60. On Affine Surfaces whose Cubic Forms are Parallel Relative to the Affine Metric ${ }^{\text {¹ }}$

By Martin A. Magid*) and Katsumi Nomizu**)
(Communicated by Kôsaku Yosida, m. J. A., Sept. 12, 1989)

Let M^{n} be a nondegenerate affine hypersurface in affine space R^{n+1} and denote by ∇, h and \hat{V} the induced connection, the affine metric, and the LeviCivita connection for h, respectively. (We follow the terminology of [4].) Let $C=\nabla h$ be the cubic form.

It is a classical theorem that if $C=0$, then M^{n} is a quadratic hypersurface. In [5], it is shown that for $n=2$ the condition $\nabla C=0, C \neq 0$ characterizes, up to an equiaffine congruence, a Cayley surface, namely, the graph of the cubic polynomial $z=x y-y^{3} / 3$. For an arbitrary dimension, [1] has shown that the tensor ∇C is totally symmetric (i.e. symmetric in all its indices) if and only if $\hat{V} C$ is totally symmetric, and this symmetry condition implies that M^{n} is an affine hypersphere. It is also shown that the condition $\nabla C=0, C \neq 0$ implies that M^{n} is an improper affine hypersphere such that h is hyperbolic metric and the Pick invariant J is 0 . As for the case $n=2$, affine spheres M^{2} whose affine metric h is flat have been completely determined in [3], although the case where h is elliptic was already done in [2].

In this note, we study affine surfaces with the property $\hat{\nabla} C=0, C \neq 0$, and prove the following classification.

Theorem. If a nondegenerate affine surface in \boldsymbol{R}^{3} satisfies $\hat{\Gamma} C=0$, $C \neq 0$, then it is equiaffinely congruent to a piece of one of the following surfaces:

1) the graph of $z=1 / x y$ (h : elliptic);
2) the graph of $z=1 /\left(x^{2}+y^{2}\right)(h$: hyperbolic and $J \neq 0)$;
3) Cayley surface (h : hyperbolic and $J=0$).

The proof is given along the following lines. First, from the results quoted from [1] we see that the surface is an affine sphere. Next, we show that the assumption of the theorem implies that the connection \hat{V} is flat by using the argument similar to that in [5]. Now the result in [3] leads to our classification by using a concrete procedure to show that the graph of $z=x y+\varphi(y)$, where φ is an arbitrary cubic polynomial, is equiaffinely congruent to the Cayley surface.

Proof of the theorem. Step 1 . We show that $\hat{\Gamma} C=0$ implies that M^{2} is an affine sphere. Indeed, from [1] we know that ∇C is totally symmetric, and this implies our assertion.

[^0]Step 2. We show that $\hat{V} C=0, C \neq 0$, implies that \hat{V} is flat.
We can follow the arguments in the proof of Lemma 3 in [5] with a slight modification. In the case where h is elliptic or where h is hyperbolic and $J \neq 0$, we have the same arguments to conclude that the holonomy group of \hat{V} is a finite group and hence the curvature tensor \hat{R} of \hat{V} is identically 0 , that is, h is flat.

In the case where h is hyperbolic and $J=0$, we know (proof of Lemma 3, [5]) that we can locally find vector fields X and Y such that

$$
\begin{equation*}
h(X, X)=0, \quad h(X, Y)=1, \quad \text { and } \quad h(Y, Y)=0 \tag{1}
\end{equation*}
$$

(2) $\quad C(X, U, V)=0 \quad$ for any vector fields U and V
(3) $\quad C(Y, Y, Y)=1$.

Now applying covariant differentiation \hat{V}_{X} to (2) and (3) we obtain
(4)

$$
\hat{V}_{X} X=\lambda X \quad \text { and } \quad \hat{V}_{X} Y=\mu X
$$

Applying \hat{V}_{X} to $h(X, Y)=1$, and using (4), we obtain $\hat{V}_{X} X=0$. Also, applying $\hat{\nabla}_{X}$ to $h(Y, Y)=0$ and using (4), we obtain $\hat{V}_{X} Y=0$. Thus
(5)

$$
\hat{\nabla}_{X} X=0 \quad \text { and } \quad \hat{V}_{X} Y=0
$$

Similar to (4) we get

$$
\begin{equation*}
\hat{\nabla}_{Y} X==\nu X \quad \text { and } \quad \hat{\nabla}_{Y} Y=\tau X \tag{6}
\end{equation*}
$$

Applying \hat{V}_{Y} to $h(X, Y)=1$ and $h(Y, Y)=0$ and using (6) we obtain
(7)

$$
\hat{V}_{Y} X=0 \text { and } \hat{V}_{Y} Y=0
$$

From (5) and (7) we see that \hat{V} is flat.
Step 3. We continue the case where h is hyperbolic and $J=0$ to show that ∇ is also flat (so M^{2} is an improper affine sphere) and that ∇C is also 0. From what we know, we also get $[X, Y]=\hat{V}_{X} Y-\hat{V}_{Y} X=0$. Thus we may find a local coordinate system $\{x, y\}$ such that $X=\partial / \partial x$ and $Y=\partial / \partial y$. This means that $\{x, y\}$ are flat null coordinates for $\hat{\nabla}$. Writing x^{1}, x^{2} for x, y, we see that the components of the cubic form C are all zero except C_{222}. Since $\hat{V} C=0$, we see

$$
0=\left(\hat{V}_{Y} C\right)(Y, Y, Y)=Y C_{222}=\partial C_{222} / \partial y
$$

and similarly $\partial C_{222} / \partial x=0$. Thus C_{222} is a constant.
For the difference tensor $K: K(U, V)=\nabla_{U} V-\hat{V}_{U} V$, we know

$$
h(K(U, V), W)=-\frac{1}{2} C(U, V, W)
$$

Using this, we find

$$
\begin{equation*}
\nabla_{X} X=\nabla_{X} Y=\nabla_{Y} X=0 \quad \text { and } \quad \nabla_{Y} Y=-\frac{1}{2} C_{222} X \tag{8}
\end{equation*}
$$

It follows that the curvature tensor R of V is 0 and so V is also flat. It follows that M^{2} is an improper affine sphere. Furthermore, using constancy of C_{222} and (8), we conclude $\nabla C=0$.

Step 4. We have thus shown that M^{2} is an affine sphere and h is flat. From the results in [3], M^{2} must be either

1) the graph of $z=1 / x y$ (if h is ellptic)
or
2) the graph of $z=1 /\left(x^{2}+y^{2}\right)$ (if h is hyperbolic and $J \neq 0$)
or
$3 *$) the graph of $z=x y+\varphi(y)$, where φ is an arbitrary function of y (if h hyperbolic and $J=0$).

The surfaces 1) and 2) have the property that $\hat{V} C=0, C \neq 0$. In order to verify this, we may represent the surfaces as in [3] with parameters which become flat coordinates for the affine metric and see that the Christoffel symbols for the induced connection V are constants. Then the Christoffel symbols for the connection \hat{V} being all 0 , we see that the components of the cubic form are all constants. This implies that $\hat{V} C=0$ (but of course $C \neq 0$, since the surfaces are not quadrics).

In order to conclude that $3 *$) above leads to 3) in the theorem under our assumption $\hat{V} C=0$, we can proceed as follows. In Step 3, we have seen that the surface satisfies $\nabla C=0$. Thus if we appeal to the theorem in [5], we conclude that it is a Cayley surface. On the other hand, we may take the following route. For the graph
(9)

$$
(x, y) \longmapsto(x, y, x y+\varphi(y))
$$

we may compute

$$
\begin{aligned}
& f_{*}(\partial / \partial x)=(1,0, y), \quad f_{*}(\partial / \partial y)=\left(0,1, x+\varphi^{\prime}(y)\right) \\
& (\partial / \partial x) f_{*}(\partial / \partial x)=(0,0,0), \quad(\partial / \partial y) f_{*}(\partial / \partial x)=(0,0,1)
\end{aligned}
$$

$$
(\partial / \partial y) f_{*}(\partial / \partial y)=\left(0,0, \varphi^{\prime \prime}(y)\right)
$$

so that we have

$$
\begin{gathered}
\nabla_{\partial / \partial x}(\partial / \partial x)=\nabla_{\partial / a x}(\partial / \partial y)=\nabla_{\partial / \partial y}(\partial / \partial x)=\nabla_{\partial / \partial y}(\partial / \partial y)=0 \\
h(\partial / \partial x, \partial / \partial x)=0, \quad h(\partial / \partial x, \partial / \partial y)=1, \quad h(\partial / \partial y, \partial / \partial y)=\varphi^{\prime \prime}(y) .
\end{gathered}
$$

The affine normal is $(0,0,1)$ and the surface is an improper affine sphere. The components of C are 0 except possibly $C(\partial / \partial y, \partial / \partial y, \partial / \partial y)=\varphi^{(3)}$, and the component of ∇C are 0 except possibly $\left(\nabla_{\partial / \partial y} C\right)(\partial / \partial y, \partial / \partial y, \partial / \partial y)=\varphi^{(4)}$. Now if the surface (9) satisfies $\hat{V} C=0$, then it also satisfies $\nabla C=0$, thus, $\varphi^{(4)}=0$, that is, $\varphi(y)$ is a cubic polynomial in y. In order to show that the surface is a Cayley surface, it is sufficient to show the following lemma.

Lemma. The graph of $z=x y+\varphi(y)$, where φ is an arbitrary cubic polynomial in y, can be mapped onto the graph of $z=x y-y^{3} / 3$ by an equiaffine transformation of \boldsymbol{R}^{3}.

This can be shown by using a change of variables as in Cardano's wellknown method of solving a cubic equation. Write $\varphi(y)=a y^{3}+b y^{2}+c y+d$. We may find suitable constants p, q and r such that

$$
\varphi(y)=\left(a^{1 / 3}(y+b / 3 a)\right)^{3}+p y+q .
$$

Let

$$
\begin{equation*}
\bar{x}=a^{-1 / 3} x, \quad \bar{y}=a^{1 / 3}(y+b / 3 a), \quad \bar{z}=z+(b / 3 a) x-p y-q, \tag{11}
\end{equation*}
$$

which define an equiaffine transformation of \boldsymbol{R}^{3}. Then we see that

$$
\bar{x} \bar{y}+\bar{y}^{3}=x y+(b / 3 a) x+\varphi(y)-p y-q=\bar{z}
$$

when $z=x y+\varphi(y)$. In other words, the image of the graph of $z=x y+\varphi(y)$ by the equiaffine transformation (11) is the graph of $z=x y+y^{3}$. Now we can take an equiaffine transformation $(x, y, z) \mapsto\left(-3^{-1 / 3} x,-3^{1 / 3} y, z\right)$ to change
the surface to the graph of $z=x y-y^{3} / 3$. This completes the proof of the lemma.

References

[1] N. Bokan, K. Nomizu, and U. Simon: Affine hypersurfaces with parallel cubic forms (to appear).
[2] Li An-Min and G. Penn: Uniqueness theorems in affine differential geometry. part II, Results in Math., 13, 308-317 (1988).
[3] M. Magid and P. Ryan: Flat affine spheres in R^{3} (to appear).
[4] K. Nomizu: Introduction to Affine Differential Geometry. part I, Lect. Notes, MPI preprint, p. 37.
[5] K. Nomizu and U. Pinkall: Cayley surfaces in affine differential geometry. MPI preprint, p. 37.

[^0]: †) Partially supported by NSF Grant DMS 8802664.
 *) Department of Mathematics, Wellesley College, Wellesley, MA 02181, USA.
 **) Department of Mathematics, Brown University, Providence, RI 02912, USA.

