{: SCISPACE

formerly Typeset

@ Open access « Journal Article - DOI:10.1007/S00205-008-0201-X
On admissibility criteria for weak solutions of the Euler equations — Source link (4

Camillo De Lellis, Laszlé Székelyhidi

Institutions: University of Zurich, University of Bonn

Published on: 19 Dec 2007 - arXiv: Analysis of PDEs

Topics: Euler equations, Bounded function, Weak solution, Eulerian path and Initial value problem

Related papers:
« An overview of some recent results on the Euler system of isentropic gas dynamics

 Discontinuous Solutions to Ordinary Nonlinear Differential Equations in the Space of Functions of Bounded
Variation

» On the interior regularity of weak solutions to the 2-D incompressible Euler equations
« On the energy equality for the 3D Navier-Stokes equations

« Solvability Issue for Optimal Control Problem in Coefficients for Degenerate Parabolic Variational Inequality

Share thispaper: @ ¥ M ™

View more about this paper here: https:/typeset.io/papers/on-admissibility-criteria-for-weak-solutions-of-the-euler-
54orrwwald


https://typeset.io/
https://www.doi.org/10.1007/S00205-008-0201-X
https://typeset.io/papers/on-admissibility-criteria-for-weak-solutions-of-the-euler-54orrwwald
https://typeset.io/authors/camillo-de-lellis-4h4mul8kij
https://typeset.io/authors/laszlo-szekelyhidi-39jn961hdg
https://typeset.io/institutions/university-of-zurich-144im07m
https://typeset.io/institutions/university-of-bonn-15mmd3k0
https://typeset.io/journals/arxiv-analysis-of-pdes-3p7siwzf
https://typeset.io/topics/euler-equations-3kucde5j
https://typeset.io/topics/bounded-function-1gdgagxh
https://typeset.io/topics/weak-solution-16lwphjo
https://typeset.io/topics/eulerian-path-20cfozyk
https://typeset.io/topics/initial-value-problem-16jstabj
https://typeset.io/papers/an-overview-of-some-recent-results-on-the-euler-system-of-50o35hc9hv
https://typeset.io/papers/discontinuous-solutions-to-ordinary-nonlinear-differential-8g7ivcwtil
https://typeset.io/papers/on-the-interior-regularity-of-weak-solutions-to-the-2-d-51h8is6d37
https://typeset.io/papers/on-the-energy-equality-for-the-3d-navier-stokes-equations-95dxmb9raa
https://typeset.io/papers/solvability-issue-for-optimal-control-problem-in-vt9hkcv1q3
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/on-admissibility-criteria-for-weak-solutions-of-the-euler-54orrwwald
https://twitter.com/intent/tweet?text=On%20admissibility%20criteria%20for%20weak%20solutions%20of%20the%20Euler%20equations&url=https://typeset.io/papers/on-admissibility-criteria-for-weak-solutions-of-the-euler-54orrwwald
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/on-admissibility-criteria-for-weak-solutions-of-the-euler-54orrwwald
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/on-admissibility-criteria-for-weak-solutions-of-the-euler-54orrwwald
https://typeset.io/papers/on-admissibility-criteria-for-weak-solutions-of-the-euler-54orrwwald

221 2\ University of Zurich
-1 =) Zurich Open Repository and Archive

Winterthurerstr. 190
CH-8057 Zurich
http://iwww.zora.uzh.ch

Year: 2010

On admissibility criteria for weak solutions of the Euler
equations

De Lellis, C; Székelyhidi, L

De Lellis, C; Székelyhidi, L (2010). On admissibility criteria for weak solutions of the Euler equations. Archiv for
Rational Mechanics and Analysis, 195(1):225-260.

Postprint available at:

http://www.zora.uzh.ch

Posted at the Zurich Open Repository and Archive, University of Zurich.
http://www.zora.uzh.ch

Originally published at:
Archiv for Rational Mechanics and Analysis 2010, 195(1):225-260.



ON ADMISSIBILITY CRITERIA FOR WEAK SOLUTIONS
OF THE EULER EQUATIONS

CAMILLO DE LELLIS AND LASZLO SZEKELYHIDI JR.

ABSTRACT. We consider solutions to the Cauchy problem for the in-
compressible Euler equations satisfying several additional requirements,
like the global and local energy inequalities. Using some techniques in-
troduced in an earlier paper we show that, for some bounded compactly
supported initial data, none of these admissibility criteria singles out a
unique weak solution.

As a byproduct we show bounded initial data for which admissible
solutions to the p—system of isentropic gas dynamics in Eulerian coordi-
nates are not unique in more than one space dimension.

1. INTRODUCTION

In this paper we consider the Cauchy problem for the incompressible Euler
equations in n—space dimensions

Ow+diviv®v)+Vp = 0
dive = 0 (1)
v(2,0) = v(z),

where the initial data v° satisfies the compatibility condition
dive’ = 0. (2)

A divergence-free vector field v € L2 is a weak solution of () if

/ [v-Op+ (v@v, V)| dedt = / 0(x)p(x,0) dz (3)
R xR+ n

for every test function ¢ € C°(R™ x R, R™) with dive = 0. It is well-
known that then the pressure is determined up to a function depending
only on time (see [I8]).

In his pioneering work [I3] Scheffer showed that weak solutions to the
2-dimensional Euler equations are not unique. In particular Scheffer con-
structed a nontrivial weak solution compactly supported in space and time,
thus disproving uniqueness for () even when v = 0. A simpler construction
was later proposed by Shnirelman in [I5].

In a recent paper, we have shown a quite powerful approach to the con-
struction of irregular solutions of ([Il), recovering Scheffer’s and Shnirelman’s
counterexamples in all dimensions and with bounded velocity and pressure.
Moreover, our construction yields as a simple corollary the existence of
energy—decreasing solutions, thus recovering another groundbreaking result
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2 CAMILLO DE LELLIS AND LASZLO SZEKELYHIDI JR.

of Shnirelman [T6], again with the additional features that our examples have
bounded velocity and pressures and can be shown to exist in any dimension.

The aim of this note is to discuss the relations between our constructions
and various admissibility criteria that could be imposed on weak solutions
of Euler. With our methods we can show that none of these criteria implies
uniqueness for general L? initial data. More precisely we prove the follow-
ing theorem (for the relevant definitions of weak, strong and local energy
inequalities, we refer to Sections 2] and E22).

Theorem 1.1. Let n > 2. There exist bounded and compactly supported
divergence—free vector fields v° for which there are

(a) infinitely many weak solutions of ([l) satisfying both the strong and
the local energy equalities;

(b) weak solutions of () satisfying the strong energy inequality but not
the energy equality;

(¢) weak solutions of () satisfying the weak energy inequality but not
the strong energy inequality.

Our examples display a very wild behavior, such as dissipation of the
energy and amplitude of high—frequency oscillations. We will refer to them
as wild solutions. Our analysis relies on some criteria on the initial data for
the existence of (many) wild solutions satisfying the various admissibility
conditions. We then exhibit initial data for which our criteria are satisfied
and as a corollary we obtain several non—uniqueness results. We explicitly
state these criteria in Section 3, see Proposition B3l

As a byproduct of our analysis we prove a similar non—uniqueness result
for the p-system of isentropic gas dynamics in Eulerian coordinates, the
oldest hyperbolic system of conservation laws. The unknowns of the system,
which consists of n 4 1 equations, are the density p and the velocity v of the
gas:

3tp+diVx(PU) =0

1 (pv) + diva(pv ® v) + V[p(p)] = 0 (4)
p(07 ) = pO

v(0,-) = °

(cp. with (3.3.17) in [3] and Section 1.1 of [I4]. p7). The pressure p is
a function of p, which is determined from the constitutive thermodynamic
relations of the gas in question and satisfies the assumption p’ > 0. A typical
example is p(p) = kp?, with constants k > 0 and ~ > 1, which gives the
constitutive relation for a polytropic gas (cp. with (3.3.19) and (3.3.20)
of [B]). Weak solutions of () are bounded functions which solve it in the
sense of distributions. Admissible solutions have to satisfy an additional
inequality, coming from the conservation law for the energy of the system.
For the relevant definition we refer to Section 2.4.
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Theorem 1.2. Let n > 2. Then, for any given function p, there exist
bounded initial data (p°,v°) with p° > ¢ > 0 for which there are infinitely
many bounded admissible solutions (p,v) of @) with p > ¢ > 0.

The paper is organized as follows. Section 2 contains a survey of several
admissibility conditions for ([Il) and the definition of admissible solutions for
). Section 3 states a general criterion on the existence of wild solutions
to ([Il) for a given initial data, see Proposition B3 In Section 4 we prove
Proposition and in Section 5 we construct initial data meeting the re-
quirements of Proposition B3] see Proposition Bl Finally, in Section 6 we
prove the non—uniqueness theorems [Tl and using Proposition and
Proposition .11

2. AN OVERVIEW OF THE DIFFERENT NOTIONS OF ADMISSIBILITY

In this section we discuss various admissibility criteria for weak solutions
which have been proposed in the past years in the literature.

2.1. Weak and strong energy inequalities. All the admissibility criteria
considered so far in the literature are motivated by approximating () with
the Navier Stokes equations. We therefore consider the following vanishing
viscosity approximation of ()

O +div(v ®v) + Vp = cAv
dive = 0 (5)
v(@,0) = v'(z),
where the parameter ¢ is positive but small. A weak solution of (H) is then
a divergence—free field v € leoc satisfying

/Rnxw o O +ebp) + (09 0, V)] dudt = / (@)p(@,0)dz (6)

for every test function ¢ € C°(R™ x Ry, R™) with divp = 0.

For smooth solutions, we can multiply ([{l) and (&) by v and derive corre-
sponding partial differential equations for |v|?, namely

8t¥—|—div (v <¥ —|—p>> =0 (7)

2 2 2
8t% + div (v <% +p>> = &?A% —e|Vul?. (8)

Recall that ([[l) and (Bl model the movements of ideal incompressible flu-
ids. If we assume that the constant density of the fluid is normalized to
1, then |v|?/2 is the energy density and (@) and (&) are simply the laws of
conservation of the energy, in local form.

and
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Integrating () and (®) in time and space and assuming that p and v are
decaying sufficiently fast at infinity, we achieve the following identities

1 1
5/ [v|?(x,t) de = 5/ v?(z, s) ds for all s,t e R 9)
n Rn

1 1 t
—/ WP, ) do = —/ |v|2(:1:,s)dm—6/ / Vol2(z, 7) dadr . (10)
2 n 2 Rn s RS

The celebrated result of Leray [9] (see [7] for a modern introduction)
shows the existence of weak solutions to (B) which satisfy a relaxed version
of (I), the so—called weak energy inequality, namely ([I) and (I2) below.

Theorem 2.1 (Leray-Hopf). Let v° € L? be a divergence—free vector field.
Then there exists a weak solution v of ([B) with Vv € leoc which satisfies

1 1
5 [ WPetde < 5 [ PP
t
—6// \Vol?(z, 7) de dr for almost all t (11)
0 Jr3

and

—€ \Vo|?(z, 7) dz dr for a.a. pairs (s,t) with s <t. (12)
s JR3

In what follows, the solutions of Theorem Bl will be called Leray solu-
tions. If a weak solution v of ([l) is the strong limit of a sequence of Leray
solutions vy, of (B) with vanishing viscosity € = € | 0, then v inherits in the
limit (1) and ([Z). This justifies the following definition.

Definition 2.2. A weak solution of () satisfies the weak energy inequality
if

/ [v|?(,t) dz S/ 100 % (z) dx for a.a. t (13)
n RTL

and
/ lv|?(z,t) de < / v)?(z, s) dz for a.a. (s,t) with s <t. (14)
n Rn
A weak solution of ([l) satisfies the weak energy equality if equality holds in
(@) and [).

An interesting feature of both ([Il) and () is that weak solutions have a
natural notion of trace at every time t, i.e. they are weakly continuous in
time.
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Lemma 2.3. Let v be a weak solution of ([Il) or a weak solution of (H),
belonging to the space L>=([0,T], L?>(R™)). Then, v can be redefined on a set
of t of measure zero so that v € C([0,T], L2 (R"™)), i.e. so that the function

t— / v(z,t) - (x) dz (15)
is continuous for every ¢ € L*(R™,R").

This property (or a suitable variant of it) is common to all distributional
solutions of evolution equations which can be written as balance laws (see
for instance Theorem 4.1.1 in [3]) and can be proved by standard arguments.
In the appendix we include, for the reader’s convenience, a proof of a more
general statement, which will be useful later. From now on, we will use the
slightly shorter notation C([0,T7], L2) for C([0,T], L% (R")).

It follows that weak solutions satisfying the weak energy inequality have a
well-defined notion of total energy 1 [ |v|?(z,t)dt at every time ¢. Moreover,
it is easy to see that ([[Il) and (I3]) are actually satisfied at all times ¢ > 0.
Similarly, for a.a. s () and () holds for every ¢ > s. Instead, the
following is a stronger requirement.

Definition 2.4. A weak solution v € C(([0,T],L2) of (@) (resp. of @)
satisfies the strong energy inequality if ([[4) (resp. ([2)) holds for every
pair (s,t) with s < t. Similarly, we say that it satisfies the strong energy
inequality if the equality in ([I4]) holds for every pair (s,t) with s < t.

The strong energy inequality seems a very reasonable condition from the
physical point of view, both for Euler and Navier—Stokes. Whether Leray’s
solutions satisfy the strong energy inequality is a long—standing open ques-
tion (see [1]). As an outcome of our approach, we answer negatively the same

question for weak solutions of ([Il) satisfying the weak energy inequality (see
Theorem [LTJ).

2.2. The local energy inequality. Consider next a Leray solution of ().
It turns out that v € L8 (L2) and Vv € L(L2). The Sobolev inequality and
a simple interpolation argument shows that v € L; OC(R" x R*) if the space
dimension n is less or equal to A[. I this case, one could formulate a weak
local form of the energy inequality, requiring that the natural inequality
corresponding to () holds in the distributional sense. This amounts to the
condition

2
/ [vl® —(—Op +eAp)drdt < /
R

2
<ﬂ —I—p> v-Vedxdt (16)
nxR+ 2 R xR+

2

1Indeed7 by the Sobolev embedding, we conclude that v € L%(LT). Interpolating
between the spaces L=°L? and L2L*" we conclude that u € L} (L) for every exponents r

and s satisfying the identities
1 1—-a 1 a 11—«

n _1_1—(1
ro 2 s 2 2x 2 n
2(1 73) =: q. Clearly, ¢ > 3 for n = 2,3, 4.

for some « € [0, 1].

Plugging oo = 2/(2 + n) we obtain r = s =
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3
loc

Ap = divdiv (v ®v), (17)
by the Calderon—Zygmund estimates we have p € L?O/Cz
well-defined locally summable function.

It is not known whether the Leray solutions do satisfy ([I@]). However,
it is possible to construct global weak solutions satisfying the weak energy
inequality and the local energy inequality. This fact has been proved for
the first time by Scheffer in [I2] (see also the appendix of [2]). The local
energy inequality is a fundamental ingredient in the partial regularity theory
initiated by Scheffer and culminating in the work of Caffarelli, Kohn and
Nirenberg, see [2] and [10].

for any nonnegative ¢ € C°(R"™ x R™). Note that, since v € L} = and

. Therefore pv is a

Theorem 2.5. Let n < 4 and let v° € L?(R™) be a divergence—free vector
field. Then there exists a weak solution v of (B) with Vv € L? = and which

loc
satisfies (), (I2) and (I6).

By analogy, for weak solutions of ([l), Duchon and Robert in [6] have
proposed to look at a local form of the energy inequality ([I4).

Definition 2.6 (Duchon-Robert). Consider an L} . weak solution v of ().
We say that v satisfies the local energy inequality if

2 2
at% + div <v <% +p>> <0 (18)

in the sense of distributions, i.e. if

1 2 |U|2
- |0 < ——+p|v- Vo (19)
2 JrnxR+ RrxR+ \ 2

for every nonnegative p € C°(R"™ x RT).
Similarly, if the equality in ([[3) holds for every test function, then we say
that v satisfies the local energy equality.

Since (7)) holds even for weak solutions of (), v € L} implies p €

L?O/f, and hence the product pv is well-defined. Note, however, that, for
solutions of Euler, the requirement v € L?OC is not at all natural, even in low

dimensions: there is no apriori estimate yielding this property.

2.3. Dissipative solutions in the sense of Lions. Two other very weak
notions of solutions to incompressible Euler have been proposed in the liter-
ature: DiPerna-Majda’s measure-valued solutions (see [5]) and Lions’ dissi-
pative solutions (see Chapter 4.4 of [I1]]). Dissipative solutions, (which are
defined in Appendix B) coincide with classical solutions as long as the latter
exist:

Theorem 2.7 (Proposition 4.1 in [I1]). If there exists a solution v €
C([0,T), L*(R™)) of (M) such that (Vv + VoT) € LY([0,T], L>(R"™)), then
any dissipative solution of () is equal to v on R™ x [0,T].
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This is relevant for our discussion because of the following well-known
fact.

Proposition 2.8. Let v € C([0,T], L2) be a weak solution of () satisfying
the weak energy inequality. Then v is a dissipative solution.

Our construction yields initial data for which the nonuniqueness results of
Theorem [T hold on any time interval [0, e[. However, for sufficiently regular
initial data, classical results give the local existence of smooth solutions.
Therefore, Proposition imply that, a fortiori, the initial data considered
in our examples have necessarily a certain degree of irregularity.

Though Proposition is well-known, we have not been able to find a
reference for its proof and therefore we include one in Appendix B (see the
proof of Proposition B2).

2.4. Admissible solutions to the p-system. As usual, by a weak solution
of @) we understand a pair (p,v) € L such that the following identities
hold for every test functions ¢ € C°(R™ x R),p € C(R™ x R):

/]R”X]R+ [P&ﬂﬁ +pv- Vgc?/)] drdt = /n p(x) (x,0) dx (20)

/R7l><R+ [pv Oip + plv @, VSD>] dedt = /n P (2)0°(z) - p(x,0) dz . (21)

Admissible solutions have to satisfy an additional constraint. Consider the
internal energy ¢ : Rt — R given through the law p(r) = 72¢/(r). Then
admissible solutions of (Z0) have to satisfy the inequality

o [oet) + 22| i [ (oot + 2B 00 ) o] <0 e2)

(cp. with (3.3.18) and (3.3.21) of [B]). More precisely

Definition 2.9. A weak solution of (@) is admissible if the following in-
equality holds for every nonnegative » € C°(R™ x R):

/}Ran+ Kps(p) + #) o + (ps(p) + %U'z +p(p)> : wa]

(e + 2D w0 = 0, (23)

3. A CRITERION FOR THE EXISTENCE OF WILD SOLUTIONS

In this section we state some criteria to recognize initial data v® which
allow for many weak solutions of ([l) satisfying the weak, strong and/or
local energy inequality. In order to state it, we need to introduce some of
the notation already used in [].
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3.1. The Euler equation as a differential inclusion. In particular, we
state the following lemma (compare with Lemma 2.1 of []). Here and in
what follows we denote by S™ the space of symmetric n x n matrices, by Sy
the subspace of 8™ of matrices with trace 0, and by I,, the n x n identity
matrix.

Lemma 3.1. Suppose v € L*>(R" x [0,T],R"), u € L*(R" x [0,T],S), and
q s a distribution such that
o+ divu+Vg=0,
divv=0.
If (v,u,q) solve ) and in addition

(24)

1
u=vQv——[v]?l, ae inR"x[0,T], (25)
n
then v and p := q — %|v|2 solve (M) distributionally. Conversely, if v and p
solve (@) distributionally, v, u = v ® v — L|v[’I,, and ¢ = p + L|v|? solve

@) and 239).

Next, for every r > 0, we consider the set of Fuler states of speed r
2
K, = {(U,u)GRnXSSLZUZU@U—T—[n, ]v]:r} (26)
n

(cf. Section of [], in particular (25) therein). Lemma says simply that
solutions to the Euler equations can be viewed as evolutions on the manifold
of Euler states subject to the linear conservation laws (24I).

Next, we denote by K/ ° the convex hull in R" x § of K,. In the following
Lemma we give an explicit formula for K°. Since it will be often used in
the sequel, we introduce the following notation. For v,w € R™ let v ® w
denote the symmetrized tensor product, that is

v@w:%(v®w+w®v), (27)
and let v O w denote its traceless part, that is
vow=%(v®w+w®v)—%[n. (28)
Note that
0]

vOv = vQuv——I,
n
and hence K, is simply
K, = {(v,ovOuwv):|v|=r}.

Lemma 3.2. For any w € 8" let Apqaz(w) denote the largest eigenvalue of
w. For (v,u) € R" x S let

e(v,u) = g)\mam(v @V — u). (29)
Then
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(i) e:R" x S§ — R is convex;
2
(ii) 2[v|? < e(v,u), with equality if and only if u=v®v — %In;
(ili) uloo < 22=Le(v,u), where |u|os denotes the operator norm of the
matrix;
(iv) The %r2fsublevel set of e is the convex hull of K,, i.e.

2
K® = {(v,u)GR"xSS‘:e(v,u)S%} : (30)

(v) If (u,v) € R™ x S, then +/2e(v,u) gives the smallest p for which
(u,v) € K°.

In view of (ii) if a triple (v, u, q) solving (24]) corresponds a solution of the
Euler equations via the correspondence in Lemma Bl then e(v, ) is simply
the energy density of the solution. In view of this remark, if (v,u,q) is a
solution of @4), e(v,u) will be called the generalized energy density, and
E(t) = [gne(v(z,t),u(z,t))dz will be called the generalized energy.

We postpone the proof of Lemma B2 to the next subsection and we state
now the criterion for the existence of wild solutions. Its proof, which is the
core of the paper, will be given in Section 4.

Proposition 3.3. Let Q C R™ be an open set (not necessarily bounded) and
let
e € C(x]0,T[) nC([0,T]; L ().

Assume there exists (vg,ug,qo) smooth solution of ) on R™x]0,T[ with
the following properties:

vo € C([0,T]; L), (31)
supp (vo(+,t),uo(-,t)) CC Q for all t €]0,T7, (32)
e(vo(z,t),uo(z,t)) < é(z,t) for all (z,t) € 2x]0,T7. (33)

Then there exist infinitely many weak solutions v of the Euler equations ()
with pressure

_ L 2
P =qo nlvl (34)
such that
veC([0,T); L), (35)
v(+,t) = vo(-,t) fort=0,T, (36)

%\v(.,tw _ &) 1a  for everyt €)0,T. (37)
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3.2. Proof of Lemma
Proof. (i) Note that

elww) = 5 max (6 (wev—u)) = 5 max, (& (&) - ut)
= 5 o [[(6 )P (€ ue)]. (38)

Since for every ¢ € S"~! the map (v,u) — [(£,v)|> — (€, u€) is convex, it
follows that e is convex.

(ii) Sincev@v=v O v + %Im we have, similarly to above, that

n o[

E(U,U)=§5€n}9%<£,(00v—u)£>+7 -
39

2
n v
= EAmam(v Ov—u)+ %
Observe that, since v O v — u is traceless, the sum of its eigenvalues is zero.
Therefore Mg (v O v —u) > 0 with equality if and only if v O v — u = 0.
This proves the claim.

(iii) From BY) and B9) we deduce

n

e(v,u) > g max (—<§,u§>> = —EAmm(u).

Therefore —Apin(u) < 2e(v,u). Since u is traceless, the sum of its eigenval-
ues is zero, hence

2(n—1)

[tloo < (7 = 1) Amin ()] < ——

e(v, u).

(iv) Without loss of generality we assume r = 1. Let

S = {(v,u)ewxsgze(v,u) < %} (40)

Observe that e(v,u) = 1 for all (v,u) € K, hence - by convexity of e -
K{° C S;.

To prove the opposite inclusion, observe first of all that S; is convex by (i)
and compact by (ii) and (iii). Therefore S; is equal to the closed convex hull
of its extreme points. In light of this observation it suffices to show that the
convex extreme points of S; are contained in Kj.

To this end let (v,u) € S1\ K;. By a suitable rotation of the coordinate
axes we may assume that v ® v — u is diagonal, with diagonal entries 1/n >
A1 > -+ > \,. Note that (v,u) ¢ K1 = A\, < 1/n. Indeed, if A\, = 1/n,
then we have the identity v = v ® v — %In. Since the trace of u vanishes,

ol
n

this identity implies [v|> =1 and u = v ® v — =1, which give (v,u) € Kj.
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Let e1,..., e, denote the coordinate unit vectors, and write v =), vie;.
Consider the pair (v,u) € R" x S defined by
1

v=¢,, U= v'(e; @ en+ e, ®e;).
1

n

<.
Il

A simple calculation shows that
(v+10) @ (v+10) — (u+ta) = (V@ v —u) + (2t V" +t*)e, @ e,

In particular, since A\, < 1/n, e(v+tv,u+tu) < 1/n for all sufficiently small
[t|, so that (v,u) + t(v,u) € S1. This shows that (v,u) cannot be a convex
extreme point of Sj.

(v) is an easy direct consequence of (iv). O

4. PROOF OF PROPOSITION

Although the general strategy for proving Proposition is based on
Baire category arguments as in 4], there are several points in which Propo-
sition differs, which give rise to technical difficulties. The main technical
difficulty is given by the requirements (BH) and (B1), where we put a special
emphasis on the fact that the equality in [BZ) must hold for every time ¢. The
arguments in [, which are based on the interplay between weak-strong con-
vergence following [8], yield only solutions in the space L ([0,T]; L*(R")).
Although such solutions can be redefined on a set of times of measure zero
(see Lemma EZ3) so that they belong to the space C([0,7]; L2), this gives
the equality

1

S0P
For the construction of solutions satisfying the strong energy inequality this
conclusion is not enough. Indeed, a consequence of Theorem [[Ik) is pre-
cisely the fact that (B7) does not follow automatically from (EII).

This Section is split into five parts. In Bl we introduces the functional
framework, we state Lemma B3 Lemma E4 and Proposition EEA and we
show how Proposition follows from them. The two lemmas are simple
consequences of functional analytic facts, and they are proved in The
perturbation property of Proposition is instead the main point of the
argument. In B3] we introduce the waves which are the basic building blocks
for proving Proposition EEO.  In EE4l we introduce a suitable potential to
localize the waves of Finally, in L3l we use these two tools and a careful
construction to prove Proposition

=ée(-,t) 1q for almost every ¢t €]0,T7. (41)

4.1. Functional setup. We start by defining the space of ”subsolutions”
as follows. Let vy be a vectorfield as in Proposition with associated
modified pressure qg, and consider velocity fields v : R x [0, T] — R"™ which
satisfy

dive =0, (42)
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the initial and boundary conditions
v(z,0) = vo(z,0),
v(z,T) = vo(z,T), (43)
suppo(-,t) CC  for all ¢t €]0,T7,
and such that there exists a smooth matrix field v : R"x]0, T'[— Sf with
e(v(z,t),u(z,t)) < é(z,t) for all (z,t) € 2x]0,T7,
suppu(-,t) CcC Q for all t €]0,7T7, (44)
O +divu + Vgo = 0 in R™ x [0,77].

Definition 4.1 (The space of subsolutions). Let X be the set of such velocity
fields, i.e.

Xo = {v € C*(R"x]0,T[) N C’([O,T],L%U) : (@2, 3), ) are satisﬁed},
and let X be the closure of Xo in C([0,T]; L2,).

We assume that € € C([0,T]; L' (2)), therefore there exists a constant ¢
such that [, e(x,t)dz < co for all t € [0, T]. Since for any v € X we have

1
—/ lv(z,t)|? do < / é(z,t)dx for all ¢t € [0, 7],
2 Ja Q

we see that X consists of functions v : [0,T] — L?*(R") taking values in
a bounded subset B of L?(R"). Without loss of generality we can assume
that B is weakly closed. Let dg be a metric on B which metrizes the weak
topology. Then (B,dp) is a compact metric space. Moreover, dp induces
naturally a metric d on the space Y := C([0,7], (B,dp)) via the definition

d(wy,wy) = max dp(wi(-,t),ws(:,1)). (45)
te[0,T]
The topology induced by d on Y is equivalent to the topology of Y as subset
of C ([O,T];L?U). Moreover, by Arzela-Ascoli’s theorem, the space (Y,d) is
compact. Finally, X is the closure in (Y,d) of Xy, and hence (X,d) is as
well a compact metric space.

Definition 4.2 (The functionals I, o,). Next, for any e > 0 and any bounded
open set Qg C  consider the functional
. 1 _
I. o, (v) := te[?,le—s] /QO [E\v(x,t)IQ - e(m,t)] dx.

It is clear that on X each functional I o, is bounded from below.

We are now ready to state the three important building blocks of the
proof of Proposition The first two lemmas are simple consequences of
our functional analytic framework

Lemma 4.3. The functionals 1. o, are lower-semicontinuous on X.
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Lemma 4.4. For all v € X we have I, q,(v) < 0. If I. o,(v) = 0 for every
€ > 0 and every bounded open set Qg C €, then v is a weak solution of the
Euler equations ([{l) with pressure

1
p=qo— —|v?
n

and such that ([B0), B4), BT) are satisfied.

The following proposition is the key point in the whole argument, and it is
the only place where the particularities of the equations enter. It corresponds
to Lemma 4.6 of [, though its proof is considerably more complicated due
to the special role played by the time variable in this context.

Proposition 4.5 (The perturbation property). Let Qg and ¢ > 0 be given.
For all a > 0 there exists § > 0 (possibly depending on € and Q) such that
whenever v € Xg with

Ie,Qo(U) < —q
there exists a sequence vy € X with vy, 4, v and
lign inf I o, (vk) > Ic.0,(v) + 6.
—00

Remark 1. In fact the proof of Proposition [{.] will show that in case () is
bounded and € is uniformly bounded in 2 x [0,T], the improvement (3 in the
statement can be chosen to be

B = min{a/2, Ca?},
with C' only depending on || and ||é||oc-

We postpone the proofs of these facts to the following Subsections. We
now show how Proposition follow from them and the general Baire Cat-
egory argument.

Proof of Proposition [Z23. Since the functional I, o, is lower-semicontinuous
on the compact metric space X and takes values in a bounded interval of R,
it can be written as a pointwise supremum of countably many continuous
functionals, see Proposition 11 in Section 2.7 of Chapter IX of [I]. Therefore,
I. o, is a Baire-1 map and hence its points of continuity form a residual set in
X. We claim that if v € X is a point of continuity of I, o, then I, o, (v) = 0.

To prove the claim, assume the contrary, i.e. that there exists v € X which
is a point of continuity of I. o, and I o,(v) < —a for some a > 0. Choose

a sequence {vi} C Xo such that vy < . Then in particular I, o, (vy) —
I. o,(v) and so, by possibly renumbering the sequence, we may assume that
I. o,(vx) < —a. Now we invoke Proposition for each function vy and by
extracting a diagonal subsequence find a new sequence {7y} C X such that

Uk < vin X,
lign inf I€7QO (’[)k) > IE’QO('U) + 0.
— 00
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This is in contradiction with the assumption that v is a point of continuity
of I; q,, thereby proving our claim.
Next, let €, be an exhausting sequence of bounded open subsets of 2.
Consider the set = which is the intersection of
SIRES {v € X : Iyq, is continuous at v} .

= is the intersection of countably many residual sets and hence it is residual.
Moreover, if v € Z, then I, o,(v) = 0 for any ¢ > 0 and any bounded
Qo C Q. By Lemma 4l any v € = satisfies the requirements of Proposition
One can easily check that the cardinality of X is infinite and therefore
the cardinality of any residual set in X is infinite as well. This concludes
the proof. O

4.2. Proofs of Lemma and Lemma B4l

Proof of Lemma [{-3 Assume for a contradiction that there exists vy, v € X
such that v < vin X, but

lim inf / [1|vk(x,t)|2—é(x,t)]dm
Qo

k—oo t€[e, T—e] 2

1
inf vz, t)|* — é(z,t) | dx.
< o [ [gvte R e ]

Then there exists a sequence of times t;, € [e,T — ¢] such that

. 1 )
lim [ | Sfop( )l - e, )| do

k—o0 Qo

< inf /Q O[%|v($,t)|2—é($,t)} da. (46)

tele,T—e]

We may assume without loss of generality that ¢, — to. Since the conver-
gence in X is equivalent to the topology of C’([O, T L?D), we obtain that

vp(, k) — v(-, to) in L*(Q) weakly,

and hence
1 1
lim inf [—]vk(az,tk)lz — é(a:,tk)} dx > / [—]v(az,to)lz — é(w,to)} dx.
k—o0 Qo 2 o 2
This contradicts (Hf), thereby concluding the proof. O

Proof of Lemma[f.4. For v € Xy there exists u : R"x]0,T[— S such that
(E2) holds. Therefore

S ) < e(v(a, 1) ula, 1)) < oz, 1)

for all (z,t) € 2x]0,T[ and hence I, o,(v) < 0 for v € Xj. For general v € X
the inequality follows from the density of Xy and the lower-semicontinuity
of I. q,.
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Next, let v € X and assume that I. o, (v) = 0 for every € > 0 and every

bounded open Qy C . Let {v;p} C X be a sequence such that vy 2 yin X
and let uy be the associated sequence of matrix fields satisfying @4l). The
sequence {uy} satisfies the pointwise estimate

2(n—1) 2(n—1) _

e(vg, up) < —— €,
n

because of Lemma B2 (iii). Therefore {us} is locally uniformly bounded in

L and hence, by extracting a weakly convergent subsequence and relabel-

ing, we may assume that
up —* u in Lis, (Q x [0,T7]).

Since vy — v in C([0,T]; L2,) and I o,(v) = 0 for every choice of ¢ and Q,
we see that v satisfies (B3, ([B6) and B7). Moreover, the linear equations

{&v—l—divu—{—qu =0,

dive =0
hold in the limit, and — since e is convex — we have
e(v(z,t),u(z,t)) < é(z,t) for ae. (z,t) € Q2 x[0,T]. (47)

To prove that v is a weak solution of the Euler equations ([Il) with pressure

P=qo— %\0\2, in view of Lemma Bl it suffices to show that

[o]?
n

Combining 1) and [EZ) we have

U=VRV— I, a.e. in Q x[0,7]. (48)

1
§|v(x,t)|2 = e(v(z,t),u(z,t)) for almost every (z,t) € Q x [0,T],

so that ([HX) follows from Lemma B2 (ii).
(]

4.3. Geometric setup. In this subsection we introduce the first tool for
proving Proposition The admissible segments defined below correspond
to suitable plane-wave solutions of (24]). More precisely, following Tartar
(1)), the directions of these segments belong to the wave cone A for the
system of linear PDEs 4)) (cp. with Section 2 of H] and in particulat with
(7) therein).

Definition 4.6. Given r > 0 we will call 0 an admissible segment if o is a
line segment in R™ x 8§ satisfying the following conditions:
e o is contained in the interior of K<,
e o is parallel to (a,a ® a) — (b,b ®b) for some a,b € R"™ with |a| =
|b| =7 and b # +a.

The following lemma, a simple consequence of Carathéodory’s theorem for
convex sets, ensures the existence of sufficiently large admissible segments
(cp. with Lemma 4.3 of []).
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Lemma 4.7. There exists a dimensional constant C' > 0 such that for any
r >0 and for any (v,u) € int K there exists an admissible line segment

o= [(v,u) — (3,7), (v,u) + (@,a)] (49)
such that o
ol > =02~ JoP).

Proof. Let z = (v,u) € int K° By Carathéodory’s theorem (v,u) lies in
the interior of a simplex in R" x §F spanned by elements of K,. In other

words
N+1

z = § )‘izi7
Z‘_

where \; €]0,1[, ¥ N\ =1, N = n(n + 3)/2 — 1 is the dimension of
R™ x & and
2
i = (vi,v; @v; — —1I
z (v v; @ v - )

for some v; € R™ with |v;| = r. By possibly perturbing the z; slightly, we
can ensure that v; # 4v; whenever i # j (this is possible since (v,u) is
contained in the interior of the simplex). Assume that the coefficients are
ordered so that Ay = max; A;. Then for any j > 1

1
z x 5)\j(2j — Zl) € int Kﬁo.
Indeed,

z + )\ Z/Jzzla

where pu; = A\ F %)\j, i = A\j £ 5)\j and pu; = \; for ¢ #£ 1,4. It is easy to
see that u; €]0,1] foralli=1... N.
On the other hand z — 21 = 221\251 Ai(zi — 1), so that

_ < s — oql.
v —v1] < Ni:g}%{ﬂ Ailvi — 1] (50)
Let j > 1 be such that A\j|v; — vi| = max;—2._ n4+1 Ailv; — v1], and let

o 1
(v,a) = Az — 21)
1
= 5)\]‘(?}]' — V1, V5 QU — U1 ®U1).

Then o, defined by ([{@J), is contained in the interior of K£°, hence it is an
admissible segment. Moreover, by the choice of j and using (&0)
1
4rN T P < 4rN
This finishes the proof. U

1 _
-+ o) — lol) < 5lo = ] < .
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4.4. Oscillations at constant pressure. In this section we construct a
potential for the linear conservation laws (24]). Similar potentials were con-
structed in the paper ] (see Lemma 3.4 therein). However, the additional
feature of this new potential is that it allows to localize the oscillations at
constant pressure, which are needed in the proof of Proposition

As a preliminary step recall from Section 3 in ] that solutions of (24)
in R” correspond to symmetric divergencefree matrix fields on R™*! for
which the (n + 1), (n + 1) entry vanishes. To see this it suffices to consider
the linear map

R* x ST xRS (v,u,q) — U:C”fh @. (51)

Note also that with this identification ¢ = tr U. Therefore solutions of (24))
with ¢ = 0 correspond to matrix fields U : R**t1 — RO +Dx(+1) guch that

divU =0, U"=U, Upiiymsy =0, trU=0. (52)

Furthermore, given a velocity vector a € R™, the matrix of the corresponding
Fuler state is ,
U, = (a@a—%[n a> ‘
a 0

The following proposition gives a potential for solutions of (24]) oscillating
between two Euler states U, and U, of equal speed at constant pressure.

Proposition 4.8. Let a,b € R™ such that |a| = |b| and a # +b. Then there
exists a matriz—valued, constant coefficient, homogeneous linear differential
operator of order 8

A(a) . Cgo(Rn-i-l) BN Cgo (Rn-i-l;R(n—l—l)x(n—i—l))

such that U = A(9)¢ satisfies &2) for all ¢ € C(R™ ). Moreover there
exists n € R"1 such that

e 1) is not parallel to en41;

o if o(y) =(y-n), then
A(0)¢(y) = (Ua — Up) " (y - m).
Proof. A matrix valued homogeneous polynomial of degree 3

AR R(n—i—l)x(n—i—l)

gives rise to a differential operator required by the proposition if and only
if A= A() satisfies
AE =0, AT = A, Ae(nH) “€(nt1) = 0, trA=0 (53)
for all £ € R™*1,
Define the (n + 1) x (n + 1) antisymmetric matrices
R=a®b—-0b®a,
Q(&) = £® €ntl — €Ent1 @ f,
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where in the definition of R we treat a,b € R™ as elements of R"*! by setting
the (n 4+ 1)’s coordinate zero. The following facts are easily verified:
(i) RE-£=0, Q(£E- & =0, due to antisymmetry;
(il) RE-ept1 =0, since a-epi1 =b-eppq = 0;
(i) RE-Q(€)E = 0, because by (i) and (i) R¢ is perpendicular to the range
of Q.
Let

A©) = Re© Q) = 5 (Re ® (QO)E) + (Q0)E) ® F)

The properties (i),(ii),(iii) immediately imply (&3]).
Now define n € R"*! by
-1

lal[b] + a - b)*/3

Since |a| = |b] and a # +b, |a||b| + a - b # 0 so that n is well-defined and
non—zero. Moreover, a direct calculation shows that

= <a+b—ﬂMM+ﬂ-®%+O.

a®a—b®b a—1>
AWz( u—b 0>:m—m.

Finally, observe that if ¢(y) = ¢ (y - n), then A(9)é(y) = A(n)v" (y-n). O

The following simple lemma ensures that the oscillations of the plane-
waves produced by Proposition E8 have a certain size in terms of functionals
of the type I .

Lemma 4.9. Let n € R™! be a vector which is not parallel to ént+1- Then
for any bounded open set B C R"

1
. . 92 .
]\}1_120 Bsm (N« (z,t)) do = §|B|

uniformly in t € R.

Proof. Let us write n = (/,n,41) € R™ x R, so that ' € R™\ {0}. By
elementary trigonometric identities

sin®(Nn - (z,t)) = sin®(Nny' - 2)+
1
+ sin®(Nn,41t) cos(2N7y - ) + 3 sin(2Nn' - z) sin(2Nn,41t).
For the second term we have

‘/ sin?(Nn,41t) cos(QNn'-m)dx‘ < ‘/ cos(2Nn' - x)dz| — 0
B B

as N — oo, and similarly the third term vanishes in the limit uniformly in
t. The statement of the lemma now follows easily. O
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4.5. Proof of the perturbation property. We are now ready to conclude
the proof of Proposition B3

Step 1. Shifted grid. We start by defining a grid on R7 x R; of size
h. For ¢ € Z" let |¢| = (1 + -+ - + (, and let Q¢, Q¢ be cubes in R™ centered
at (h with sidelength h and %h respectively, i.e.

h A" = 3h 3h]"
QC = Ch—F |:—§,§:| , QC = Ch—|— |:—§,§:| .
Furthermore, for every ((,7) € Z™ x Z let
O Q¢ % [ih, (i + 1)h] if |¢] is even,
Qe x (i — $)h, (i 4+ )R] if [¢] s odd.

Next, we let 0 < ¢ <1 be a smooth cutoff function on R? x Ry, with support
contained in [—h/2, h/2]"*1, identically 1 on [—3h/8,3h/8]""1 and strictly
less than 1 outside. Denote by ¢¢; the obvious translation of ¢ supported

in C¢;, and let
¢t = Z ©ci-
Cezn i€l
Given an open and bounded set g, let
Q}f = U{QC . |¢| even, Q¢ C QO}, Qg = U{QC : ¢l odd, Q¢ C QO}.
Observe that

1/3\"
. Ry _ L (9 _
}ILI_)HB|QV| 9 <4> |QO| for v L2,
and for every fixed t the set {x € Qg : ¢"(z,t) = 1} contains at least one of

the sets Q" see Figure [l Indeed, if
1 3 1 1
h_ . . ho_ . .
= UG+ Phait Ph| and =[G - D+ A,
1€EN 1€EN
then 7 Ul = R, and for v = 1,2

oM (z,t) =1 for all (x,t) € QF x 7.

Now let v € X with
I, 0,(v) < —a

for some a > 0, and let u : Q2x]0,7[— S} be a corresponding smooth
matrix field satisfying ([@4]). Let

M = max e, (54)
Qox[e/2,T—¢e/2]

and let Ej : Qg x [e,T — €] — R be the step-function on the grid defined by

En(2,t) = Ep(Ch, ih) = %@(gh,m)\? _ &(Chyih)  for (x,) € Ce
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t
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FiGURE 1. The “shifted” grid in dimension 1 + 1.

This is well-defined provided h < €. Since v and € are uniformly continuous
on Qo x [¢/2,T —¢/2], for any v € {1,2}

, 1 /3\" [ g1 .
}lzl—% o Ep(z,t)dx = 3 <Z> /Qo [§|v(x,t)| —e(a:,t)]d:n

uniformly in ¢ € [e,T —¢]. In particular there exists a dimensional constant
¢ > 0 such that, for all sufficiently small grid sizes h and for any t € [e, T —¢],
we have

/ |Ep(z,t)|de > ca

Qh

v 1 N (55)
z 2_ ¢ < __

whenever /QO [2|v(:ﬂ,t)| e(a:,t)] dr < 5

Next, for each (¢,i) € Z" x Z such that C¢; C Qo x [¢/2,T — /2] let
2Ci = (U((h,lh),U(gh,’Lh)),

and, using Lemma EZ7), choose a segment
oci = laci — Zcar 2 + i)
admissible for r = /2e(Ch,ih) (c.f. Definition ECH) with midpoint z¢; and
direction z¢; = (Q_’C,i’ ﬂg,i) such that
C

_ 2 N2 C N2
V¢ " > m@h@h,lhﬂ > M|Eh(Ch,lh)| . (56)
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Since z := (v,u) and € are uniformly continuous, for sufficiently small h we
have

e(z(z,t) + Azc;) < é(z,t) forall A € [-1,1] and (z,t) € C¢,;. (57)

Thus we fix the grid size 0 < h < €/2 so that the estimates (B5) and (&)
hold.

Step 2. The perturbation. Fix ((,) for the moment. Corresponding
to the admissible segment o¢ ;, in view of Proposition and the identifi-
cation (BIl) there exists an operator A¢; and a direction 7, € R not
parallel to e,41, such that for any N € N

Aci (N_?’ cos (N377<7Z- - (z, t))) = Zc;sin (N?’nc,i - (z, t)) ,
and such that the pair (v¢;, u¢;) defined by
(v e (1) = Acy|peilw,t) N7 cos (Nonei - (a,1)) |

satisfies () with ¢ = 0. Note that (v¢;, uc,;) is supported in the cylinder
C¢,i and that

H(UC,i7 uci) = peizcisin (Nonei - (z,1)) Hoo
- HAc,i [%z’ N~ cos (Nnc.; (M))}
s 0 G|

1
< C(Agis e s ||9047i||03)ﬁa

o0

since A¢; is a linear differential operator of homogeneous degree 3. Let
(On i) = > (vi5 u¢.)
(¢,i):C¢,; CQo % [e,T—¢]
and
(vn,un) = (v,u) + (On, UN) -

Observe that the sum consists of finitely many terms. Therefore from (1)
and (B8) we deduce that there exists Ny € N such that

vy € Xp for all N > Nj. (59)

Furthermore, recall that for all (z,t) € Q, x 7, we have ¢"(z,t) = 1 and
hence

[on (2, 8)|* = [0¢3]* sin® (N - (1))
where i € N is determined by the inclusion (z,t) € C¢;. Since n¢,; € R
is not parallel to e,,1, from Lemma we see that

1
im [ [on (e 6)2de = 2 / (54 2da
N—oo Q¢ 2 Q¢
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uniformly in ¢. In particular, using ([Bf) and summing over all ({,4) such
that C¢; C Qg x [e,T — €], we obtain

1
Jm [ Sl nParz %/gh By (1) 2 (60)

uniformly in ¢ € 7, N [e,T — €], where ¢ > 0 is a dimensional constant.

Step 3. Conclusion. For each t € [¢,T — €] we have
1 1
| [3lewte.0f w0 do = [ [Fluw 0 - eta,t)]ds
0 -2 0 -2
1
+/ ~|on (2, 1) da +/ on(z,t) - v(z, t)de.
Qo 2 Q()
Since v is smooth on Qg x [¢/2,T — /2],
/ On(z,t) - v(z,t)dr — 0 as N — oo, uniformly in ¢,
Qo

hence

1 1
lim inf 7. o, (vn) > l}\lfn—}gofte[i,an—a]{/Qo [§|v|2 —é]da:+/9 5|f)N|2dgc}.

0

Since the limit in (B0) is uniform in ¢, it follows that
liminf I o, (vy) >  inf / [1\0\2 — é] dr + — min / |Ep|?dx
N—oo %0 T tele, T—¢] Qo 2 M ve{1,2} Qh

1 & 2
> inf —|v|* —&|d ——— mi Enld
B te[;%“—e}{/go |:2’U’ €:| T M|Qo| ug{lig} (/Ql;} ‘ h’ x) }7

where we have applied the Cauchy-Schwarz inequality on the last integral.
We conclude, using (B3, that

l}%}l_)lgof Ie,Qo(UN) Z min{—%, —Q + M’csloloﬂ}

> —a + min i Laz
- 27M|Qo| '

On the other hand we recall from (Bd) that vy € Xy for N > Ny and

furthermore clearly vy < v, This concludes the proof.

5. CONSTRUCTION OF SUITABLE INITIAL DATA

In this section we construct examples of initial data for which we have a
“subsolution” in the sense of Proposition We fix here a bounded open
set Q C R™.
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Proposition 5.1. There exist triples (v,u,q) solving [Z4) in R™ x R and
enjoying the following properties:

Gd=0, (v,a) is smooth in R™ x (R \ {0}) and v € C’(R; L%U) , (61)
supp (v,u) C Qx| —=T,T7], (62)

supp (0(-,t),a(-,t)) CC Q for allt #0, (63)
e(v(z,t),u(x,t)) <1 for all (x,t) € R™ x (R\ {0}). (64)

Moreover !
§|z7(:17,0)|2 =1 a.e. inQ.

Proof. In analogy with Definition EETl we consider the space X, defined as

the set of vector fields v : R" x| — T, T[— R™ in C*°(R"x] — T, T[) to which

there exists a smooth matrix field u : R"x] — T, T[— S§ such that

dive =0,

Oww + divu =0, (65)
supp (v,u) C Q x [-T/2,T/2], (66)

and
e(v(z,t),u(z,t)) <1 forall (z,t) € Ax] —T,T]. (67)

This choice of Xy corresponds - up to changing the time interval under con-
sideration - in Section EZT] to the choices (v, up,qo) = (0,0,0) and & = 1.
Similarly to before, Xg consists of functions v :] — T,T[— L%*(R") taking
values in a bounded set B C L?(R™) (recall that in this section we assume
Q is bounded). On B the weak topology of L? is metrizable, and corre-
spondingly we find a metric d on C(] — T',T[, B) inducing the topology of

Next we note that with minor modifications the proof of the perturbation
property in Section leads to the following claim (c.f. Remark [I] following
the statement of Proposition EH):

Claim: Let Q5 CC 2 be given. Let v € Xy with associated matrix field u
and let a > 0 such that

/ [1|v(:17,0)|2 —1|dz < —a.
0 -2

Then for any € > 0 there exists a sequence v, € Xy with associated smooth
matrix field u; such that

supp (vk — v, up —u) C Qo X [—¢,¢], (68)
o v, (69)

and

1 1
liminf/ ~|og(z,0) > dz > / ~|v(z,0)|* do + min{g, Ca2}, (70)
0p 2 0p 2 2

k—oo

where C' is a fixed constant independent of ¢, a, Qg and v.
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Fix an exhausting sequence of bounded open subsets €2 C Q11 C €,
each compactly contained in €2, and such that [Q41 \ Q] < 27%. Let also
pe be a standard mollifying kernel in R”. Using the claim above we construct
inductively a sequence of velocity fields vy € Xg, associated matrix fields uy
and a sequence of numbers 7, < 27 as follows.

First of all let v1 = 0 and u; = 0. Having obtained (vy,uy),..., (vk, uk)
and n1,...,Mm,—1 we choose 1, < 27% in such a way that
[vg = vk * [l < 27" (71)

Furthermore, we define

1 2
A = — —|Vk LZ',O — 1| dx.

Note that due to (&1) we have oy > 0.
Then we apply the claim with Q, a = %ak and ¢ = 27T to obtain
vka1 € Xo and associated smooth matrix field uy,1 such that

SUPP (Vg1 — Vs U1 — ug) C QU x [—277T, 2747 (72)

d(vggr,v) < 278, (73)

1 1 1
| Sl 0Pde > [ Sl 0Pde + gmin{or,Ca), (1)
Q 2 Q 2 4
and recalling that d induces the topology of C'(]—T, T, L2,) we can prescribe
in addition that
[ (vk = vkt1) * Pyl L2y < 27% for all j < k for t = 0. (75)
From (73) we deduce that there exists © € C(] — T, T[, L2 (£2)) such that
d
Vi — V.

From (IZZ) we see that for any compact subset of Qx| — T, 0[U]0, T'[ there
exists ko such that (vg,ur) = (vg,,uk,) for all & > ko. Hence (vg,uy)
converges in CP°(Qx] — T,0[U]0,T[) to a smooth pair (7,a) solving the

equations (B0)) in R™x]0, T and such that (@), @), [63) and @) hold. It
remains to show that £[v(z,0)|? = 1 for almost every = € Q.

From ([4]) we obtain
1 1
apy1 < ag — i min{ak,Cozi} +1Qr1 \ Q| < ag — 1 min{ak,Caz} + 27k

from which we deduce that
a — 0as k — oo. (76)

Note that

0= /Q[%Ivk(w,oﬂtl] dr > —(ap + [Q\ Q) > —(ap +27%). (77)
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Therefore, by ([{4),

: 1 9
ilTI:Ono Q[i\vk(x,O)] —1] dx = 0. (78)

Finally, observe that, using ([73), for ¢ = 0 for every k

o0

[0k * pr, — 0 py, [l 22 < Z [Vk+5 * Pry — Ukjr1 * gl 22
j=0 79)

<ok oD | < 9=(-D)
and on the other hand

ok = Dllze < vk — vic * oy [l L2 + [[ok * o, — 0 % py, Il 22 + 105 pny, — 0|2
Thus, ) and (@) imply that vi(-,0) — (-,0) strongly in L?(R"™), which
together with ([[8) implies that

1
5\17(3;,0)\2 =1 for almost every = € .

6. PrROOFS oF THEOREM [[L1] AND THEOREM

6.1. Theorem [Tl Proof of (a) Let 7= 1/2, Q2 be the open unit ball in
R"™, and (v, u) be as in Proposition Bl Define € := 1, ¢ := 0,

v(x,t fort €[0,1/2

nolot) = { vga:,t)— 1/2) forte {1/27/1}7 0
a(z,t fort € [0,1/2

up(x,t) = { uEx,t)— 1/2) forte {1/2,/1}. (81)

It is easy to see that the triple (vg, ug, go) satisfies the assumptions of Propo-
sition with € = 1. Therefore, there exists infinitely many solutions
v e C([0,1], L2) of (M) in R™ x [0, 1] with

v(z,0) = ov(x,0) = v(zx,1) for a.e. z € Q,

and such that

1
§|v(',t)|2 = 1g for every t €]0, 1]. (82)

Since $|vo(-,0)[> = 1q as well, it turns out that the map t — wv(-,t) is
continuous in the strong topology of L?.

Each such v can be extended to R™ x [0,00[ 1-periodically in time, by
setting v(x,t) = v(xz,t — k) for t € [k, k + 1]. Thus the energy

/]vaz t)[2da

is equal to |Q] at every time ¢, i.e. v satisfies the strong energy equality in
the sense specified in Section 2.
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Next, notice that 3|v|? = 1oy [0,00[ and that p = —[v]*/n = -2 Lo x[0,00[-
Therefore
2 2 1 -2
8tﬂ+div ﬂer vl = —3t19x[000[+n—di"“:0
2 2 2 ’ n

in the sense of distributions. This gives infinitely many solutions satisfying
both the strong energy equality and the local energy equality and all taking
the same initial data.

Proof of (b) As in the proof of (a), let 7' = 1/2, £ be the open unit ball
in R", and (v,u) be as in Proposition (il Again, as in the proof of (a) we
set go = 0. However we choose vy, ug and é differently:

| v(x,t) forte0,1/2]
vo(2,1) = { 0 for ¢ € [1/2,1], (83)
and
[ a(z,t) forte|0,1/2]
uo(w,t) = { 0 for t € [1/2,1]. (84)

Next consider the function

é(t) = ma%e(vo(a:,t),uo(a:,t)) for t €]0,1].
TE

Clearly é is continuous, takes values in [0, 1] and vanishes in a neighborhood
of t = 1. Moreover, it converges to 1 as ¢t | 0: hence, we set €(0) = 1. Define
€:[0,1] — R as é(t) := (1 —t) + tmax,¢,;) €(7). Then € is a continuous
decreasing function, with é(0) = 1, é(1) = 0 and 1 > é(t) > €é(t) for every
t €]0,1].

Now, apply Proposition B3 to get a solution v € C([0, 1], L2)) of () in 2
with v(-,0) = v9(+,0), v(-,1) = 0 and such that

1
5\@(-,t)\ = é(t) 1q for every t €]0,1]. (85)

Arguing as in the proof of (a), we conclude that ¢t — wv(-,t) is a strongly
continuous map. Since v(-,1) = 0, we can extend v trivially on [0, co[xR"
in order to get a global weak solution. Clearly, this solution satisfies the
strong energy inequality. However, it does not satisfy the energy equality.
Note, in passing, that v satisfies the local energy inequality.

Proof of (c) As in the proof of (a) and (b), let T'= 1, © be the open
unit ball in R", and (v, a) be as in Proposition Bl Again, as in the proof
of (a) and (b) we set go = 0. This time we choose v, up as in (b) and € as

in (a).
Let v; € C([0,1], L2) be the solution of ([l) obtained in Proposition B3
Since %|vg(-,0)| = 1g, it turns out that the map ¢ ~— v1(-,t) is continuous

in the strong topology of L? at every ¢t € [0,1[. However, this map is not
strongly continous at t = 1, because v1(1,-) = 0.

Next, let vy € C([0,1],L2) be a solution of ([l) obtained in Proposition
B3 with € = 1 and (vo,u0,qo) = (0,0,0). Since v1,v € C([0,1],L2) with
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v1(+,1) = va(-,0) = v2(-,1) = 0, the velocity field v : R" x [0,00[— R"
defined by

| vi(z,t) for ¢t € [0,1]
v(z,t) = { vo(x, t — k) forte [k k+1,k=1,2,... (86)

belongs to the space C([0, 00, L) and therefore v solves ([l). Moreover
1
3 / lv(z,t)|? de = |Q| for every t ¢ N

and .
3 / lv(z,t)|?dz = 0 for every t e N, ¢ > 1.

Hence v satisfies the weak energy inequality but not the strong energy in-
equality.

6.2. Theorem We recall that p(p) is a function with p’(p) > 0. Let
a:=p(l), 8:=p(2) and v = f — a. We let Q be the unit ball. Arguing as
in the proof of Theorem [[Tl(a) we can find an initial data v* € L>°(R™) with
|v°|? = ny1q and for which there exists infinitely many solutions (v, p) of
(@ with the following properties:

*vE C([0,00[, L2) and |U|2 =ny ]-QX[0,00[;

o p=—|v]*/n = —y1lgy0.0-
Therefore, we conclude that

Ov+divo® v + V(a 1ox(o,00[ T 5 an\QX[Om[) = 0.
Hence, if we set
P = lax0,c0[ 2 Irrm\0x[0,00]
for any such v, the pair (p,v) is a weak solution of () with initial data
(%, 0%), where py = 1q + 2 1gmq-
Each such solution is admissible. Indeed

O [ps(p) + py;)P] + divy Kps(p) + et +p(p)> v]

>
ny
= 0 [(6(1) + 7) 10 x[0,00[ T 26(2) 1R"\Q><[O,oo[}
+ (=) +p(1) + ?) dive = 0. (87)

This gives (22). In order to prove the stronger requirement (23]) of Definition

23 it suffices to notice that (p(-,t),v(-,t)) — (p°,0°) strongly in L2 ..

7. APPENDIX A: WEAK CONTINUITY IN TIME FOR EVOLUTION
EQUATIONS

In this section we prove a general lemma on the weak continuity in time
for certain evolution equations. Lemma B3l is a corollary of this Lemma and
standard estimates for the Fuler and Navier—Stokes equations.
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Lemma 7.1. Let v € L°°(]0,T[,L*(R",R")), u € L (R"x]0,T[,R™*™)
and g € L} (]0, T[xR™) be distributional solutions of

loc
o + divyu + Vg = 0. (88)
Then, after redefining v on a set of t’s of measure zero, v € C(]0,T[, L2).

Proof. Consider a countable set {¢;} C C°(R™,R™) dense in the strong
topology of L?. Fix ¢; and any test function x € C2°(]0,T[). Testing (&%)
with x(t)pi(z) we obtain the following identity:

T T
/ D0 x = —/ X/ [(u, Vi) +qdiv<p,~}, (89)
0 0 n

where ®;(t) := [¢;(z) - v(z,t)dz. We conclude therefore that ®; € L' in
the sense of distributions. Hence we can redefine each ®; on a set of times
7; C]0, T of measure zero in such a way that ®; is continuous. We keep the
same notation for these functions, and let 7 = U;m. Then 7 CJ0,77 is of
measure zero and for every ¢t €]0, T[\7 we have

D,(t) = /goz(x) ~v(x,t)dx for every i. (90)

Moreover, with ¢ := ||v|zec(z2) we have that [®;(t)] < cl[pil[z2 for all
t €]0,T]. Therefore, for each t €]0, T there exists a unique bounded lin-
ear functional L; on L?(R™,R") such that L;(p;) = ®;(t). By the Riesz
representation theorem there exists o(-,t) € L?(R™) such that

e 0(-,t) =v(-t) for every t €]0, T[\7;

e [|[U(-,t)||z2 < ¢ for every t;

o [0(z,t) pi(x)dr = ®,(t) for every t.
To conclude we show that o € C(]0, T'[, L), i.e. that for any ¢ € L?(R", R")
the function ®(¢) := [wv(z,t) - p(z)dx is continuous on ]0,T[. Since the set
{;} is dense in L?(R™,R™), we can find a sequence sequence {j} such that
@j, — @ strongly in L?. Then

() — @5, (1) < cllej, —ellrz - (91)
Therefore ®;, converges uniformly to ®, from which we derive the continuity
of ®. This shows that v € C(]0,7T[,L?) and concludes the proof. O

8. APPENDIX B: DISSIPATIVE SOLUTIONS

We follow here the book [I1] and define dissipative solutions of (). First
of all, for any divergence-free vector field v € L2 (R"™ x [0,T]) we consider
the following two distributions:

e The symmetric part of the gradient d(v) := (Vv + Vol);
e FE(v) given by

E(v) := —0w — P(div (v ® v)). (92)
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Here P denotes the Helmholtz projection on divergence—free fields, so that

if p(z,t) is the potential-theoretic solution of —Ap = Z” 8%- (v'07), then

P(div(v®wv)) = div(v®wv) + Vp.

Finally, when d(v) is locally summable, we denote by d~(v) the negative
part of its smallest eigenvalue, that is (— A (d(v)))T.
P. L. Lions introduced the following definition in [I1]:

Definition 8.1. Let v € L*°([0, 7], L*>(R",R")) N C([0,T], L2). Then v is a
dissipative solution of () if the following two conditions hold
e v(x,0) =wvg(x) for x € R";
e divv =0 in the sense of distributions;
e whenever w € C([0,T], L*(R",R™)) is such that d(w) € L}(L),
E(w) € LH(L2) and div w = 0, then

t _
(- t) = w(, )75 < elo 214 tlege |y () — (-, 0)]3,

t R (93)
+ 2/ els 2l g dr Bw)(z, s) - (v(, s) — w(z, s)) dz ds
0 JR»

for every t € [0,T].

We next come to the proof of Proposition which we state again for
the reader’s convenience.

Proposition 8.2. Let v € C([0,T],L2) be a weak solution of () satisfying
the weak energy inequality. Then v is a dissipative solution.

Proof. As already remarked at page 156 of [IT] it suffices to check Definition
for smooth w. This is achieved by suitably regularizing the test function
w of ([@F) and observing that if w € C ([0, T], L2(R™,R")) is such that d(w) €
L} (L), then any approximation wy, such that

(a) wy — w in C([0,T], L?);

(b) d(wg) — d(w) a.e. in R™ x [0, T];

(c) limsupy, o [|d(wg)| e < [[d(w)]|Lge
also satisfies

E(w;) — E(w) in LIL?

and hence one can pass to the limit in ([@3). Indeed, this follows from the
observation that P(E(w)) = 2P(d(w) - w) (see the computations on page
155 of [II]).

Step 1. Next we show that it suffices to check Definition when w is
compactly supported in space. Indeed, fix w as above. We claim that we
can approximate w with compactly supported divergence—free vector fields
wy, such that (a),(b) and (c) above hold. The reader may consult Appendix
A of [TI] and jump directly to Step 2. Otherwise, the following is a short
self-contained proof.

Fix a smooth cut—off function y equal to 1 on the ball B1(0), supported in
the ball By(0), and taking values between 0 and 1, and set x,(z) = x(r~'z).
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Let & be the potential-theoretic solution of A¢ = curl w, so that w = curl &.

Recall that in dimension n = 2 the curl operator can be defined as curl =

(—02,01), in dimension n = 3 it is given by curl w = V x w and ¢ is obtained
. . _ 1

via the Biot-Savart law. Let (&), = o B J Bo\ B, § o and let

wy, = curl (xx (€ — (E))-

Clearly wy, is compactly supported and divergence—free. Since £ is smooth,
and [|0;(xx)|leo < Ck~! and |02 (x#)||oo < Ck™2, we see that

= ij =

d(wg)(+,t) — d(w)(+,t) locally uniformly

for every t. Thus (b),(c) follow easily. Moreover [|[VE(-,¢)|lr2 < [[w(-t)|L2
and hence, using the Poincaré inequality, for every t € [0,7] we have

= wlfy <0 [ juPde+ OVl [ € — ()el2da

"\ By, (0) B2k (0)\ B (0)

<C |w|*dz + %/ \VEPda
R™\ By, (0) k2 JBy\B(0)

<C |w|*dx + %/ lw|?dz.
Rn\Bk(O) k Rn

Since w € C([0,T], L2(R",R"™)), we deduce (a).

Step 2. We are now left with task of showing ([@3) when w is a smooth
test function compactly supported in space. Consider the function

F(t) = / w(z, 1) — v(z, ) Pda.

Since w is smooth and v € C([0,7T], L2), F is lower-semicontinuous. More-
over, due to the weak energy inequality v(t,-) — v(0,-) strongly in L%OC as
t | 0. So F is continuous at 0. We claim that, in the sense of distributions,

(Z—IZ§2/n[E(w)-(v—w)—d(w)(v—w)-(v—w)] dx . (94)

From this inequality we infer
dF

< A @ FO+2 [ [Bw)- - w)d. (9

From the continuity of F' at t = 0 and Gronwall’s Lemma, we conclude ([03))
for a.e. t. By the lower semicontinuity of F', (@3]) actually holds for every ¢.
Therefore it remains to prove ([@4)). We expand F' as

F(t) :/n|v(:p,t)|2dﬂc+/n|w(m,t)|2d:v—2/n [o(a 1) - w(z, 1)) da
= F1(t) + F2(t) + F3(t) .
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The weak energy inequality implies %Fl (t) <0 and a standard calculation
gives

F:
Py = o [ [Bw) -] de.
dt R
It remains to show that
dry
- = =2 [ [Ew) v—dw)(v—w)-(v—uw)|ds (96)
R

We fix a smooth function ¢ € C2°(]0,T) and test () (or more precisely
@) with w(z,t)y(t). It then follows that

//n’u wy do dt = —2/ /n v-Qw+ (v®@v, Vw)| dedt.  (97)

Inserting Oyw = —E(w)—P(div(w®w)) and taking into account that dive =
0, we obtain

/RF;),( 4 / /n v ® v, Vw) — div(w @ w) - v] dz dt

9 / / B(w) - vdedt (98)

Next, observe that div(w ® w) -v =3_,,; vjw;0;w; and that (v ® v, Vw) =
> ji vjv;0;w;. Therefore we have

(v@v,Vw) —diviww)-v = Vw (v —w) -v. (99)
On the other hand,
Vw((v—w) w = Z:(vZ —w;)Ojwjw; = (v—w)- V%\wF .
irj

Since v — w is divergence—free in the sense of distributions and |w|?/2 is a
smooth function compactly supported in space, integrating by parts we get

/ /n [Vw (v —w) -w|dedt = 0. (100)

From (@8), (@9) and () we obtain

/RF;),() / /n [Vw (v —w) - (v—w)| dzdt

-2 / / ~vdxdt. (101)
Finally, observe that

Vw(v—w) - (v—w) = (Vw, (v-—w)® (v -—w)) = (dw), (v-—w)® v -w)),

since (v —w) @ (v — w) is a symmetric matrix. Plugging this into (), by
the arbitrariness of the test function ¢, we obtain (@). O
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