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On Atine Surfaces whose Cubic Forms are Parallel
Relative to the Ane Metric*

By Martin A. MAGID*) and Katsumi NOMIZU**)

(Communicated by K6saku YOSIDA, M..1. A., Sept. 12, 1989)

Let M be a nondegenerate affine hypersurface in affine space Rn+’ and
denote by/7, h and/ the induced connection, the affine metric, and the Levi-
Civita connection or h, respectively. (We follow the terminology of [4].)
Let C=Vh be the cubic orm.

It is a classical theorem that if C--0, then M is a quadratic hypersur-
face. In [5], it is shown that for n--2 the condition VC=O, C=/=O charac-
terizes, up to an equiaffine congruence, a Cayley surface, namely, the graph
o the cubic polynomial z==xy-y/3. For an arbitrary dimension, [1] has
shown that the tensor VC is totally symmetric (i.e. symmetric in all its in-
dices) if and only if /C is totally symmetric, and this symmetry condition
implies that M is an affine hypersphere. It is also shown that the condition
VC=O, C=/=O implies that M is an improper affine hypersphere such that
h is hyperbolic metric and the Pick invariant J is 0. As for the case n--2,
affine spheres M whose affine metric h is flat have been completely deter-
mined in [3], although the case where h is elliptic was already done in [2].

In this note, we study affine surfaces with the property PC--0, Cve0,
and prove the following classification.

Theorem. If a nondegenerate affine surface in R satisfies PC=0,
C=/=O, then it is equiaffinely congruent to a piece of one of the following

surfaces
1) the graph of z l xy (h elliptic)
2) the graph of z--1/(x+y2) (h" hyperbolic and J=/=0);
3) Cayley surface (h: hyperbolic and J=O).
The proof is given along the following lines. First, from the results

quoted rom [1] we see that the surface is an affine sphere. Next, we show
that the assumption o the theorem implies that the connection P is flat by

using the argument similar to that in [5]. Now the result in [3] leads to
our classification by using a concrete procedure to show that the graph of

z=xy+(y), where is an arbitrary cubic polynomial, is equiffinely con-
gruent to the Cayley surface.

Proof of the theorem. Step l. We show that PC=0 implies that M
is an affine sphere. Indeed, from [1] we know that VC is totally symmetric,

and this implies our assertion.
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Step 2. We show that fC--O, C=/=O, implies that f is flat.
We can follow the arguments in the proof of Lemm 3 in [5] with

slight modification. In the case where h is elliptic or where h is hyperbolic
and J=/=0, we have the sme rguments to conclude that the holonomy group
of f is a finite group and hence the curvature tensor/ of f is identically 0,
that is, h is flt.

In the case where h is hyperbolic and J =0, we know (proof of Lemm
3, [5]) that we cn locally find vector fields X and Y such that
(1) h(X,X)-=O, h(X, Y)--l, and h(Y, Y)=O
( 2 ) C(X, U, V)-=O for any vector fields U and V
(3) C(Y, Y, Y)--1.
Now applying covariant differentiation fx to (2) nd (3) we obtain
4 ) f’xX-=,X and xY--/X.

Applying/x to h(X, Y)=I, and using (4), we obtain ’xX--O. Also, apply-
ing Px to h(Y, Y)=0 and using (4), we obtain PxY=O. Thus
(5) PxX=O and PxY=O.
Similar to (4) we get
( 6 ) /X:=X and PY rX.
Applying fr to h(X, Y)--1 and h(Y, Y)=0 and using (6) we obtain
(7) PX=O and PY=0.

From (5) nd (7) we see that IP is fiat.
Step 3. We continue the ease where h is hyperbolic and J=0 to show

that V is also flat (so M is an improper affine sphere) and that VC is also 0.
From what we know, we also get [X, Y]=PxY--PrX=O. Thus we may
find a local coordinate system {x, y} such that X:3/3x and Y=3/3y. This
means that {x, y} are fiat null coordinates for P. Writing x, x for x, y, we
see that the components of the cubic form C are all zero except C.. Since
PC=0, we see

0-=(PrC)(Y, Y, Y)=-YC-=3C/3y,
and similarly OC/Ox=O. Thus C is a constant.

For the difference tensor K" K(U, V)=VV-vV, we know

h(K(V, Y), W)=- 1__ C(U, V, W).
2

Using this, we find

(8) VxX=VxY=VX=O and VY= 1 C.X
’2

It follows that the curvature tensor R of V is 0 and so V is also flat. It fol-
lows that M is an improper affine sphere. Furthermore, using constancy
of C. and (8), we conclude VC=O.

Step 4. We have thus shown that M is an affine sphere and h is fiat.
From the results in [3], M must be either

1) the graph of z=l/xy (if h is ellptie)
or

2) the graph of z 1 / (x + y) (if h is hyperbolic and J :/: 0)
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or
3,) the graph o z=xy+(y), where is an arbitrary unction o y

(if h hyperbolic nd J=0).
The surfaces 1) nd 2) hve the property that C=0, C=/=0. In order

to verify this, we may represent the surfaces as in [3] with parameters
which become flt coordinates or the ffine metric nd see that the Chris-
toffel symbols or the induced connection 7 re constants. Then the Chris-
toffel symbols 2or the connection/ being all 0, we see that the components
of the cubic orm re 11 constants. This implies that fC=0 (but o course
C =/=0, since the surfaces are not quadrics).

In order to conclude that 3,) above leads to 3) in the theorem under our
assumption C=0, we can proceed as ollows. In Step 3, we have seen that
the surface satisfies /7C=0. Thus i we appeal to the theorem in [5], we
conclude that it is Cyley surface. On the other hand, we may take the
ollowing route. For the graph
( 9 ) (x, y) >(x, y, xy+ (y))
we may compute

f.(/x)--(1, O, y), f.(/y)--(O, 1, x+’(y))
(/3x)f,(/x)--(O, O, 0), (/y)f,(/x)--(O, O, 1)

(3/3y)f,(3/3y)--(O, O, q"(y))
so that we have

/7/(3/3x)_/7/x(3/3y)_/7o/(3/3x)___lT/(3/3y)_- 0
h(3/3x, 3/3x)=0, h(3/3x, /3y)=1, h(3/3y, 3/3y)=’(y).

The affine normal is (0, 0, 1) and the surface is an improper affine sphere.
The components of C are 0 except possibly C(/Sy, 5/y, 5/Sy)=(), and the
component o 7C are 0 except possibly (g/C)(3/3y, 3/3y, 3/3y)--?(). Now
i the surface (9) satisfies C=0, then it also stisfies tTC=0, thus, ()--0,
that is, (y) is a cubic polynomial in y. In order to show that the surface
is a Cayley surface, it is sufficient to show the ollowing lemma.

Lemma. The graph of z--xy+(y), where is an arbitrary cubic
polynomial in y, can be mapped onto the graph of z--xy-y/3 by an
equiaffine transformation of R.

This can be shown by using a change o variables as in Cardano’s well-
known method of solving a cubic equation. Write ?(y)=ay/by/cy/d.
We may find suitable constants p, q and r such that

(y) (a/(y+ b / 3a)) / py+ q.
Let

’(11) a-/x, ] ai/(y+ b / 3a), -- z+ (b / 3a)x-- py-- q,

which define an equiaffine transformation o R. Then we see that
2y+y xy+ (b / 3a)x/(y) py-- q

when z xy+(y). In other words, the image o the graph of z xy/(y)
by the equiaffine transormation (11) is the graph of z=xy/ y. Now we
can take an equiaffine transformation (x, y, z)(-- 3-/x, 31/y, z) to change
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the surface to the graph of z xy-- y3/3.
lemma.

This completes the proof of the
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