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Abstract

This paper studies how the HP-Filter should be adjusted, when changing the

frequency of observations. The usual choices in the literature are to adjust the

smoothing parameter by multiplying it with either the square of the observation

frequency ratios or simply with the observation frequency. In contrast, the

paper recommends to adjust the filter parameter by multiplying it with the

fourth power of the observation frequency ratios. Based on this suggestion,

some well-known comparisons of business cycles moments across countries and

time periods are recomputed. In particular, we overturn a finding by Backus

and Kehoe (1992) on the historical changes in output volatility and return

instead to older conventional wisdom (Baily, 1978, Lucas, 1977): based on the

new HP-Filter adjustment rule, output volatility turns out to have decreased

after the Second World War.

2



1 Introduction

The Hodrick and Prescott (1980) filter (the HP-filter hereafter) has become the stan-

dard method for removing long-run movements from the data in the business cycle

literature. The filter has been applied both to actual data in studies that attempt to

document business cycle “facts” (see e.g. Backus and Kehoe, 1992, Blackburn and

Ravn, 1992, Brandner and Neusser, 1992, Danthine and Donaldson, 1993, Fiorito

and Kollintzas, 1994, and Kydland and Prescott, 1990) and in studies where artificial

data from a model are compared with the actual data (see e.g. Backus, Kehoe and

Kydland, 1992, Cooley and Hansen, 1989, Hansen, 1985, and Kydland and Prescott,

1982). This paper studies how one should adjust this filter to the frequency of data

that one is working with. We show that the filter should be adjusted with the fourth

power of the observation frequency ratios, and illustrate that this new adjustment

rule changes some of the published business cycle facts.

There is a fairly large literature discussing and criticizing the HP-filter for a num-

ber of short-comings and undesirable properties (see e.g. Canova, 1994, 1997, Cogley

and Nason, 1995, Harvey and Jaeger, 1993, King and Rebelo, 1992, or Söderlind,

1994). Among other things, this literature has argued that the filter might lead to

spurious cycles if the data is difference stationary, that the filter might generate most

of the cycles in the artificial data, that the filter is only optimal (in the sense of

minimizing the mean square error) in special cases, and that it may produce extreme

second-order properties in the detrended data. However, our reading of that liter-

ature is that none of these short-comings or undesirable properties are particularly

compelling: the HP-filter has withstood the test of time and the fire of discussion

remarkably well. Thus, it appears most likely that the HP-filter will remain the stan-

dard method for detrending in theoretically oriented work for a long time to come.

For that reason, it seems particularly important to understand how the HP-filter

should be adjusted when the frequency of the observations is changed. This is the

purpose of this paper.

Most studies seem to use the standard value of 1600 for the smoothing parameter

involved in the HP-filter at the quarterly frequency, but the literature seems to be

divided over the issue of how to adjust the filter to the frequency of observations.

Two different rules for adjusting the HP-filter to annual data has been suggested.

On the one hand, Backus and Kehoe (1992), who study business cycle properties of

a cross-section of countries using annual data, use a value of 100 for the smoothing

parameter. Thus, their study implies that one should adjust the smoothing parameter

to alternative frequencies by multiplying the standard value of 1600 at the quarterly

frequency with the square of the alternative sampling frequency. On the other hand,

Correia, Neves and Rebelo (1992) and Cooley and Ohanian (1991) use a value of



400 for annual data, thus implying to adjust the smoothing parameter linearly with

the frequency of the data. In contrast to both branches of the literature, this paper

recommends to adjust the filter parameter by multiplying it with the fourth power of

the observation frequency ratios. For annual data, this implies a value of 6.25 for the

smoothing parameter, while one obtains 129600 as the appropriate value for monthly

data.

This rule is based on a number of different arguments. First, we analyze the

issue in frequency domain and provide a visual comparison of the HP-filter transfer

functions. For the proposed fourth-power adjustment, one gets a virtually perfect

match, whereas wide gaps open for any other adjustment by integer powers of the

frequency change. Secondly, we analyze the HP-filter transfer function analytically.

More precisely, given that one conjectures that the rule for adjusting the smoothing

parameter involves adjusting it with the sampling frequency raised to some power,

say n, we show that n should be between 3.8 and 4. Third, we show more informally

that the trends and cycles for data sampled at different frequencies (monthly and

quarterly in our example) are very close to each other when using, say, a quadratic

or a linear adjustment rule. This evidence is finally further supported with a Monte

Carlo analysis of moments typically studied in the business cycle literature.

This leads one naturally to the question of whether this issue matters for the

business cycle “facts”. To investigate this we recompute some of the important results

on the properties historical business cycles documented in Backus and Kehoe’s (1992)

study. We look at two of their more interesting results: (a) that output volatility was

higher in the interwar period than in the postwar period while no such rule exists for

a comparison of prewar fluctuations with postwar fluctuations, and (b) that prices

changed from being mainly procyclical before World War II (WWII) to being mainly

countercyclical thereafter. We find that when using the alternative value for the

smoothing parameter advocated for here, the latter of these results remain but the

former change. In particular, we find that output volatility generally has been lower

in the postwar period than in both the prewar period and in the interwar period. This

result is a return to the conventional wisdom of e.g. Baily (1978), Burns (1960), Lucas

(1977), and Tobin (1980) that output volatility declined after WWII. Baily (1978) and

Tobin (1980) took the decline in output volatility to imply that US economic policy

since WWII, including the use of “..built-in and discretionary stabilization” (Tobin,

1980, p.48), had been successful in dampening macroeconomic fluctuations. Thus,

our over-turning of Backus and Kehoe’s (1992) result has important implications if

interpreted along the lines of the successfulness of macroeconomic stabilization policy.

The remainder of the paper is organized as follows. In section 2 the HP-filter

is defined and briefly discussed. In section 3, the adjustment problem is cast in

frequency-domain language. Subsection 3.1 provides the visual comparison, whereas

2



subsection 3.2 contains the analytics. Frequency-domain language provides a partic-

ularly natural framework to address the issue at hand. Nonetheless, we also provide a

time-domain analysis of the problem in section 4. There, one has to resort to simula-

tions, but one may get a better insight into the actual impact of the filter on a given

series. Section 4.1 looks at one particular sample, whereas subsection 4.2 provides a

more extensive Monte-Carlo analysis. In section 5, we recompute some facts stated in

the literature about variability of certain macroeconomic time series: since these facts

are based on annual rather than quarterly data, this recomputation is now necessary

in light of our recommendation on how the HP-filter parameter should be adjusted

when changing the frequency of the observations. Section 6 concludes.

2 The HP-Filter

The HP filter aims at removing a smooth trend τt from some given data yt by solving

min
τt

T
∑

t=1

(

(yt − τt)
2 + λ ((τt+1 − τt)− (τt − τt−1))

2
)

The residual yt− τt is then commonly referred to as the “business cycle component”.

The HP-filter has been used extensively for a number of different purposes. First, a

number of studies has applied it to actual data in order to establish “stylized facts”

of macroeconomic fluctuations: several references were given in the introduction.

Secondly, it has also been applied to study the shapes of business cycles: Sichel

(1993), for example, uses the HP filter to analyze their asymmetry. Thirdly, the

HP filter has been applied in quantitative business cycle theories when comparing

artifical model data with actual data: again, a number of references were cited in the

introduction. In these studies, it has become common practice to compare standard

deviations and autocorrelations of filtered series coming from actual data vis-a-vis

artificial data generated with some model.

The filter involves the smoothing parameter λ which penalizes the acceleration in

the trend component relative to the business cycle component. Researchers typically

set λ = 1600 when working with quarterly data. However, data does not always come

at quarterly intervals. It may even be desirable to move to annual, monthly or some

other time interval of observation instead. Thus, the question arises how the HP-filter

should be adjusted for the frequency of observations? This question is the focus of this

paper. More specifically, our aim is to check, how the HP-filter parameter λ should

be changed, in case the frequency of observations is changed from, say, quarterly to

monthly or annual data.

The point of view taken in this paper is that the value λ = 1600 for quarterly

data is nothing but a definition of business cycles via the duration of its components:

3



movements of the data are defined to be of business-cycle or shorter nature, if the

filter attributes them to the business cycle component yt−τt rather than the long run

component τt. The convention λ = 1600 generates business cycles components in line

with older definitions, which view business cycles to last up to a few years, but not

more. Thus, our measuring stick in judging a choice to be good is to keep attributing

movements of the same duration to the business cycle component, regardless of the

frequency of observations: if some cyclical movement in the data has a periodicity

of four years, it should always (or never) be part of the business cycle component in

just the same way, regardless of whether the data is observed at monthly, quarterly

or annual frequency.

This point of view merits a bit of discussion, since other justifications for λ =

1600 have been given. Hodrick and Prescott (1980) favored the choice of λ = 1600

based on the argument that a 5 percent deviation from trend per quarter is relatively

moderate as is an eighth percentage change in the trend component. They show

that λ can be interpreted as the variance of the business cycle component divided by

the variance of the acceleration in the trend component if the cycle component and

the second difference of trend component are mean zero i.i.d. normally distributed

variables. For Hodrick and Prescott’s (1980) prior λ then follows as 52/(1/8)2 = 1600.

Harvey and Jaeger (1994) state that attempts to estimate the smoothing parameter

this way usually leads to very small values of the smoothing parameter because the

maintained assumption of i.i.d. normally distributed cyclical and second differenced

trend components are violated. The original Hodrick-Prescott (1980) justification is

thus unlikely to be robust against the type of data used or the frequency at which

it is sampled. Alternatively, λ can be thought of as a measure of fit or as a signal

extraction coefficient and could in principle be estimated from the data by setting

up the minimization problem as a signal extraction / prediction error decomposition

(see Canova, 1997, for such an approach). But again, it is likely that the amount

of information to be extracted from, say, monthly data differs from what can be

extracted from annual data. We view these approaches as complementary but just

technical in nature. Economically, the choice of λ = 1600 is one about defining as to

what one views to be the length of business cycles: this is the point of view which we

maintain throughout.

3 A Frequency-Domain Perspective.

First, we look at the comparison in the frequency domain. The frequency domain

perspective allows us conveniently to talk about the durations of the cyclical pieces of

the movements in the data, and hence to phrase the issue cleanly. King and Rebelo
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(1993) have calculated the transfer function of the HP-filter and shown it to be given

by1

h(ω;λ) =
4λ(1 − cos(ω))2

1 + 4λ(1− cos(ω))2
(1)

A plot of this transfer function together with the plot of a high pass filter cutting

off frequencies below ω ≤ π/20 can be seen in figure 1. As one can see, the two filters

are rather similar: both attribute peak-to-peak cyclical movements of less than ten

years of duration (and thus with a quarterly frequency of more than π/20) to be part

of the business cycle component. Choosing different values for λ is comparable to

choosing different values for the cut off point of the high pass filter. This figure thus

makes sense out of our statement above, that the choice for λ = 1600 is nothing but

a definition of business cycles via the duration length of its pieces.

With quarterly data, ω = π/2 corresponds to a quarter. With annual data, ω = 2π

corresponds to a quarter. Thus, let h(ω;λ1) be the filter representation for quarterly

data and let h(ω;λs) be the filter representation for an alternative sampling frequency

s, where we let s be the ratio of the frequency of observation compared to quarterly

data, i.e. s = 1/4 for annual data or s = 3 for monthly data. Then, ideally, we would

like to have:

h(ω;λ1) ≈ h(ω/s;λs) (2)

While this cannot hold exactly for all ω, it should hold at least approximately. In

principle, one could choose some measure of distance between two functions, like

e.g. the supremum metric, and find λs as to minimize the distance between the

two functions h(ω;λ1) and h(ω/s;λs) according to that chosen metric (and possibly

restricting ω to be in some relevant range). However, it seems hard to argue in favor

of any particular metric especially a priori. Instead, we simply check whether some

simple rule for adjusting λ works well, and provide a visual as well as point-by-point

analytic comparison. A simple criterion is to multiply λ with some power of the

frequency adjustment, i.e. to choose

λs = s
nλ1 (3)

The literature has suggested to choose n = 2, see e.g. Backus and Kehoe (1992), or

even n = 1, see e.g. Cooley and Ohanian (1991) or Correia, Neves and Rebelo (1992).

We will show that n = 4 (or at least something very close to it) is the most sensible

choice.

1This is the Fourier transform of the HP-filter assuming that the number of observations tends

to ∞. This will be very close to the finite sample filter except for very short samples and near to

the initial and final observations in the sample.
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3.1 A visual comparison ...

To provide a visual comparison, we show the transfer functions for the quarterly

frequency vis-a-vis transfer functions for annual data, plotted over quarterly frequen-

cies. For the annual data we illustrate the transfer function for n = 1; 2; 3; 4; 5. With

λ1 = 1600, one gets

λ0.25 ∈ {400; 100; 25; 6.25; 1.56}

where 400 corresponds to linear adjustment, where 100 relates to the “square” rule

and where 6.25 is our suggestion from adjusting with the fourth power of the frequency

ratios.

The results can be seen in figure 2. In that figure hn, n = 1, . . . , 5 corresponds to

using λ0.25 = 0.25nλ1 and hence, the filter transfer function for annual data, plotted

over quarterly frequencies, whereas h quarterly corresponds to the transfer function of

the usual HP-filter in quarterly data. Note, how h4 matches h quarterly most closely:

their two curves are extremely close. To show their difference, figure 3 is provided.

For a more fine-tuned comparison, we have also included non-integer powers between

n = 3.8 and n = 4.05. The suggested value of n = 4 works very well, as one can see:

the difference between the transfer functions is nowhere larger than 0.025.

Even more striking results are obtained for a comparison between quarterly and

monthly frequencies. We just show the differences between the transfer functions

in figure 4. There, the differences between these functions is virtually negligible for

n = 4 and nowhere larger than 0.002. Of course, the switch to monthly rather than

quarterly frequencies is less common in the literature than the switch to annual rather

than quarterly frequencies discussed above.

n 3.75 3.80 3.85 3.90 3.95 4.00

λ0.25 = 1600 ∗ 0.25n = 8.84 8.25 7.69 7.18 6.70 6.25

Table 1: Values for the HP filter parameter λ0.25 for annual data, when adjusting

with noninteger powers close to 4. Depending on the context, adjustments with these

values might give slightly better results, but the resulting differences are unlikely to

matter much in practice.

Figures 3 and 4 thus indicate, that the adjustment with n = 4 is practically

perfect when moving from quarterly to monthly data, whereas it is doing somewhat

worse when moving from quarterly to annual data, with values such as n = 3.9 or

n = 3.95 perhaps slightly preferable. We continue to find this effect also in our other

comparisons below. Thus, table 1 lists the resulting values for the HP filter parameter

for annual data, when using noninteger powers for n close to n = 4. Depending on

the context, adjustments with these values might give slightly better results, but the
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resulting differences are unlikely to matter much in practice. We thus stick to our

recommendation to pick n = 4 and thus λ0.25 = 6.25 as a useful and simple rule and

to establish a literature benchmark. Obviously, an analysis using any value for λ0.25
between 6.25 and, say, 8.25, is perfectly reasonable too. Most importantly, whatever

one picks within this range will be quite different from the values λ0.25 = 100 or even

λ0.25 = 400 used in the literature so far, and we strongly recommend to discontinue

their use.

To summarize, the results so far suggest that λ in the HP filter should move with

the fourth power of the frequency of observations. In particular, given the standard

choice of

λ1 = 1600

for quarterly data, one should use

λ3 = 129600

for monthly data, and

λ0.25 = 6.25

for annual data. For annual data, any value in the range 6.25 ≤ λ0.25 ≤ 8.25 is a

reasonable choice too. We will proceed to show further arguments in favour of these

recommendations.

3.2 ...and an analytic argument.

One can look at the comparison with analytic methods as well. To this end, we

consider a marginal change in the observation frequency ratio s around s = 1, and

look at its differential impact on the HP-filter. We assume λs to be the function (3)

of s, taking the power n as parameter. For the correct adjustment, is should be the

case that
d

ds
h(ω/s;λs) ≈ 0 (4)

where d
ds
denotes taking the total derivative with respect to s. For each ω and s, this

equation can be solved for the parameter n = n(s, ω) : one finds

n(s, ω) = 2
ω/s sin (ω/s)

1− cos (ω/s)
(5)

If the power specification is appropriate, then this expression should be approximately

constant over the range of relevant frequencies ω. Here, “relevant” should mean the

range of frequencies over which the HP-filter for quarterly frequencies is not close to

a constant anyhow as a function of ω, since the derivative of equation (4) will be
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close to zero there anyhow as well. Inspecting figure 1, it certainly suffices to restrict

attention to values 0 ≤ ω ≤ π/5. Table 2 lists values of n = n(s, ω) at s = 1. More

generally, note that n(s, ω) = n(ω/s), which means that these values are also valid

for quite different values of s, provided ω is adjusted suitably as well.

ω 0 π/20 π/10 π/5

n(1, ω) 4 3.992 3.967 3.868

Table 2: The optimal power adjustment at frequency ω for an adjustment locally

around a quarterly sampling rate. As one can see, the optimal adjustment is generally

between 3.8 and 4.0 at the relevant frequencies.

What this suggests is that n = 4 or something close to it is an excellent choice

if one wishes to make the transfer function invariant to the sampling frequency. The

analysis furthermore shows that n = 4 is the exact outcome only at ω = 0: otherwise,

a slightly lower number between, say, n = 3.8 and n = 4 might be more appropriate.

4 A Time-Domain Perspective.

To clinch our case, we will complement the frequency-domain perspective with some

results in the time domain by filtering some artificially generated data, taking a

detailed look at one sample and a more general Monte-Carlo study.

4.1 One sample...

More precisely, we generate a “quarterly” series from an AR(1) process,

yt = θyt−1 + ǫt, ǫt ∼ N (0, σ
2) (6)

and then draw ”annual” observations from it by taking every fourth observation. We

then apply the HP-filter to the quarterly data as well as to the annual data. For the

annual data, we again use the five λ values as stated above, and then compare the

resulting time trends, which are then usually subtracted from the original series in

order to get the residual “business cycle component”.

The results from comparing time trends can be seen in figure 5. To generate it, we

have set θ = 0.95. In this figure tn, n = 1, . . . , 5 corresponds to using λ0.25 = 0.25nλ1,

whereas t quarterly corresponds to the trend generated by the usual HP-filter in

quarterly data. Again, note, how t4 matches t quarterly most closely! As with the

frequency-domain analysis, this suggests that λ in the HP-filter should move with the

fourth power of the frequency of observations.
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We also generated the annual observations by averaging each four quarterly ob-

servations to see whether there is a difference between sampling or averaging: apart

from affecting the persistence of the series we don’t expect this to make much of a

difference when calculating trends, since the HP-filter pertains to lower-frequencies2.

A visual comparison of the trends yielded a picture which is extremely similar to

figure 5 and we have therefore chosen to exclude it, although it would have helped

our case: if anything, t4 matched t quarterly even more closely than in figure 5.

When visually checking the business cycle components, differences remain, regard-

less of which λ0.25 is chosen, see figure 6. This shouldn’t surprise: higher-frequency

data will always contain additional sources of noise at these higher frequencies. It is

thus more appropriate to compare what has been taken out, i.e. to compare the trend

components as in figure 5 rather than to compare what has been left in as here.

4.2 ... and a Monte Carlo Analysis.

We also report Monte Carlo results for the standard deviations and first-order auto-

correlations calculated from the business cycle component, since comparing moments

such as these are typically at the heart of applications of the HP-filter. These Monte

Carlo experiments were also performed for the comparison of quarterly data and an-

nual data. We study how different values of the smoothing parameter affects two

standard moments studied in the business cycle literature: the percentage standard

deviation and the first-order autocorrelation of the business cycle components. In all

experiments we used the standard value of λq = 1600 for the quarterly data as the

reference point.

We generated artificial data from the process stated in equation (6), using values

for θ between 0.9 and 1.0. We also looked at a case where the growth rate (rather

than the level) of the data is an autoregressive series:

∆yt = θ∆yt−1 + ǫt, ǫt ∼ N (0, σ
2) (7)

This latter specification is relevant for two reasons. First, Deaton (1992) ar-

gues that this specification seems to be a proper description of US output. Secondly,

processes such as this has been studied in some business cycle studies, see e.g. Rotem-

berg and Woodford’s (1996) study of whether the growth model can account for the

forecastable movements in the US data.

We studied two frequency changes: (a) where the higher frequency data relate

to quarterly observations and the lower frequency data to annual observations, and

2One way to think about this issue is in terms of stock and flow variables. For stock variables,

the sampling technique would be the appropriate way of going from e.g. monthly data to quarterly

data. For flow variables, averaging (or simple summation) would be the appropriate technique.
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(b) where the higher frequency data relate to monthly observations and the lower

frequency data to quarterly observations.

In going from the higher frequency data to the lower frequency data, we use

both the techniques studied above, i.e. we sample the lower frequency data from

a particular observation in the higher frequency data and we average the higher

frequency data to generate the lower frequency data. For example, from going to

quarterly data to annual data, we use either the fourth quarter observation as the

annual data or the average over the four “quarter” of a “year” as the annual data.

We refer to these two techniques as “sampling” and “averaging”. Finally, we choose

the sample periods such that there are 200 quarterly observations in all experiments.

Before examining this comparison it also important to remember the lesson learned

from the previous subsection: if the cyclical adjustment is done appropriately, then it

is the trend components which should match, not the business cycle components. One

should not expect the moments of the business cycle components to coincide exactly,

since the higher frequency data contains additional high-frequency noise. For this

reason, the numbers reported in empirical studies need to always report, whether,

say, annual or quarterly data was used, since different business cycle volatilities will

be obtained for the different types of data. Desiring to find the same volatilities

means that one forces the filter to use random movements of longer frequencies to

“make up” for the random movements at high frequencies, which get lost if one moves

from quarterly to annually sampled data: one should instead desire slightly higher

volatilities at quarterly sampling rates. A good choice for the frequency adjustment

is therefore one, under which the volatility of the business cycle component ends up

slightly higher for the data sampled at higher frequency.

It turns out again, that n = 4 is an excellent choice. Tables 3 and 4 show that one

obtains roughly the same moments for some adjustment between n = 3 and n = 4:

with n = 4, one gets the desired slight overstatement of the volatility on the quarterly

sampling rate compared the annual sampling rate3.

Tables 5 and 6 report on the same statistics for monthly versus quarterly data:

the adjustment n = 4 wins the competitions by a mile for sampled data, and looks

extremely good for averaged data as well. In particular, regardless of whether the

level of the series or the growth rates of the series are assumed to be stationary

we find that: (1) the maximum difference between the standard deviation of the

monthly series and the quarterly series is less than 0.5 percent, and (2) the first-order

autocorrelations of the quarterly sampled data and the third-order autocorrelations

of the monthly data are practically identical. Thus, our suggested correction of the

3From the Monte-Carlo analysis we also found that when adjusting to the annual frequency,

an adjustment of the smooting parameter with n=3.75 produces business cycle statistics almost

identical to the quarterly data for λ = 1600.
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smoothing parameter appears to produce business cycle moments that are very similar

whereas the alternative adjustment procedures suggested in the literature perform

relatively poorly.

5 Recomputing the Facts.

Based on the above analysis it seems natural to ask whether the modification of

the rule for adjusting the smoothing parameter matters for reported business cycle

“facts”. At the outset, it should be clear that ‘wild’ values of λ of course can lead

to radical adjustments of the business cycle moments. Here, however, we will see

whether the adjustment advocated for in the previous two sections leads to changes

in the conclusions drawn in the literature on the moments of business cycles. To

investigate this issue we recompute of some of the results reported by Backus and

Kehoe (1992) for a cross-section of OECD countries using historical annual data.

Backus and Kehoe (1992) used a value for λannual of 100 corresponding to the

“square” rule (n = 2). Our analysis above suggests using λannual = 6.25. One of their

most interesting findings were that output volatility was higher in the interwar period

than during the postwar period but that there is no general rule as far as a comparison

of the postwar period with the prewar (pre WWI) period is concerned. This result is

in contrast to the conventional wisdom of e.g. Burns (1960), Lucas (1977), and Tobin

(1980) that output volatility declined after WWII (hence that output volatility has

been lower in the postwar period than in either earlier period). Another interesting

result was that prices changed from generally being procyclical before World War II

to being countercyclical thereafter.

Table 7 lists the results for output volatility when using the alternative value

for the smoothing parameter. The results of this analysis are quite interesting. We

find that (i) generally, the difference in volatility between the prewar and the postwar

period narrows; (ii) for most countries, there was has been a decline in volatility in the

postwar period relative either the interwar period or the prewar period. These results

differ from Backus and Kehoe’s (1992) results but are in line with the traditional

wisdom quoted above. This is an important result. The reason is that the traditional

wisdom of a decline in output volatility after WWII was interpreted by Baily (1978)

and Tobin (1980) in terms of the successfulness of stabilization policy. Tobin (1980,

p.48) states that

“.. Martin Baily has proved once more that a picture is worth more than a thou-

sand words. His picture ... shows how much more stable real output has been in

the United States under conscious policies of built-in and discretionary stabilization

adopted since 1946 ..”
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Clearly, Backus and Kehoe’s (1992) result puts serious doubt on this interpre-

tation, but our analysis shows that the traditional wisdom may indeed be correct

(although we are not willing to hypothesize about the underlying reasons for the

decline in volatility). These results are, in our view, reassuring and indicate that the

concern of this paper is important. Finally, it should also be noted that our esti-

mates of the volatilities are in many cases considerably smaller than those reported

in Backus and Kehoe (1992). One obtains a decline of 50 percent in the standard

deviation in many cases.

Table 4 reports the results for Backus and Kehoe’s (1992) result on the cyclical

behavior of the price level. They found that prices have become countercyclical in

the postwar period and that the interwar period historically was the period where

procyclicality was most pronounced. These are in line with other studies, see e.g.

Cooley and Ohanian (1991) and Ravn and Sola (1995). Hence, a fundamental change

in these results would lead one to be somewhat sceptical about our arguments.

This table indicates that Backus and Kehoe’s (1992) results on the change in

the behavior of prices is robust to the change in the smoothing parameter that we

have advocated for. The only major exception is Norway for which we have a big

change in the correlation relative to Backus and Kehoe for the postwar period (they

estimate this correlation to be -0.63). Thus, for these results, the indication is that

the adjustment proposed in the present paper matters less for the qualitative results.

6 Conclusions

The major conclusion of this paper is that the parameter λ, which governs the be-

havior of the HP-filter, should be adjusted according to the fourth power of a change

in the frequency of observations. This adjustment strategy makes sure that the same

low-frequency movements are excluded from the data, regardless of the frequency of

the observations. However, the cyclical variability of some series, calculated by first

removing the HP-trend and then calculating the standard deviation of the residual,

will depend on high-frequency events as well. They will thus depend on the frequency

of the observations as well as on whether the data is time averaged or time-sampled.

This dependence should be acknowledged by stating the nature of the underlying

data as precisely as possible in any empirical work. Some well-known comparisons

of business cycles moments across countries and time periods have been recomputed,

using the recommended fourth-power adjustment. In particular, we overturn a find-

ing by Backus and Kehoe (1992) and return instead to older conventional wisdom

(Baily, 1978, Lucas, 1977, Tobin, 1980): based on the new HP-Filter adjustment rule,

output volatility turns out to be lower in the postwar period compared to the prewar

12



period.

13



References

[1] Backus, David K. and Patrick J. Kehoe (1992), “International Evidence on the

Historical Properties of Business Cycles”, American Economic Review vol. 82,

no.4, 864-888.

[2] Backus, David K., Patrick J. Kehoe and Finn E. Kydland (1992), “International

Real Business Cycles”, Journal of Political Economy vol.101, 745-775.

[3] Baily, Martin N. (1978), “Stabilization Policy and Private Economic Behavior”,

Brookings Papers on Economic Activity 1, 11-50.

[4] Blackburn, Keith and Morten O. Ravn (1992), “Business Cycles in the U.K.:

Facts and Fictions”, Economica vol.59, 383-401.

[5] Brandner, Peter and Klaus Neusser (1992), “Business Cycles in Open Economies:

Stylized Facts for Austria and Germany”, Weltwirtschaftliches Archiv vol.128,

67-87.

[6] Burns, Arthur (1960), “Progress Towards Economic Stability”, American Eco-

nomic Review vol. 50, 1-19.

[7] Canova, Fabio (1997), “Detrending and Business Cycle Facts”, forthcoming,

Journal of Monetary Economics.

[8] Canova, Fabio (1994), “Detrending and Turning-Points”, European Economic

Review vol.38, nos.3/4, 614-623.

[9] Cogley, Timothy and James M. Nason (1995), “Effects of the Hodrick-Prescott

Filter on Trend and Difference Stationary Time Series: Implications for Business

Cycle Research”, Journal of Economic Dynamics and Control vol.19, 253-278.

[10] Cooley, Thomas F. and Gary D. Hansen (1989), “The Inflation Tax in a Real

Business Cycle Model”, American Economic Review vol.79, 733-48.

[11] Cooley, Thomas J. and Lee E. Ohanian (1991), “The Cyclical Behaviour of

Prices”, Journal of Monetary Economics vol.28, 25-60.

[12] Correia, Isabel H., Joao L. Neves, and Sergio T. Rebelo (1992), “Business Cycles

from 1850-1950 - New Facts about Old Data”, European Economic Review vol.36,

nos.2/3, 459-467.

[13] Danthine, Jean-Pierre and John B. Donaldson (1993), “Methodological and Em-

pirical Issues in Real Business cycle Theory”, European Economic Review vol.37,

1-35.

14



[14] Danthine, Jean-Pierre and Michel Girardin (1989), “Business cycles in Switzer-

land. A Comparative Study”, European Economic Review vol.33, 31-50.

[15] Deaton, Angus (1992), Understanding Consumption, Oxford, UK: Claren-

don Press.

[16] Fiorito, Ricardo and Tryphon Kollintzas (1994), “Stylized Facts of Business Cy-

cles in the G7 from a Real Business Cycles Perspective”, European Economic

Review vol.38, no.2, 235-269.

[17] Hansen, Gary D. (1985), “Indivisible Labor and the Business Cycle”, Journal of

Monetary Economics vol.16, 309-27.

[18] Harvey, Andrew C. and A. Jaeger (1993), “Detrending, Stylized Facts and the

Business Cycle”, Journal of Applied Econometrics vol.8, 231-247.

[19] Hodrick, Robert J. and Edward C. Prescott (1980), “Postwar U.S. Business

Cycles: an Empirical Investigation”, Discussion Paper no.451, Carnegie Mellon

University.

[20] King, Robert G. and Sergio T. Rebelo (1993), “Low Frequency Filtering and

Real Business Cycles,” Journal of Economic Dynamics and Control vol. 17, no.

1-2, 207-231.

[21] Kydland, Finn E. and Edward C. Prescott (1982), “Time to Build and Aggregate

Fluctuations”, Econometrica vol.50, 1345-1370.

[22] Kydland, Finn E. and Edward C. Prescott (1990), “Business Cycles: Real Facts

and a Monetary Myth”, Federal Reserve Bank of Minneapolis Quarterly Review

vol.14, 3-18.

[23] Lucas, Robert E. Jr. (1977), “Understanding Business Cycles”, in K.Brunner

and Allan H. Meltzer (eds.), Stabilization of the Domestic and Interna-

tional Economy, Carnegie-Rochester Conference Series 5, Amsterdam: North-

Holland, 7-29.

[24] Ravn, Morten O. and Martin Sola (1995), “Stylized Facts and Regime Changes:

Are Prices Procyclical?”, Journal of Monetary Economics vol.36, no.3, 497-526.

[25] Rotemberg, Julio J. and Michael Woodford (1996), “Real-Business-Cycle Models

and the Forecastable Movements in Output, Hours, and Consumption”, Ameri-

can Economic Review vol.86(1), 71-89.

15



[26] Sichel, Daniel E. (1993), “Business-Cycle Asymmetry - a Deeper Look”, Eco-

nomic Record vol.31(2), 224-36.
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7 Tables

Quar. Annual: Sampled Annual: Averaged

θ n = 1 n = 2 n = 3 n = 4 n = 1 n = 2 n = 3 n = 4

Specification (6): yt = θyt−1 + ǫt, ǫt ∼ N (0, σ2)

1 2.536 4.172 3.531 2.953 2.430 3.891 3.212 2.595 2.038

0.99 2.547 4.170 3.539 2.963 2.440 3.886 3.218 2.603 2.046

0.97 2.559 4.069 3.504 2.961 2.451 3.774 3.176 2.594 2.052

0.95 2.558 3.907 3.427 2.934 2.450 3.597 3.086 2.558 2.044

0.90 2.521 3.486 3.174 2.811 2.409 3.133 2.798 2.407 1.982

Specification (7): ∆yt = θ∆yt−1 + ǫt, ǫt ∼ N (0, σ2)

0.4 3.666 6.601 5.489 4.481 3.574 6.323 5.172 4.120 3.173

0.2 2.980 5.101 4.285 3.549 2.884 4.823 3.970 3.192 2.490

0.1 2.735 4.586 3.868 3.220 2.635 4.308 3.552 2.864 2.243

Table 3: Annual Data: Standard Deviations. Moments were computed from 1000

replications each of a length of 200 quarters using 20 observations for initializations,

σ = 2.. The ‘sampled’ (‘averaged’) data refers to the 4’th ‘quarter’s’ observation

(average over the 4 quarters of the year).

Quar. Annual: Sampled Annual: Averaged

θ corr corr4 n = 1 n = 2 n = 3 n = 4 n = 1 n = 2 n = 3 n = 4

Specification (6): yt = θyt−1 + ǫt, ǫt ∼ N (0, σ
2)

1 0.704 0.094 0.557 0.425 0.253 0.042 0.665 0.554 0.401 0.198

0.99 0.703 0.093 0.553 0.423 0.252 0.041 0.662 0.553 0.400 0.198

0.97 0.701 0.088 0.531 0.408 0.242 0.036 0.644 0.540 0.391 0.192

0.95 0.695 0.079 0.497 0.382 0.224 0.025 0.617 0.518 0.375 0.181

0.90 0.674 0.044 0.396 0.298 0.162 -0.016 0.535 0.447 0.318 0.140

Specification (7): ∆yt = θ∆yt−1 + ǫt, ǫt ∼ N (0, σ2)

0.4 0.846 0.165 0.633 0.514 0.352 0.143 0.701 0.599 0.456 0.263

0.2 0.784 0.118 0.589 0.463 0.294 0.082 0.678 0.571 0.421 0.222

0.1 0.747 0.104 0.572 0.443 0.272 0.061 0.671 0.561 0.410 0.209

Table 4: Annual Data: Autocorrelations. See notes to table 3. corr4 refers to

the fourth autocorrelation, which is the appropriate number to compare to the first

autocorrelation of annual data.
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Quarterly Monthly

θ Sampl. Aver. n = 1 n = 2 n = 3 n = 4

Specification (6): yt = θyt−1 + ǫt, ǫt ∼ N (0, σ2)

1 4.432 4.239 2.948 3.383 3.878 4.357

0.99 4.427 4.233 2.960 3.393 3.883 4.431

0.97 4.298 4.095 2.962 3.576 3.826 4.303

0.95 4.099 3.884 2.943 3.322 3.714 4.104

0.90 3.609 3.358 2.839 3.120 3.383 3.616

Specification (7): ∆yt = θ∆yt−1 + ǫt, ǫt ∼ N (0, σ
2)

0.4 7.047 6.878 4.416 5.195 6.069 7.044

0.2 5.429 5.250 3.519 4.081 4.717 5.429

0.1 4.877 4.692 3.204 3.695 4.252 4.878

Table 5: Monthly Data: Standard Deviations. See notes to table 3

Quarterly Monthly

θ Sampled Averaged n = 1 n = 2 n = 3 n = 4

corr corr3 corr corr3 corr corr3 corr corr3
Specification (6): yt = θyt−1 + ǫt, ǫt ∼ N (0, σ2)

1 0.708 0.782 0.780 0.415 0.830 0.534 0.868 0.631 0.898 0.709

0.99 0.705 0.780 0.779 0.414 0.829 0.533 0.868 0.629 0.897 0.706

0.97 0.685 0.764 0.776 0.406 0.824 0.522 0.861 0.614 0.890 0.685

0.95 0.654 0.740 0.769 0.392 0.816 0.502 0.851 0.589 0.877 0.656

0.90 0.562 0.667 0.742 0.341 0.784 0.436 0.815 0.509 0.837 0.564

Specification (7): ∆yt = θ∆yt−1 + ǫt, ǫt ∼ N (0, σ2)

0.4 0.781 0.820 0.891 0.528 0.919 0.635 0.939 0.719 0.953 0.781

0.2 0.741 0.797 0.843 0.462 0.881 0.577 0.909 0.669 0.930 0.741

0.1 0.724 0.789 0.814 0.437 0.857 0.554 0.890 0.649 0.915 0.725

Table 6: Monthly Data: Autocorrelations. See notes to table 3. corr3 refers

to the third autocorrelation, which is the appropriate number to compare to the first

autocorrelation of quarterly data.
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Standard Deviations (%) n = 4 n = 2∗

I.Prewar II.Interwar III.Postwar I/III II/III I/III II/III

Australia 3.77(0.37) 2.47(0.35) 1.40(0.14) 2.69 1.77 3.3 2.5

Canada 3.13(0.27) 5.06(0.77) 1.50(0.21) 2.09 3.38 2.0 4.4

Denmark 2.20(0.17) 2.45(0.37) 1.35(0.15) 1.63 1.82 1.6 1.8

Germany 2.32(0.21) 5.26(0.88) 1.80(0.24) 1.29 2.92 1.5 4.4

Italy 2.13(0.20) 2.60(0.30) 1.51(0.14) 1.41 1.72 1.2 1.8

Japan 2.10(0.27) 2.47(0.38) 1.45(0.18) 1.45 1.70 0.8 1.0

Norway 1.07(0.09) 2.89(0.56) 1.06(0.12) 1.01 2.72 1.1 2.0

Sweden 1.73(0.22) 2.41(0.47) 1.03(0.09) 1.68 2.34 1.7 2.6

United Kingdom 1.54(0.16) 2.50(0.30) 1.27(0.17) 1.21 1.97 1.3 2.1

United States 3.30(0.35) 4.91(0.70) 1.58(0.17) 2.09 3.11 1.9 4.1

Table 7: Output Volatility. ∗Numbers from Backus and Kehoe (1992). Numbers in

parentheses are standard errors computed from GMM estimations of the unconditional

moments.
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n = 4 n = 2∗

I.Prewar II.Interwar III.Postwar I.Prewar II.Interwar III.Postwar

Australia 0.29 0.30 -0.26 0.60 0.59 -0.47

(0.14) (0.18) (0.18) (0.10) (0.12) (0.11)

Canada 0.11 0.69 -0.01 0.41 0.77 0.12

(0.15) (0.12) (0.15) (0.13) (0.08) (0.16)

Denmark 0.18 0.02 -0.60 0.18 -0.26 -0.48

(0.12) (0.26) (0.09) (0.12) (0.25) (0.11)

Germany 0.04 0.86 -0.17 -0.01 0.71 0.01

(0.13) (0.06) (0.14) (0.15) (0.09) (0.16)

Italy 0.01 0.14 -0.33 -0.02 0.58 -0.24

(0.10) (0.15) (0.14) (0.11) (0.09) (0.14)

Japan -0.49 -0.18 -0.37 -0.45 0.03 -0.60

(0.11) (0.25) (0.18) (0.11) (0.22) (0.10)

Norway 0.47 0.16 0.57 0.65 0.16 -0.63

(0.11) (0.16) (0.10) (0.08) (0.19) (0.08)

Sweden -0.08 0.23 -0.38 0.15 0.30 -0.53

(0.17) (0.09) (0.09) (0.13) (0.10) (0.07)

U.K. 0.16 0.14 -0.72 0.26 0.20 -0.50

(0.14) (0.24) (0.08) (0.12) (0.21) (0.14)

U.S. 0.05 0.75 -0.25 0.22 0.72 -0.30

(0.11) (0.09) (0.21) (0.11) (0.13) (0.16)

Table 8: The Correlation of Prices and Output. ∗Numbers taken from Backus

and Kehoe (1992). Numbers in parentheses are standard errors.
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8 Figures
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Figure 1: This figure compares the HP-filter for quarterly data and λ = 1600 with

a high pass filter, cutting off frequencies below π/20, in frequency domain. The two

filters are rather similar: both attribute peak-to-peak cyclical movements of less than

ten years of duration to be part of the business cycle component.
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Figure 2: This figure compares different ways of adapting the HP-Filter by comparing

their transfer functions in frequency domain. Note, how h4 matches h quarterly most

closely: their two lines are extremely close. That suggests that lambda in the HP filter

should move with the fourth power of the frequency of observations.
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Figure 3: This figure plots the difference between the transfer function for quarterly

data and λ1 = 1600 minus the transfer function for annual data with λ0.25 adjusted

with various powers n of the frequency ratio s = 0.25. For n = 4 and hence λ0.25 =

6.25, the difference is strictly smaller than 0.025 in absolute value everywhere. We

also showed the difference for some noninteger values of n: apparently, n = 3.95 or

even n = 3.9 might be even slightly preferable to n = 4. In applications, the differences

between n = 3.9 and n = 4, say, are unlikely to matter much, though.
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Figure 4: This figure plots the difference between the transfer function for quarterly

data and λ1 = 1600 minus the transfer function for monthly data with λ3 adjusted

with various powers n of the frequency ratio s = 3. For n = 4 and hence λ3 =

129600, the difference is strictly smaller than 0.002 in absolute value everywhere,

clearly dominating any of the other noninteger values close to n = 4 shown in this

figure.
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Figure 5: This figure compares different ways of adapting the HP-Filter by comparing

the resulting time trends when filtering some artificially generated data. In this figure,

the data is sampled, i.e the annual data corresponds to taking every fourth observation

of the quarterly series. Note, how t4 matches t quarterly most closely. That suggests

that lambda in the HP filter should move with the fourth power of the frequency of

observations.
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Figure 6: This figure compares different ways of adapting the HP-Filter by comparing

the resulting business cycle components after removing the HP-trend when filtering

some artificially generated data. In this figure, only the sampled annual data in its

five filtered versions (and not the time-averaged data) is compared to the quarterly

business cycle component. One can clearly see, that a difference remains, regardless of

which λm is chosen. This shouldn’t surprise: higher-frequency data will always contain

additional sources of noise at these higher frequencies. It is thus more appropriate to

compare what has been taken out, i.e. to compare the trend components as in figure ??

rather than to compare what has been left in as here.
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