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SUMMARY

A generalized refined Arnoldi method based on the weighted inner product is presented for computing
PageRank. The properties of the generalized refined Arnoldi method were studied. To speed up the conver-
gence performance for computing PageRank, we propose to change the weights adaptively where the weights
are calculated based on the current residual corresponding to the approximate PageRank vector. Numerical
results show that the proposed Arnoldi method converges faster than existing methods, in particular when
the damping factor is large. Copyright © 2011 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The computation of eigenvalues and eigenvectors of large nonsymmetric matrices is one of the
most important topics in the numerical linear algebra community. These kinds of problems often
arise from many applications in science and engineering, for instance, quantum chemistry, dynamic
structural analysis and Maxwell’s equations; for details, see [1] and references therein.

Recently, with the booming development of the internet, web search engines became one of the
most important internet tools for information retrieval. PageRank is related to a link analysis algo-
rithm used by the Google internet search engine that assigns a numerical weighting to each element
of a hyperlinked set of documents in the World Wide Web. Here the weighting obtained by Page-
Rank provides the relative importance of each document. The PageRank weighting are the entries
of the dominant eigenvector of the modified adjacency matrix:

AD ˛P C .1� ˛/E,

where P is a column-stochastic matrix (i.e., the dangling nodes are already replaced by columns
with 1=n), ˛ is a damping factor, and E is a rank-one matrix, see [2] for the details.

We note that when ˛ is large, A is dominated by the original hyperlink structure of webpages. It
was observed in [3] that ˛ close to 1 does not produce useful ranking results. Usually, ˛ is taken as
0.85. On the other hand, the dominant eigenvector corresponding to the PageRank weighting can be
interpreted as the stationary probability distribution vector of the associated Markov chain [4]. For
surveys of the PageRank problem, we refer the readers to [5, 6].
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Usually, the matrix A involved is extremely large, so that direct decomposition techniques (such
as LU and QR decomposition) cannot be considered for computing PageRank. Iterative methods
based on matrix–vector products have been widely studied for this computation.

The power method was firstly considered for computing PageRank. However, the eigenvalues of
A is the scaling of those of P , except for the dominant eigenvalue, for details, see the proofs in [7,8].
Thus, when the largest eigenvalue of A is not well separated from other eigenvalues and the damp-
ing factor ˛ is close to 1, then the power method converges very slowly. Many researchers proposed
several methods to accelerate the convergence of the power method. For instance, the quadratic
extrapolation method [9], the adaptive method [10], and the block method [2] are employed. The
extrapolation method can improve the convergence performance of the power method, however, it
still strongly depends on the convergence speed of the power method and it may not be effective at
each step of the extrapolation method.

The adaptive method [10] can save the computation of matrix–vector products, while the draw-
back of the adaptive method is that it cannot improve the convergence performance of the power
method. To make the power method more effective, the block structure of the web is taken into
use for computing the PageRank. The web structure should be exploited and the matrix should be
preprocessed and managed in the right manner so that the effective block method can be employed.

On the other hand, other iterative methods are studied for computing PageRank. Iterative methods
based on the Arnoldi process are good alternatives for computing the dominant eigenvector. We note
that the largest eigenvalue of PageRank matrix A is known to be 1. Golub and Greif [11] proposed
an Arnoldi-type method combined with SVD by considering the known largest eigenvalue as a shift
so that the computation of the largest Ritz value is avoided. This approach is very efficient as it
can avoid the complex arithmetic even if the largest Ritz value is complex. Wu and Wei [12] also
proposed an Arnoldi-type method combined with the power method. In their approach, the thick
restarted Arnoldi method was used. However, the largest Ritz value is required to be computed in
their method. The complex arithmetic may be needed. In addition, the corresponding Ritz vector
may be complex-valued, both the real and imaginary parts of the Ritz vector are taken as the restart
vectors in the calculation.

Recently, the idea of introducing weighted inner products into the Arnoldi process has been suc-
cessfully applied into the solution of linear equation [13] and the computation of eigenvalues [14].
By taking the advantage of the Arnoldi-type algorithm in [11] and the idea of weighted Arnoldi
process, we propose a new algorithm for computing the PageRank vector in this paper.

We first present a generalized and refined Arnoldi method based on the general inner product for
computing the PageRank and study its properties. In order to speed up the convergence performance
for computing the PageRank, we propose to change the weights in the weighted matrix inner prod-
uct adaptively where the weights are calculated based on the current residual of the approximate
PageRank vector. Numerical results show that the performance of the proposed Arnoldi method is
better than the other methods, in particular, when the damping factor is close to 1.

The paper is organized as follows. In Section 2, we review the Arnoldi process and the Arnoldi-
type method for computing the PageRank. In Section 3, we study the generalized Arnoldi method
and its theoretical properties. In Section 4, we propose an adaptively accelerated Arnoldi method
for computing the PageRank. Numerical results and comparisons are reported in Section 5. Finally,
some concluding remarks are given in Section 6.

2. THE ARNOLDI-TYPE METHOD FOR COMPUTING PageRank

In this section, we briefly review the Arnoldi process and the Arnoldi type method for computing
PageRank.

The Arnoldi process was developed by Arnoldi in 1951 [15]. Given a general non-Hermitian
matrices A 2 Rn�n and an initial vector q0 2 Rn, the Arnoldi process gives an orthonormal basis
q1, q2, : : : , qm of the Krylov subspace

Km.A, v/D fq0,Aq0, : : : ,Am�1q0g.

Copyright © 2011 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2012; 19:73–85
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Based on the Arnoldi process, several iterative methods were proposed and studied for the solution
of linear equations, for example, GMRES [16], as well as the computation of the eigenvalues, for
instance, the implicit restarted Arnoldi method [17, 18]. The Arnoldi process can be implemented
with the modified Gram–Schmidt algorithm (MGS) as follows:

Method 2.1. ŒQm,Hm�D Arnoldi.A, q0,m/
1. Compute q1 D q0=kq0k2,
2. For j D 1, 2, : : : ,m Do:
3. Compute w D Aqj ,
4. For k D 1, 2, : : : , j Do:
5. Compute hkj D qTk w,
6. Compute w D w � hkj qk ,
7. EndDo
8. Compute hjC1,j D kwk2
9. If hjC1,j D 0,
10. Stop and exit.
11. Else
12. Set qjC1 D w=hjC1,j ,
13. EndIf
14. EndDo

According to Method 2.1, we have

AQm DQmHmC hmC1,mqmC1e
T
m (2.1)

and

QT
mAQm DHm,

where Qm D Œq1, q2, : : : , qm� 2 Rn�m is column-orthogonal and Hm D fhi ,j g 2 Rm�m is an upper
Hessenberg matrix. Because Hm is an orthogonal projection for the matrix A onto the Krylov sub-
space Km.A, q0/, the eigenvalues of Hm can be used as the approximation for that of the original
matrix A. When y is an eigenvector of Hm, Qmy is the approximation eigenvector of A, which is
called Ritz eigenvectors, see [18, 19] for the detail. Furthermore, formula (2.1) can be rewritten as

AQm DQmHmC1,m,

where HmC1,m D fhi ,j g 2 R.mC1/�m is also an upper Hessenberg matrix. For detailed properties
of the Arnoldi method, we refer the reader to [1].

When m is increasing, the computation and memory requirement of the Arnoldi process will be
more expensive. Thus, the restart technique is usually taken so thatm is small compared with n, and
the computation cost of this kind of projection method is very cheap.

By taking the fact that the largest eigenvalue of PageRank matrix A is known to be 1, Golub and
Greif [11] proposed an Arnoldi-type method for computing PageRank as follows:

Method 2.2. Arnoldi-type method
1. Choose q0 with kq0k2 D 1.
2. For l D 1, 2, : : : , until convergence, Do:
3. Compute ŒQm,HmC1,m�D Arnoldi.A, q0,m/
4. Compute singular value decomposition HmC1,m � ŒI I 0�D U†V

T

5. Compute q0 DQmvm
6. Compute r D �mQmC1um
7. If krk1 < TOL then stop; EndIf
8. EndDo

Here, m is the number of the restart, vm is the right singular vector corresponding to the mini-
mal singular value. Instead of computing the eigenvalues of Hm, a singular value decomposition of
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Hm � ŒI I 0� is calculated in Method 2.2, where all the singular values and singular vectors are real.
Note that the smallest singular value of the shifted Hessenberg matrix will converge to zero in the
Arnoldi-type method.

3. THE GENERALIZED ARNOLDI METHOD

In this section, we study the generalized Arnoldi method and its theoretical properties.
Let G 2 Rn�n be a symmetric positive definite (SPD) matrix and x 2 Rn and y 2 Rn be two

vectors, then a G-inner product is defined as

.x,y/G D x
TGy D

nX
iD1

nX
jD1

gijxiyj ,

where gij is the i th row and j th column element of G. This inner product is well defined if and
only if the matrix G is SPD. Assume that GDQTDQ, where Q is an orthogonal matrix, and
D D diagfd1, d2, : : : , dng is a diagonal matrix with di > 0, iD1, 2, : : : ,n. The norm associated
with this inner product is defined by

kukG D
p
.x, x/G D

p
xTGx D

q
xTQTDQx D

vuut nX
iD1

di .Qx/
2
i , 8x 2Rn,

which is the called G-norm k � kG .
In the following, the generalized Arnoldi (GArnoldi) method can be defined as follows.

Method 3.1. ŒeQm, eHm�D GArnoldi.A,G, q0,m/
1. Compute eq1 D q0=kq0kG ,
2. For j D 1, 2, : : : ,m Do:
3. Compute w D Aeqj
4. For k D 1, 2, : : : , j Do:
5. Computeehkj D .w,eqk/G
6. Compute w D w �ehkjeqk
7. EndDo
8. ComputeehjC1,j D kwkG
9. IfehjC1,j D 0
10. Stop and exit
11. Else
12. SeteqjC1 D w=ehjC1,j

13. EndIf
14. EndDo

It is clear that when G is the identity matrix, Method 3.1 is reduced to the standard Arnoldi
Method 2.1. It is noted that in line 5 of the generalized Arnoldi method 3.1, the inner product

.w,eqk/G D wTGeqk
is required to compute. Actually,Geqk will be usedm�k times when k D 1, 2, : : : ,m�1. To reduce
such additional computation, we suggest to save these vectors when they are firstly computed and
employ them when they are required.

Method 3.1 constructs aG-orthogonal basis of Km.A, q0/ starting with a vector q0. Next, we give
the properties of Method 3.1 as follows.

Copyright © 2011 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2012; 19:73–85
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Theorem 3.1
The vectors eq1,eq2, : : : ,eqm form a G-orthonormal basis of the subspace eKm.A, q0/ D spanfeq1,
Aeq1, : : : ,Am�1eq1g. Denote eQm D Œeq1,eq2, : : : ,eqm� 2Rn�m, then

eQT
mG

eQm D I .

The proof is easily obtained from the G-orthonormal columns of eQm.

Theorem 3.2
Denote eQm D Œeq1,eq2, : : : ,eqm� 2Rn�m and eHm 2Rm�m be the Hessenberg matrix whose nonzero
entries are defined by Method 3.1. Then the following relations hold:

AeQm D eQm
eHmCehmC1,meqmC1eTm (3.2)eQT

mGA
eQm D eHm. (3.3)

Proof
The relation (3.2) follows from the following equality, which is readily derived from lines 6 and 12
in Method 3.1:

Aeqj D jC1X
iD1

ehijeqi , j D 1, 2, : : : ,m.

Relation (3.3) follows by multiplying both sides of (3.2) by eQT
mG and making use of eQT

mG
eQm D

Im from Theorem 3.1. �

Theorem 3.3
Denote eQm D Œeq1,eq2, : : : ,eqm� 2 Rn�m, and eHm 2 Rm�m be the G-orthogonal matrix and the
Hessenberg matrix defined by Method 3.1, .�i , vi /, i D 1, 2, : : : ,m are the eigenpairs of eHm. If
mD n, then �i .i D 1, 2, : : : ,n/ are the eigenvalues of A, and the corresponding eigenvectors gi are
defined by

gi D eQnvi , i D 1, 2, : : : ,n. (3.4)

Proof
If mD n, from eQT

nG
eQn D I , we have eQ�1n D eQT

nG. Thus,

eHn D eQT
nGA

eQn,

D eQ�1n AeQn.

Then, �i .i D 1, 2, : : : ,n/ are the eigenvalues of A, and the corresponding eigenvectors are given byeQnvi , i D 1, 2, : : : ,n. �

We should remark that whenm< n, the eigenvalues of the Hessenberg matrix eHm are the approx-
imation to the eigenvalues of A provided by the projection eQm, and called the Ritz eigenvalues of
A. One of the important advantages is that the Ritz approximate eigenvector can be represented byeQmvi where vi is the eigenvector associated with �i , i D 1, 2, : : : ,n.

It was pointed out in [13] that the generalized Arnoldi method 3.1 is different from the precon-
ditioned Arnoldi method, though the latter was widely used in many applications, for example,
eigenvalue problems [14] and Markov chains [20].

Assume that the preconditioner is G, it is easily deduced thatHm DQT
mGAQm is still valid with

QT
mQm D I . However, the eigenvalues of the Hessenberg matrix Hm are the approximation to the

eigenvalues of GA, not A, and correspondingly the Ritz value of A can not be obtained. Moreover,
the relation (3.4) between the eigenvectors of Hm and those of A do not hold any more.

Because the relation (3.4) is satisfied, similar to the Arnoldi-type method in [11], a generalized
Arnoldi method for computing PageRank can be defined as follows:

Copyright © 2011 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2012; 19:73–85
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Method 3.2. Generalized Arnoldi method for computing PageRank
1. Choose SPD matrix G.
2. Choose q0 with kq0kG D 1.
3. For l D 1, 2, : : : , until convergence, Do:
4. Compute ŒeQm, eHmC1,m�D GArnoldi.A,G, q0,m/
5. Compute singular value decomposition eHmC1,m � ŒI I 0�

T D eU ėeV T
6. Compute q0 D eQmevm
7. EndDo

Here, we give some remarks about the proposed algorithm.

� Similar with Method 2.2,evm in the fifth line is the right singular vector corresponding to the
smallest singular value.
� The restart number m of the generalized Arnoldi method can be chosen artificially. Usually,

the restart number m should be relatively small for saving the memory and corresponding
computation.
� IfehjC1,j in Method 3.2 is small enough, the Arnoldi process breaks down, and by computing

SVD as in line 5 of Method 3.2, the PageRank vector can still be obtained.

It is obvious that the different positive-definite G matrices will lead to different accelerated-
restarted Arnoldi methods. If the G-norm k � kG is defined as the Euclidean norm, then Method 3.2
is the same with the standard Arnoldi-type method in [11]. Furthermore, if G is a diagonal matrix
with positive diagonal elements, it can cover the weighted Arnoldi algorithm developed in [14] for
computing the eigenvalues of a nonsymmetric matrix.

Next, we give the property of the residual of the approximate PageRank vector given by
Method 3.2 as follows.

Theorem 3.4
Denote eHmC1,m 2 R.mC1/�m be the Hessenberg matrices defined by Method 3.1. Let um and vm
be the left and right singular vector of eHmC1,m� ŒI I 0�

T associated with the minimal singular valuee�m. Denote q be the refined Ritz approximated eigenvector q D eQmvm, then,

Aq � q De�meQmC1um,

and therefore,

kAq � qkG De�m.

Proof
This follows from multiplying both sides of Method (3.2) by yi :

Aq � q D AeQmvm � eQmvm

D eQmC1
eHmC1,mvm � eQmvm

D eQmC1

�eHmC1,m �

�
Im
0

��
vm

D e�meQmC1um.

It follows that

kAq � qkG D

q
.e�meQmC1um/TGe�meQmC1um De�m.

�

For an SPD matrix G, we can design a new Arnoldi method similar with [1, 18] to compute the
eigenvalues of a nonsymmetric matrix. Here, we give the accelerated Arnoldi method for computing
PageRank based on the merit of the Arnoldi-type algorithm in [11].

Copyright © 2011 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2012; 19:73–85
DOI: 10.1002/nla



ADAPTIVELY ACCELERATED ARNOLDI FOR COMPUTING PageRank 79

4. ADAPTIVELY ACCELERATED ARNOLDI METHOD FOR COMPUTING PageRank

In this section, a practical choice of G is proposed from the viewpoint of solving weighted least
squares problems. We can adaptively apply in every outer iteration of Arnoldi Method 3.2 by assign-
ing the suitable weights in the residual of the approximate PageRank vector so that the convergence
can be improved. It is seen that in every outer iteration of the Arnoldi Method 3.2, we are looking
for a vector q satisfying

min kAq � qkG , q 2 eKm.A, q0/.

Every symmetric positive definite matrix can be diagonalized. For simplicity, we consider G here
to be a diagonal matrix, for example, G D diagf!1, : : : ,!ng where !i > 0, i D 1, : : : ,n. Denote
r D Aq � q , Œr1, : : : , rn�T , it is clear that

min kAq � qkG D min krkG

D min
q
!1r

2
1 C!2r

2
2 C : : :C!nr

2
n

D min

vuut nX
iD1

!ir
2
i .

It leads to a weighted least squares problem where !i is actually the weight for ri , the i th component
of residual, i D 1, : : : ,n.

According to Theorem 3.4, the residual r is computed by e�meQmC1um. If ri is small, it means
that the convergence speed of the residual in the direction corresponding to ri is fast; otherwise, it
means that the residual of this direction converges very slowly and requires to be accelerated.

One natural idea from solving weighted least squares problems is to strengthen the weight of
those components in which converges very slowly. Based on this idea, we can define !i as follows:

!i D jQri j=kQrk1,

where Qr is the residual computed by the last accelerated Arnoldi process, and
Pn
iD1 !i D 1. Thus,

the choice for G is given by

G D diagfjQr j=kQrk1g.

Because the residual finally converges to zero, minimizing both krk2 and krkG will lead to the same
solution.

Moreover, it is observed that the residual varies after every outer iteration of the Arnoldi
Method 3.2. Thus, the weight of the components of the residual can also adaptively change with
the changing of the residual at every outer iteration step. This leads to the adaptively accelerated
Arnoldi method for computing the PageRank as follows.

Method 4.1. Adaptively Accelerated Arnoldi method for computing Pagerank
1. Choose q0
2. Set G D I and kq0kG D 1
3. For l D 1, 2, : : : , until convergence, Do:
4. Compute ŒeQm, eHmC1,m�D GArnoldi.A,G, q0,m/
5. Compute singular value decomposition eHmC1,m � ŒI I 0�

T D eU ėeV T
6. Compute q0 D eQmevm
7. Compute r De�meQmC1um
8. If krk1 < TOL then stop; EndIf

9. Set G D diag
n
jr j
krk1

o
10. EndDo

The implementation of Method 4.1 is similar to that of Method 2.2 except for the computation of
the diagonal matrix G. We also remark that the residual r is computed not only for constructing G
but also for checking the convergence using some stopping criteria.

Copyright © 2011 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2012; 19:73–85
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One drawback of the Arnold process based methods is that they require increasingly more mem-
ory with the number of iterations or the restarting cycle m, whereas the power-based methods
require constant memory. This is because the Arnold process require storing the orthonormal vectors
q1, q2, : : : , qm in the modified Gram–Schmidt process, as well as the Hessenberg matrix.

Table I shows the memory required other than A for the k-th iteration for the power method, the
power method with quadratic extrapolation (called as ‘QE-power’), the Arnoldi-type method with-
out restart (called as ‘Arnoldi’) and the adaptively accelerated Arnoldi method without restart (called
as ‘A-Arnoldi’). Here, w, x and r are the intermediate vectors, and Qk denotes the k orthonormal
vectors in the modified Gram–Schmidt process.

Because the computational cost of the adaptively accelerated Arnoldi method is nearly the same
as that of the Arnoldi-type method, except that the general Arnoldi method is replaced by the stan-
dard Arnoldi method. Table II shows the work for each cycle of the Arnoldi method 2.1 and the
general Arnoldi method 3.1. Because the matrixG we chose is a diagonal matrix, the matrix–vector
products in terms of G can be implemented by elementwise multiplication. Here, nnz represents the
number of nonzero elements of matrix A.

From Table II, it is seen that the computation cost for each cycle of the general Arnoldi method
is slightly expensive than that of the Arnoldi method. However, the convergence performance of the
Arnoldi method is greatly improved by the adaptively accelerating technique, which will be seen in
the next section. In addition, the computational cost of the adaptively accelerated Arnoldi method
can be reduced if we added the additional memory for storing Geqk .

It is also seen from Table II that except for the operation of the matrix–vector multiplication, the
computation of the norms (inner products) and SAXPY also influence the total computational cost
very much. Whenm increases, the computational cost in every cycle is increasing while the number
of total iteration is decreasing. Hence, it is difficult to choose the optimal value of restart to minimize
total computational cost (CPU time), which will be further discussed in next section.

5. NUMERICAL RESULTS

In this section, we present the numerical experiments to illustrate the efficiency of the adaptively
accelerated Arnoldi method.

In our experiment, we compare the adaptively accelerated Arnoldi method (called as ‘A-Arnoldi’)
with the power method, the power method with the quadratic extrapolation (called as ‘QE-power’) in
[9], and the Arnoldi-type (called as ‘Arnoldi’) method proposed in [11]. For the power method with

Table I. Intermediate memory required for the k-th iteration for each method.

dim(n) dim(k) total

power xk , xk�1 2n
QE-power xk , xk�1, xk�2, xk�3 4n

Arnoldi Qk ,w Hk .kC 1/nC k2=2C 2k

A-Arnoldi Qk ,w, r Hk .kC 2/nC k2=2C 2k

QE-power, power method with quadratic extrapolation.

Table II. Computation cost for each cycle of the Arnoldi method and the
general Arnoldi method.

line operation Arnoldi A-Arnoldi

3 matrix–vector products 2mnn´ 2mnn´
5 inner products m.mC 1/n 3m.mC 1/n=2
6 saxpy:xC ˛y m.mC 1/n m.mC 1/n
8 norm computation 2mn 3mn
12 vector scaling mn mn

Copyright © 2011 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2012; 19:73–85
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quadratic extrapolation, it was observed in [9] that the quadratic extrapolation does not necessar-
ily need to be applied too often to achieve maximum benefit. Hence, the quadratic extrapolation
was applied every fifth iteration in our experiment. We recorded the number of matrix–vector
products in our experiments, which was actually equivalent to the number of iteration steps in
these methods.

The test matrices are obtained from: http://snap.stanford.edu/data/index.html and http://www.cs.
toronto.edu/� tsap/experiments/download/download.html. In Table III, we describe the characteris-
tics of our test matrices, including number of rows (n), number of nonzeros (nn´), number of zero
columns (´col), average nonzeros of every row (ann´) and density (den) which is defined by

denD
nn´

n� n
� 100.

Here, the number of zero columns is actually corresponding to the number of dangling nodes. In our
experiments, the largest test matrix is of size 683,446 and has 7,583,376 nonzeros.

The initial vector is taken as q0 D .1, 1, : : : , 1/T . Because the 1-norm is a natural choice for the
power method, in our comparisons we chose the 1-norm of the residual as stopping criterion for
a fair comparison. For the power method and the power method with quadratic extrapolation, the
stopping criterion is

kAq � qk1 � 1.0� 10�6,

whereas for the Arnoldi-type method and the adaptively accelerated Arnoldi method, the stopping
criterion is

ke�meQmC1umk1 � 1.0� 10�6.

From Theorem 3.3, it is seen that Aq�q De�meQmC1um so that these stopping criterions are equiv-
alent to each other. We should remark that the computation ofe�meQmC1um is actually cheaper than
that of Aq � q when m is small. Numerical experiments were done on a machine with a 2.10 GHz
CPU and a three-gigabyte memory.

5.1. Choice of the number of restart m

Table IV shows the number of iterations of the adaptively accelerated Arnoldi method for matrix
‘Search_engines’ when ˛ varies from 0.85 to 0.99 and m grows from 3 to 9, respectively.

Table III. The characteristic of test matrices.

No. Matrix n nn´ ´col ann´ den

1 Death_Penalty 4,298 21,956 1,639 5.11 1.19� 10�1

2 Search_engines 11,659 292,236 4,082 25.07 2.15� 10�1

3 Email-Enron 36,692 367,662 0 10.02 2.73� 10�1

4 Stanford-web 281,903 2,312,497 172 8.20 2.90� 10�3

5 Amazon0505 410,236 3,356,824 13,433 8.18 2.00� 10�3

6 Stanford berkeley web 683,446 7,583,376 4,735 11.10 1.60� 10�3

Table IV. The number of iteration of A-Arnoldi versus restart numberm
for ‘Search_engines’ matrix.

˛ 3 4 5 6 7 8 9

0.85 47 38 32 27 27 26 26
0.90 53 46 42 34 34 31 33
0.95 89 65 54 53 41 38 41
0.99 117 119 116 90 57 49 59

Copyright © 2011 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2012; 19:73–85
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Figure 1. The total CPU time versus restart number m for ‘Search_engines’ Data.

Table V. Matrix-vector products and CPU time versus damping factor ˛.

Power QE-power Arnoldi A-Arnoldi

No. ˛ IT Time IT Time IT Time IT Time

0.850 79 0.13 51 0.09 48 0.08 38 0.06
0.900 118 0.19 68 0.14 67 0.16 47 0.08

1 0.950 226 0.36 108 0.25 112 0.25 57 0.13
0.990 960 1.61 364 0.77 233 0.55 112 0.22
0.998 4460 7.44 869 1.81 418 0.97 107 0.22

0.850 82 1.30 38 0.66 42 0.72 32 0.56
0.900 126 2.05 51 0.84 58 0.95 42 0.72

2 0.950 252 3.81 72 1.19 93 1.53 54 0.89
0.990 1102 17.17 151 2.52 260 4.30 116 1.92
0.998 5092 78.52 271 4.52 324 5.36 201 3.30

0.850 85 2.06 39 1.01 39 1.09 35 0.91
0.900 127 2.98 46 1.23 53 1.50 44 1.17

3 0.950 257 6.23 64 1.75 83 2.33 56 1.59
0.990 1300 31.08 125 3.38 183 5.19 113 3.14
0.998 6539 156.94 207 5.67 333 9.45 164 4.38

0.850 86 18.91 71 18.25 83 21.91 57 15.13
0.900 131 28.97 107 27.66 114 30.27 84 22.81

4 0.950 265 58.64 203 52.52 210 55.89 133 34.22
0.990 1321 292.50 897 232.48 753 200.41 422 107.77
0.998 6400 1416.55 3301 855.76 2754 732.81 1036 263.83

0.850 94 30.20 43 15.58 47 17.67 36 14.28
0.900 138 42.91 56 20.50 59 22.27 48 17.92

5 0.950 260 81.05 82 30.13 79 29.88 66 25.13
0.990 977 304.97 208 76.63 229 86.95 127 50.33
0.998 3843 1200.31 820 302.91 918 348.61 291 186.59

0.850 88 45.98 75 45.88 88 55.47 58 36.03
0.900 134 70.52 112 69.55 130 82.52 89 54.41

6 0.950 273 144.19 219 136.70 263 168.00 172 106.28
0.990 1377 728.16 980 613.09 1163 743.03 632 385.66
0.998 6820 3596.28 3532 2206.25 4163 2646.47 2167 1319.80
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From Table IV, it is seen that the number of iteration is first decreasing then increasing except
˛ D 0.85, as the restart number m increases.

Because the storage requirements and computational cost for each cycle of the Arnoldi process
increase as m increases, the total CPU time of the adaptively accelerated Arnoldi method will be
expensive for large m.

Figure 1 depicts the curves of total CPU time of the adaptively accelerated Arnoldi method versus
the number of restart for the ‘Search_engines’ matrix when ˛ D 0.85, 0.90, 0.95, 0.99, respectively.

It is observed from Figure 1 that the optimal m to minimize the total CPU time of the adap-
tively accelerated Arnoldi method is different when ˛ is changing. So does for different problem.
Hence, in our experiment, to keep the memory requirement of Arnoldi process relatively small,
we choose mD 5 for the Arnoldi-type method in [11] and the adaptively accelerated Arnoldi
method and compare them with the power method and the power method with quadratic extra-
polation method.

5.2. Comparison of CPU time and the number of iteration

In Table V, we list the number of matrix-vector products of the power method, the power method
with quadratic extrapolation, the Arnoldi-type method and the adaptively accelerated Arnoldi
method respectively for all the test matrices when ˛ varies from 0.85 to 0.998.

From Table V, it is observed that the adaptively accelerated Arnoldi method performs the best
among the four iteration methods. This phenomenon is more obvious when ˛ is relatively large, for
instance, when ˛ D 0.95 and 0.998.

In Figure 2, we plot the curves of the norm of residual versus iteration number of the power
method, the power method with quadratic extrapolation, the Arnoldi-type method and the adaptively
accelerated Arnoldi method for ‘Death_Penalty’ when ˛ D 0.85, 0.95, 0.99, and 0.998, respectively.
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Figure 2. The norm of residual versus iteration number for ‘Death_Penalty’ data.
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From Figure 2, it can be seen that the speedup of our new method is very significantly, especially
when the damping factor is close to 1, for example, ˛ D 0.99 and ˛ D 0.998. This further confirms
the advantage of our proposed approach.

6. CONCLUSION AND FUTURE WORK

In this paper, we proposed a new approach for computing the PageRank. The method adaptively
changes the weighted least squares problem according to the component of the residual and then
using the generalized Arnoldi method to find the approximate PageRank vector. Numerical results
showed that the proposed method is quite efficient and better than the existing methods, especially
when the damping factor is close to 1.

In the future, the theory of the generalized Arnoldi process and the optimal choice of the matrix
G is still required to be further analyzed. In addition, it is also interesting to study the perfor-
mance of our methods for the more general Markov chains in [21,22], for instance, ‘slowly mixing’
Markov chains.
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