve
around computation and memory requirements.

HMM’s in discrete time can be viewed as having a state
at time belonging to a discrete set, without loss of

generality, denoted as , where is
a vector that is zero everywhere excepting theth element,
which is one. There are transitions between states described
by fixed probabilities that form a matrix , where
is the probability of transferring from state to state . The
model measurements are an output mapping from the Markov
states contaminated by additive noise. The corruption of
the output mapping is the reason the model is termed hidden.

The expectation-maximization (EM) algorithm [4] is a pop-
ular off-line locally convergent scheme for obtaining maxi-
mum likelihood estimates of the HMM parameters. A major
limitation of off-line multipass estimation schemes is the
“curse of dimensionality,” where the computational effort
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and memory requirements are in proportion to the square of
the number of Markov states and proportional to the length
of the signal to be processed. One avenue to improve the
computational and memory requirements would appear to be
through the investigation of on-line schemes. It should also
be said that in learning the model parameters in a multipass
arrangement, convergence rates are linear, meaning of order

with respect to the number of passesthrough the data.
The two notable examples of on-line adaptive schemes

for HMM parameters estimation are the recursive Kull-
back–Leibler (RKL) scheme [5] and the recursive prediction
error (RPE) scheme [8]. The RKL scheme converges linearly,
and each iteration of the parameter update equation has
computational complexity of , where is the number
of parameters to be estimated. The RPE scheme [8] was
developed with the aim to provide improved convergence
rates. This scheme is known to be asymptotically efficient and
provide quadratic convergence (of ). However, each
iteration of the parameter update equation has computational
complexity of , which can be prohibitive for large .

The key contributions of this paper are the proposal of
several new on-line schemes for HMM parameter estimation,
based on extended least squares (ELS) and recursive prediction
error (RPE) concepts with the ELS approach rationalized
via martingale convergence results, and convergence results
shown for the RPE schemes via an ordinary differential
equation (ODE) approach. The best of these new schemes are
based on a least squares prediction error index that usesa
posteriori estimates rather than prediction estimates.

A typical application in the simplest of contexts, under study
in a companion paper, is the demodulation of coded QAM
signals with known transition probabilities in a noisy fading
channel. The state transition probabilities and channel noise
statistics would be assumed known, but the channel gain and
phase changes are unknown and possibly time varying. The
problem of estimating the transition probabilities is considered
in a companion paper [7].

The paper is organized as follows. In Section III, we
formulate the signal model and introduce an information
state model. In Section IV, we introduce first the simplest
case of the adaptive estimation task, namely, when the state
sequence is measured directly, and then apply the least squares
approach familiar in linear system identification. When the
state sequence is not measured directly, the least squares
approach leads to the ELS algorithms. Some convergence
results are presented. In Section V, we generalize the ELS
algorithms by introducing RPE recursion schemes, with new
search directions, and ODE convergence results are presented.
A new cost function, which is suggested by the least squares
approach, and thea posteriori weighted RPE scheme is also
presented. In Section VI, implementation considerations are
discussed, and simulation examples are given. Finally, some
conclusions are presented in Section VII.

II. PROBLEM FORMULATION

In this section, we describe the HMM signal model in state
space form, discuss its parameterization, and reformulate it as
an information state model.

A. HMM State Space Model

Let be a discrete-time homogeneous, first-order Markov
process belonging to a finite set. The state space, without
loss of generality, can be identified with a set of unit vectors

,
with 1 in the th position. The transition probability matrix is

for , where

(2.1)

so that

(2.2)

where denotes the expectation operator. We also denote
to be the complete filtration generated by,

that is, for any is the complete filtration generated
by . For a brief introduction of the concept of
filtration see [2, Appendix A].

Lemma 1: The dynamics of are given by the state
equation

(2.3)

where is a martingale increment in that
.

Proof [2], [11]:

We assume is hidden, that is, indirectly observed by
measurements in a continuous range . The observation
process is assumed to be scalar (for simplicity of presen-
tation only) and to have the form

(2.4)

where is the vector of state values of the Markov
chain. We also define . We assume
is i.i.d., with zero mean and Gaussian density, i.e.,

and , where is the complete
filtration generated by .

We shall define the vector of parameterized probabil-
ity densities (or symbol probabilities) as

for . In the special case as here
when is i.i.d. and , we can write

(2.5)

We can also write that the initial state probability vector for
the Markov chain is denoted by .
The HMM is denoted .

1) Model Parameterization:For simplicity, in this paper,
we shall be considering the problem of estimating unknown
state values, assuming knowledge of, , and , as in
communication channels with known coding. Letbe pa-
rameterized by an unknown vectorso that the parameterized
HMM is denoted by
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B. Information State Model

Let and denote the conditional filtered state
estimate and one-step-ahead state prediction ofat time ,
given measurements , up until time and the parameter

i.e.,

(2.6)

Note that .
It is often convenient to work with an unnormalized condi-

tional estimates (or the so-called “forward” variables)
and , which are defined as for

and .
These unnormalized conditional estimates are computed using
the “forward” recursion

(2.7)

where diag .
We can now write the conditional filter estimate and one-

step-ahead prediction from the unnormalized conditional es-
timates as

(2.8)

where is an inner product, and is the column vector
containing all ones.

1) Parameterized Filtered Estimate:We now seek to ex-
press the observations in terms of the conditional filter
estimate at time .

Lemma 2 [8]: The conditional measurements are given
by

where

The parameterized filtered estimates are given by

(2.9)

where is a normalization
factor.

2) Parameterized One-Step-Ahead Prediction:We now
seek to express the observations in terms of a prediction
based on the conditional filter estimates at time .

Lemma 3 [8]: In the above notation, the measurements
are given by

where

(2.10)

and is a white martingale increment.

Proof [8]: Following the standard arguments, since
is measurable with respect to ,

and , then

In summary, the parameterized predictor-based signal model
for an HMM parameter and with states is given by

(2.11)

where is a martingale increment, and
is a normalization factor.

We now proceed to consider the problem of estimating
given a sequence of observations.

III. L EAST SQUARES AND EXTENDED LEAST SQUARES

This section has two parts. In the first part, to introduce the
problem, we consider the simplified adaptive estimation task
for the case when is measured. The familiar least squares
algorithm from linear system identification theory is presented,
and the idempotent nature of indicator vectors is exploited.
The least squares cost is introduced, both in its original form
and in an alternative form appropriate to the new least squares
recursion. Convergence results are presented.

In the second part of this section, the assumption thatis
measured is relaxed, and thead hocidea of ELS is introduced.
The two least squares algorithms are converted, via various
assumptions, to a collection of ELS algorithms. Computational
and convergence aspects are discussed. The importance of
studying these ELS algorithms is both as a motivation for
locally convergence RPE algorithms presented in Section IV
and as suboptimal computationally efficient approximations to
these same RPE algorithms.

A. Least Squares

In this subsection, we consider signal model (2.4) given
in the previous section and the idealized estimation task to
estimate given a sequence of observations and the state
sequence . Subsequently, we will consider
the case when must be estimated from .

1) Off Line: In a familiar approach, premultiplication of
(2.4) by and some algebraic manipulation leads to the
off-line estimate for ( ) based on data points

(3.1)

where is an estimate of given data points. The
estimation error is

(3.2)

By exploiting the idempotent nature of indicator vectors,
the above estimates (3.1) and (3.2) can be written as scalar
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equations

for

(3.3)

where , , and denote the th element of , ,
and , respectively.

We are led to the following lemma.
Lemma 4: In the above notation, and with a mar-

tingale increment with respect to the-algebra
, with as the complete filtration, in that

, then

exist a.s. (3.4)

Moreover, for each in (3.3)

a.s. (3.5)

Proof: We proceed first to prove the second result by
examining subsequences of the chain on which each state is
active. Let denote the number of times stateis active
up until time , i.e., , and let denote
the time at which the state is active for the th time.

From (3.3), we define ,
which is a martingale adapted to since .

Note that by summing only over
the subsequence with active; then, it follows that is
bounded in for each by

where we have used that and that
for all .

For the only if direction of the second lemma result, note
that under the lemma condition ,
we have as . Hence, by the martingale
convergence [11], [12]

exist a.s. for each

Using the Kronecker lemma [11], [13], we have

a.s. for each

Hence, by rewriting as a summation over, we have

a.s. for each

The result follows. The if direction of the second lemma
result follows from noting that
implies that is finite. Hence

w.p.

The first lemma result now also follows.
2) On Line: Simple manipulations of (3.1) give the recur-

sions

(3.6)

and

(3.7)

or

(3.8)

where is an estimate of after data points. Manipulations
show that minimizes a squares sum index, that is

(3.9)

Now, we note that nonlinear functions on are linear in
as , where denotes theth

element of . The above recursion can be rewritten in an
alternative form as

(3.10)

and

(3.11)

or

(3.12)

and likewise, it can be shown that minimizes the linear
index

(3.13)

Remarks:

1) The condition that as
in Lemma 4 is an excitation condition. In addition,

it is possible to show, but is not done here, that the rate
of convergence to zero of is as . See also
Sternby [15].

2) To reduce the number of calculations, (3.7) and (3.11)
can be replaced by a stochastic approximation given by

diag

where is a vector of thea priori probabilities of
being in each state. is given by the normalized
eigenvector of corresponding to the eigenvalue of
value one.
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We now proceed to consider the case when the state
sequence is unknown.

B. Extended Least Squares

This subsection considers the estimation task when the state
sequence is not known and is presented in a manner paralleling
the previous section. To produce estimates when the state
sequence is unknown, thead hocidea of extended least squares
is to use estimates of states in lieu of actual statesin a
least squares implementation; see [18].

In linear estimation, it is usual to use one-step-ahead predic-
tions of the states so that the observation noise remains white,
at least when the predictions are optimal in a least squares
sense. However, in our case, the one-step-ahead predictions
of Markov chains can be far from optimal, particularly when
the active state changes. This property of HMM highlights
that there are differences between standard linear estimation
theory and the HMM parameter estimation problem. Initially,
in this section, we proceed by using one-step-ahead predictions
to ensure that the observation noise remains white, but this
requirement is relaxed toward the end of this section.

Let denote the conditional filter estimate based
on observations and model estimates, i.e.,

where and the recursion below is
used to generate the one-step-ahead predictions

(3.14)

1) Off Line: Using thead hoc idea of replacing states by
one-step-ahead predictions, the extended least squares version
of the off-line least squares algorithms (3.3) is

for (3.15)

where is the estimate of on points of data and
.

No convergence analysis is attempted here for the off-line
ELS algorithm.

2) On Line: From the least squares recursion (3.6)–(3.8),
substituting one-step-ahead predictions gives the recursions

(3.16)

(3.17)

or

(3.18)

Likewise, from (3.10), we construct the ELS recursion

(3.19)

(3.20)

or

(3.21)

Note that for (3.20) and (3.21), if is diagonal, then
will be diagonal for all . Hence, (3.20) and (3.21) can be
explicitly written as scalar equations

or

(3.22)

where diag .
From a computational point of view, the diagonal nature of

in (3.19) means that the (3.19)–(3.21) is computationally
more attractive for obtaining theestimates then (3.16)–(3.18)
because it is of order rather than in complexity.

However, (3.16)–(3.18) are not completely satisfactory be-
cause the estimates produced are biased. To see this, we now
examine the convergence properties of (3.16)–(3.18) for the
idealized case when

(3.23)

Lemma 5: Consider the ELS scheme (3.19)–(3.21) in the
idealized case, when (3.23) holds. Then, as

a.s.

a.s. (3.24)

Moreover, in the case of excitation such that as
as , then for (3.16)–(3.18)

a.s. (3.25)

Proof: Simple manipulations from (3.19) give

(3.26)
and now

a.s. (3.27)

since each element of the second term can be shown to go to
zero using martingale convergence results and the Kronecker
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Lemma, as in the proof of Lemma 4. In addition, observe that

(3.28)

since . Clearly, (3.25)–(3.27) yield the first
half of (3.24) as claimed.

Now, observe that since ,
then likewise

a.s. (3.29)

to yield the second half of (3.24).
Now, from (3.16) and (3.19), simple manipulations lead to

(3.30)

and the result (3.25) follows from (3.26) under the excitation
assumption that so that is bounded above,
and a.s. as

Remarks:

1) The lemma result (3.25) holds without the excitation
condition on , which incidentally assures a conver-
gence rate of , but more advanced theory such as
in [15] is required.

2) Lemma 5 demonstrates that the scheme (3.19)–(3.21)
leads to biased estimates, whereas the scheme
(3.16)–(3.18) does not. Hence, because both schemes
are of similar complexity, it seems that the scheme
(3.16)–(3.18) should be used in preference. See the
simulations section for a demonstration of the bias.

3) The complete ELS convergence analysis of (3.16)–(3.18)
when (3.23) does not hold is virtually identical to that
given in [16] and is not repeated here. Suffice it to
say, a key sufficient condition for (3.23)–(3.25) to hold
asymptotically is that a certain passivity condition holds,
that is, the system driven by and with output

must be strictly passive (here
and ). This system in the HMM case
is nonlinear and is sample path dependent; therefore,
further explorations along this line seems pointless.

4) Consider a hybrid version of (3.16)–(3.18)

(3.31)

with (3.20) and (3.21) holding. We do not study (3.31)
further here.

5) To further reduce the number of calculations required
to estimate , (3.20) can be replaced by an stochastic
approximation given by

diag

C. A Posteriori Extended Least Squares

It is the nature of HMM’s that the one-step-ahead predic-
tions of the state can be far from optimal, particularly when
the active state changes.

Hence, here we consider a ELS algorithm based on filtered
estimates rather than one-step-ahead predictions. Consider a
modified version of the (3.19)–(3.21) scheme.

(3.32)

(3.33)
or

(3.34)

Remarks:

1) The recursion (3.32)–(3.34) is computationally efficient
because can be forced to be diagonal.

2) Unlike the recursions (3.19)–(3.21), the recursion
(3.32)–(3.34) produces consistent results in simulations;
see Section V.

This ELS recursion is the most attractive of the algorithms
presented in this section; however, no martingale convergence
analysis is available for the (3.32)–(3.34) scheme at present
since the error term is not a martingale increment.
Rather than proceed with a further analysis of thisa posteriori
ELS scheme, we proceed to look at RPE algorithms that are
mildly more complicated but have a more complete theory.

IV. RECURSIVE PREDICTION ALGORITHMS

There exists mature theory for recursive estimation or
identification of continuous discrete-time models based on
the minimization of the prediction error costs; see [9]. This
theory provides asymptotic quadratic convergent algorithms
(admittedly local) for linear and nonlinear models.

In this section, we proceed by applying this mature theory
in order to obtain asymptotic convergence algorithms that
generalize the ELS schemes of the last section. First, we
reintroduce the two cost functions from the least squares
discussion to replace the usual prediction error cost. These
cost functions are our criteria for estimation of. We present
the RPE algorithm that minimizes each of these cost functions.

Following from this, we present an RPE algorithm corre-
sponding to the attractivea posteriori extended least squares
algorithm (3.32)–(3.34).

A. Prediction Error Cost Functions

First, we present the RPE schemes corresponding to the
computational efficient one-step-ahead prediction-based ELS
schemes in (3.19)–(3.21) and (3.31).

Consider the error cost functions

(4.1)
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and

(4.2)

The following RPE recursion minimizes locally the index in
(4.1) (see Lemma 6) and generalizes the ELS recursion (3.31)

(4.3)

where

and where is an approximation for the second derivative
of . From (3.14)

The RPE recursion that minimizes locally the index (4.2) (see
Lemma 6) and generalizes the ELS recursion (3.19)–(3.21) is

(4.4)

where, with denoting the th element of

Convergence of both these RPE algorithms can be es-
tablished by a conventional ODE analysis [9]. Since the
state estimates and are of necessity
bounded, a projection into a stability domain as required in
[8] is implicit here.

Actually, the ODE analysis requires that the filter generating
be exponentially stable. This exponential stability,

in the sense that initial conditions are forgotten exponentially,
is established in [17] for the case and is known to hold
more generally under reasonable conditions not spelt out here.

To demonstrate convergence of (4.3) and (4.4), let us first
define for (4.3) and (4.4), respectively, and arbitrary

or (4.5)

and

(4.6)

The following lemma now holds
Lemma 6: The recursions (4.3) and (4.4) will converge a.s.

to the set ; moreover,
under the excitation condition (or ) as , then
convergence of (or ) is at the rate .

Proof: The ODE’s associated with (4.3) and (4.4) for
fixed under (4.5) and (4.6) are

(4.7)

Now, Lyapunov functions for (4.7) under (4.5) and (4.6) are

or

(4.8)

so that

(4.9)

Thus, converges for all and , and
converges to the set .

Applying the ODE theory of Ljung [9], the various regu-
larity conditions are satisfied here, and the first result claimed
follows.

Observe from (4.9) that if is of the order ,
as under suitable excitation, then converges to
zero as . Since, asymptotically, the stochastic difference
equation behaves as the ODE, then rates of convergence
translate across under the scaling of the theory.

This leads to the convergence rate result of the lemma.

Remarks:

1) The RPE schemes are mildly more sophisticated than the
ad hocone-step-ahead prediction-based ELS schemes of
the previous section. For this reason, we have kept the
same ELS notation to assist in seeing the similarities
and differences.

2) For a RPE version of (3.16), see [8].
3) The (4.3) and (4.4) do not result from standard RPE

theory. The search direction has been changed so that
is diagonal, but the scheme still provides quadratic

convergence.
4) A complete and precise theory on convergence rates is

not given in the above results because it is beyond the
scope of this paper.

5) To reduce the number of calculations, the second half
of (4.3) and (4.4) can be replaced by an stochastic
approximation given by

diag

Convergence can still be proven with a slight modifica-
tion of Lemma 6.
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B. A Posteriori Weighted RPE Scheme

To generalize the ELS algorithm based on filtered estimates
(3.32)–(3.34) rather than one-step-ahead predictions, we con-
sider RPE schemes based on filtered estimates. To do so,
consider the cost function

(4.10)

which gives the update equations given by

(4.11)

with the th element of defined from

(4.12)

and

(4.13)

Lemma 7: The recursion (4.11) will converge a.s. to the
set ; moreover, under the
excitation condition (or ) as , then convergence
of (or ) is at the rate .

Proof: The proof is the same as for Lemma 6 with
and and using the

Lyapunov function

Remarks:

1) The cost function (4.10) is the sum of the predicted
error of being in each state, weighted by the estimated
probability of being in each state, which from (2.6) is

.
2) The similarity of form between (4.11) and (3.32) suggest

that the recursions (3.32) are valid at least as approx-
imations for (4.11), for which convergence has been
shown.

3) Again, to reduce the number of calculations, the sec-
ond half of (4.11) can be replaced by an stochastic
approximation given by

diag

and the convergence proof holds.

V. IMPLEMENTATION CONSIDERATIONS

AND SIMULATIONS RESULTS

This section has two parts. In the first part, issues concerning
implementation of algorithms for estimatingare presented.
The discussion is general in nature and, in fact, applies to any
of the algorithms presented in this paper and others in the
literature of this field.

In the second part, simulation studies of the various al-
gorithms present in this paper are presented. We attempt to
demonstrate the various properties of these algorithms that
have been highlighted in the previous sections. The highlighted
properties include convergence, convergence rates, bias, and
the importance of the issues introduced in the first part of this
section.

A. Implementation Considerations

The following were considered when implementing the
schemes presented in the preceding chapters.

1) Transients: One reason for studying both ELS and RPE
schemes in the same paper is that it appears to be a good
approach to use them in combination in an actual implemen-
tation. The extra gradient terms used in the RPE schemes do
not help during the transient period, where the dominant error
is due to initialization rather then the noise; however, these
terms do aid convergence subsequently. Thus, it is a reasonable
practice to use an ELS scheme initially and change to an RPE
scheme once the transient has decayed significantly.

2) Step Sequence:Step-size adjustments can be made for
improved transient performance for iterative schemes, and
indeed, can be replaced by for
arbitrary satisfying , , and
the ODE analysis still applies. Further details are omitted here;
see Ljung [9].

3) Markov State Errors:The time-varying variance of the
state estimate, which is given by

(5.1)

can be used in the recursive equations to “discount” time
instants for which the Markov state is known with less
certainty. If the variance of the state estimate is denoted

, then the modified update equation, according
to standard Kalman filter theory, becomes

(5.2)

In addition, in (3.19), (4.3), and (4.4), is replaced by

. Corresponding modifications apply to
(3.16), (3.17), and (3.31).

4) Parameter Estimation Errors:Similarly, the variance of
the parameter estimates approximated bycan be used to
modify the variance used in (2.5) to estimate the Markov
states.

(5.3)
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Actually, in practice, it makes sense to limit the magnitude
of additive term to to, say, because of the approxima-
tions involved. That is

(5.4)

5) Polyak Acceleration:The increased step size and aver-
aging used by Collings [8] is suggested by Polyak [14] as a
technique to speed convergence. The Polyak increased step
size has been found, in some cases, to aid convergence from
poor initial estimates and in high noise.

6) Time-Varying Tracking:It is possible to modify the es-
timation schemes presented in this paper to allowing tracking
of time-varying parameters by introducing a forgetting factor;
see Ljung [9]. A forgetting factor is introduced by modifying
the second equations of (4.3) or (4.11) or the corresponding
ELS schemes to give

(5.5)

where typically, .
This modification was also found to improve convergence

in very high noise simulations.

B. Simulations

We present results of simulation examples using computer-
generated finite discrete state Markov chains. The results
presented in the following simulation plots were found to be
representative examples of hundreds of simulation runs. We
concentrated our efforts on the new algorithms that appear
interesting. For example, the most frequently tested algorithms
are (3.16), (3.31), (3.32), and (4.11). The least frequently tested
algorithms are (3.6) and (3.19).

1) Convergence Using : A two-state Markov
chain embedded in white Gaussian noise (WGN) was
generated with parameter values ,
for , . The state sequence
was estimated [i.e., assuming knowledge of, so that (3.23)
holds], and the state valueswere estimated from .
Each of the following schemes were examined:

• least squares algorithm (3.6) with known;
• original ELS algorithm (3.16) using ;
• RPE from [6] using ;
• a posteriori ELS algorithm (3.32) using ;
• hybrid ELS algorithm (3.31) using .

Fig. 1 shows an empirical comparison of the rates of conver-
gence. This figure shows the convergence of various schemes
to one of the parameters. We conclude that when using

estimates that our schemes converge at ap-
proximately the same rate as the existing scheme.

2) Comparison of with : A two-state
Markov chain embedded in WGN was generate from which

and were estimated using (3.32). Fig. 2
shows the difference between the estimates over time. We con-
clude from this simulation that asymptotically, (3.23) holds.
Note that the average over 100 points was used in this figure
to reduce the amount of information.

Fig. 1. Empirical comparison of proposed schemes under assumption (3.23).

Fig. 2. Convergence to idealized, in the sense of (3.23), state estimates.

3) Bias of Estimation:To verify Remark 2 made in Section
III-B, that a bias is indeed introduced by (3.19), a two-
state Markov chain embedded in WGN was generated with
parameter values for ,

, and . The state values were estimated using
(3.16) and (3.19) and noting that the state estimates
were used. The estimated parameters from the scheme were

and . The estimates
obtained by (3.19) were indeed biased.

4) Convergence Rate Comparison:A two-state Markov
chain embedded in WGN was generated with parameter values

, for , , and .
The state values were estimated using the following schemes:

• least squares algorithm (3.6) with known;
• original ELS algorithm (3.16) using ;

• RPE of [8] using ;

• a posterioriELS algorithm (3.32) using ;

• RPE algorithm (4.11) using .
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Fig. 3. Empirical comparison of proposed schemes.

Fig. 4. Empirical comparison of the ELS scheme (3.32) and the RPE scheme
of [6].

Fig. 3 shows an empirical comparison of the rates of con-
vergence. This figure shows the convergence of these schemes
to one of the parameters. We conclude that our schemes
converge at approximately the same rates.

5) Comparison with Existing the RPE Scheme:A two-state
Markov chain embedded in WGN was generated with parame-
ter values , for , , and

. The state values were estimated from the chain using
(3.32) and the RPE scheme presented in [8]. Fig. 4
shows an empirical comparison of the rates of convergence
to one of the state values. This figure shows that similar
rates of convergence are achieved by our new schemes with
computational requirements of and the existing RPE
scheme [8] with requirements .

6) Stochastic Approximation:A two-state Markov chain
embedded in WGN was generated with parameter values

, for , , and
. The state values were estimated from the chain

using (3.32) with and without the approximation described in
Remark 5. Fig. 5 shows that convergence of the scheme was
not adversely affected by the approximation.

Fig. 5. Effect of stochastic approximation on convergence.

7) Fast Markov Chains:A three-state Markov chain em-
bedded in WGN was generated with parameter values

, for , ,
and . The state values were estimated using the
recursive schemes [ELSM (3.32) recursion] and [RPE1

(4.3) recursion]. The ELSM has been found to converge
to the correct values, whereas the RPE1 scheme was not.
This simulation demonstrates that the RPE1 recursions do not
estimate low inertia Markov chains well. In this simulation
and others involving fast Markov chains, the ELSM recursions
were found to perform better then the RPE1 recursions. Here,

implies short times in each state.
This is a significant result. The (3.32) recursion is the

only recursion we have studied that can handle fast chains
effectively. These fast chains are known to appear often in
actually applications such as the demodulation of coded QAM
signals, which is under study in a companion paper.

8) A Six-State Example:A six-state Markov chain embed-
ded in WGN was generated with parameter values ,

for , , and
. The state values were estimated using the RPE1

recursions. Fig. 6 shows the parameter convergence of the
RPE1 recursions. Note that in these simulations, the Polyak
increased step size is used to allow convergence from poor
initial estimates.

9) High Noise: A two-state Markov chain embedded in
WGN was generated with parameter values ,

for , , and . The states
were estimated using two methods. First, Fig. 7 shows the
convergence of parameters using the increased step sequence

and averaging over 1000 points. Second, Fig. 8 shows
the convergence of parameters using a scheme modified to
track time-varying parameters with a forgetting factor

. Both figures shows that it is possible to estimate state
values in very nigh noise environments.

10) Variance Corrections:From (5.2) and (5.3), we can see
that the correction factors are only going to have an effect
when not dominated by . These variance correction factors
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Fig. 6. Parameter convergence of a six-state chain example.

Fig. 7. Parameter convergence in very high noise using Polyak acceleration.
Averaging is performed over 1000 points.

only improve the performance of these schemes during initial
transients or in low noise situations.

For example, a two-state Markov chain embedded in WGN
was generated with parameter values ,

for , , and . The
states were estimated using the scheme in (3.32) both with and
without the variance correction factors given by (5.2) and (5.3).
It has been found that the scheme without correction factors
will not converge, whereas the scheme using the correction
factors does; see Fig. 9. In low measurement noise situations,
the estimation noise dominates the measurements noise, and
it must be included to achieve reasonable results. In high
measurement noise situations, the relative contribution of the
estimation noise is negligible and need not be considered.

C. Summary

A variety of schemes presented in this paper were demon-
strated, at least in simulations, to provide competitive conver-
gence performance in comparison with previous work present

Fig. 8. Parameter convergence in very high noise using forgetting factors.

Fig. 9. Effect of variance correction factors.

in [8]. In addition to this, several of the implementation issues
raised in the previous subsection were examined.

A highlight of the simulation results was that the
(3.32)–(3.34) scheme has been found to provide good
convergence performance in situations involving high noise
and/or fast Markov chains that exposed the limitations of the
previous algorithms [8].

VI. CONCLUSIONS

In this paper, we have proposed new on-line parameter es-
timation schemes for HMM’s based on extended least squares
and recursive prediction error methods. The transition proba-
bilities between states are assumed known, but the state values
between which the noise-free measurements switch are learned
in time. These new schemes exploit the idempotent property
of the signal model states, noting that care must be taken
for the ELS schemes to avoid bias. We present simulation
studies of the schemes in a variety of conditions, highlight
the similarity and the difference between the performance
of these schemes, and compare them with the existing RPE
scheme for parameter estimation. The algorithms presented
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have computational complexity yet perform as well
asymptotically as earlier schemes proposed of .

The a posteriori ELS and a posteriori weighted RPE
scheme, which exploit filtered state estimates rather than
prediction estimates, appear to be the most attractive for
application purposes. Thesea posteriori schemes have been
also found to be consistent and, thus, attractive in signaling
environments that include low-inertia HMM’s that could not
be handled well by earlier algorithms [8].
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