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Abstract
We show how fat tails in agricultural commodity returns arise endogenously from
productivity shocks in a standard macroeconomic model. Using nearly ninety years
of data, we show that the eight agricultural commodities in our sample exhibit
fat-tailed return distributions. Statistical tests confirm the heavy-tailedness of price
spikes for agricultural commodities. We apply extreme value theory to estimate the
size and likelihood of price spikes in agricultural commodities. Back-testing verifies
the validity of our risk assessment methodology.

Keywords Commodity prices · Extreme value theory · Heavy tails ·
Risk management
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1 Introduction

The severe drought in the US during the summer of 2012 coincided with price
increases of corn, soybeans and other field crops by more than 50%. Figure 1 pro-
vides an illustration of this period by showing the contract price for the purchase of
one bushel of corn and soybeans to be delivered at the end of 2012. Prices remained
relatively stable during the first few months of 2012, while the level of precipita-
tion in the Primary Corn and Soybean Belt was not much different from its level in
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Fig. 1 Futures prices and precipitation in 2012. Note: The upper panel shows prices of futures contracts
for delivery at the end of 2012 from Thomson Reuters Datastream. The vertical grey area indicates a
period of severe drought. The lower panel shows monthly area-weighted precipitation data for the Primary
Corn and Soybean Belt. The bandwidth around the average corresponds to the historical lower and upper
quartile. Precipitation data come from the U.S. Climate Divisional Database and are obtained from the
National Climatic Data Center of the National Oceanic and Atmospheric Administration

previous years. June and July were however exceptionally dry months (bottom panel
of Fig. 1).1 As this drought was prolonged and growing in severity, prices increased
rapidly. Price levels flattened only once the level of rainfall returned to its historical
average in the late summer.

Such extreme movements in agricultural commodity prices are anything but
uncommon. For instance, between August 2007 and March 2008, the price of wheat
almost doubled, but before the end of 2008, the wheat price returned to its origi-
nal level. Another example is the price of corn, which fell a massive 55% in the

1The National Climatic Data Center uses the expression Primary Corn and Soybean Belt to specify an
agricultural belt around Illinois, Indiana and Iowa. The area-weighted precipitation in the Primary Corn
and Soybean Belt in June and July 2012 was 4.6 inches (cumulative), or almost half the historical average
of 8.3 inches between 1970 and 2011. Since 1895, such low levels of precipitation in June and July were
only recorded twice before, in 1936 and 1988.
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second half of 2008 alone. These examples illustrate the highly volatile behavior of
agricultural commodity prices.

The extreme price movements raise questions regarding the shape of the tail dis-
tribution of changes in agricultural commodity prices. Mandelbrot (1963a, b), using
Houthakker’s cotton price series, was the first to suggest that the tails of the distribu-
tion of commodity price changes diminish by a power instead of an exponent, as is
the case under the more common (log)normal assumption.2 If the tail of a distribu-
tion diminishes by a power, then the probability of variable x̃ exceeding threshold u,
if u is large, is distributed as

Pr(x̃ > u) ∼ Cu−α, (1)

where C > 0 and α > 0 are referred to as, respectively, the scale and the shape
parameter.3 The distribution is named after Pareto who discovered that the upper tail
of the income distribution follows a power law. Distributions with tails that obey the
functional form in Eq. 1 are classified as heavy-tailed. Tails which follow a power
law are in the end always fatter than thin-tailed distributions that decrease at an
exponential rate.

Mandelbrot explained the origin of the heavy-tailedness of agricultural commod-
ity prices by advancing that the physical world is full of heavy-tailed phenomena.4

Such exogenous heavy-tailed shocks could trigger the heavy-tailedness of commod-
ity price changes. But how a power law tail may arise endogenously in the market for
agricultural commodities has not been formally investigated.

The main contribution of this article is twofold.
First, we show how fat tails in agricultural commodity prices may arise endoge-

nously in a standard macroeconomic model. In the model, commodity price spikes
occur as a result of adverse productivity shocks, due to, e.g., hurricanes, diseases
and droughts.5 In themselves these productivity shocks need not be (although they
may be) heavy-tailed. This is the extra kick that our economic analysis provides. We
show how the power law spikes observed in agricultural commodity prices can arise
endogenously in the economy as productivity shocks feed through the system, even
if the productivity shocks come from a thin-tailed distribution or a distribution with
a bounded support.

Second, we provide new empirical evidence on how to use extreme value theory
(EVT) to measure the extreme price risk of agricultural commodities using nearly
ninety years of data. Differently from previous studies, we employ formal statistical
tests to confirm the heavy-tailedness of price spikes for agricultural commodities.
We use back-testing procedures to provide empirical evidence on the accuracy of

2Mills (1927) was one of the first to discuss the non-normality of commodity returns as he reported higher
kurtosis, implying more extreme returns.
3If x ∼ y, it means that lim x/y = 1.
4See, e.g., Newman (2005) and Salvadori et al. (2007) for a number of natural hazards that follow a power
law distribution, including various drought measures, flood levels, the magnitudes of earthquakes and the
scale of wars. Several of the above events influence agricultural prices in one way or another.
5Knittel and Pindyck (2016) show that fundamental factors are important in determining commodity
prices, while speculation tends to have relatively little effect.
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the risk measures. We show that the non-normality of the return distribution strongly
influences the level of the risk measures. Our empirical estimates provide a good
indication of the size of the risks as measured by widely used and easily understood
risk measures.

What lays at the origin of heavy-tailed phenomena in the economy is an intrigu-
ing question. The literature has proposed several mechanisms that can explain some
of the heavy-tailed phenomena in the economy (for a literature review, see Gabaix,
2009). To provide a few examples: Gabaix et al. (2003) and Gabaix et al. (2006)
suggest a mechanism where trading by large institutional investors – whose size dis-
tribution follows a power law tail – could be responsible for heavy-tailed stock market
returns. Reed (2001) suggests that the power law in the cross-sectional distribution of
the size of agglomerations, i.e., “Zipf’s Law”, could be the result of a process where
each agglomeration grows with geometric Brownian motion and where the time of
observation itself is a random variable that follows an exponential distribution. Toda
(2014) and Toda and Walsh (2015) show in a general equilibrium model that this
principle could also be responsible for the power law in the cross-sectional distribu-
tions for wealth and consumption. Similarly, our paper suggests a mechanism that
can explain the origin of heavy tails in agricultural commodity prices.

A good understanding of the most extreme agricultural commodity returns is
instrumental in any commodity risk management application. Strong agricultural
commodity price movements hurt many of the industry’s stakeholders, including pro-
ducers, processing firms, traders, consumers and institutional investors. Commodities
are often included in investors’ portfolios because of their diversification benefits
and inflation-hedging potential; see, e.g., Erb and Harvey (2006) and Gorton et al.
(2012). The economic prosperity of both importing and exporting developing coun-
tries often depends on the price development of raw material commodities. More than
fifty countries depend on only three or fewer commodities for more than half their
total exports.6 As a result these countries are very vulnerable to price volatility, see,
e.g., Deaton (1999) or Balagtas and Holt (2009). The producers, processing industry
and traders can be hurt when prices spike, while farmers can be highly vulnerable to
commodity price decreases, which translate directly into a loss of income. Extreme
commodity price swings may also hurt large institutional investors. Pension funds,
hedge funds like CTAs, and fund-of-funds are known to invest heavily in commodity
futures contracts. The risk management findings in this study are relevant for these
affected parties.

Market participants need a risk quantification methodology to decide upon the
optimal strategy. They should be able to answer questions like: How likely is a 10%
drop in the corn price over the next week? Suppose my risk tolerance allows me to
accept a 25% price increase, how likely is it that the wheat price will exceed this
threshold next month? Is either the corn or the wheat price more likely to experience

6Based on the UNCTAD 1995 Commodity Yearbook. We refer to Bidarkota and Crucini (2000) for an
extensive analysis of the relationship between the terms of trade of developing nations and world prices of
internationally traded primary commodities.
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extreme price movements? What is the expected size of the maximum loss due to
price risk during the next decade?

Such questions may be addressed by the use of EVT. The popularity of EVT to
assess the risk of an extreme event has increased considerably. For example, EVT
has been used to examine the severity of stock market crashes, the pricing of catas-
trophic loss risk in reinsurance or the extent of operational risk in banks (ECB 2006).
EVT is particularly suitable for analyzing rare events when sample sizes are too
small for determining the probability, extent or cause of the extreme returns using
conventional statistical techniques. The semi-parametric EVT approach exploits the
functional regularities that probability distributions necessarily display far from the
center.

Interestingly, in spite of its growing recognition, application of EVT in agricultural
price risk management has so far been sparse in the academic literature.7 Kofman and
De Vries (1990) estimate the tail parameters for potato futures. Matia et al. (2002)
estimate the tail parameters of a large number of general commodities. Their arti-
cle provides no risk management applications, however. Krehbiel and Adkins (2005)
apply EVT to four complex NYSE energy futures contracts to estimate various risk
measures. Even so, their analysis is limited to oil and gas contracts, whose return
distribution may be very different from those of renewable agricultural commodities.
More recently, Morgan et al. (2012) use EVT on weekly data to estimate three differ-
ent tail risk measures for corn and soybeans. Their thorough study is evidence of the
growing interest in this topic.

2 Theory

We use a standard off-the-shelf two-sector macro model to describe how fat tails in
agricultural commodity prices may arise endogenously. The economy in this model
consists of households and firms. The households maximize their utility subject to
their budget constraint by purchasing goods from firms while choosing their labor
supply to firms. The firms need labor in order to produce goods. Firms operate in the
agricultural or the differentiated goods sector. The agricultural sector is modeled as a
competitive sector (Ardeni and Freebairn 2002). The differentiated goods sector is an
environment with monopolistic competition in the spirit of Dixit and Stiglitz (1977).
Exogenous shocks affect the firms’ productivity in both sectors, where productivity is
defined as the number of goods that a firm can produce per unit of labor. In the agri-
cultural sector, these shocks can be best thought of as changes in weather and other
natural hazards. For the differentiated goods sector, which also captures the services
industry, the shocks mostly represent changes in productivity due to innovations.

The macro literature has focused almost exclusively on the Dixit and Stiglitz
(1977) specification for the differentiated goods demand, see, e.g., Walsh (2017). The

7We refer to Kat and Oomen (2006), and Wang and Tomek (2007) for thorough studies of the general time
series properties of agricultural commodity prices.
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familiar Dixit and Stiglitz (1977) specification with endogenous labor supply derives
from the following utility function for households

U = Z1−θ

[
1

n

n∑
i=1

Q
ρ
i

]θ/ρ

− 1

1 + δ
L1+δ, (2)

where Z is the consumed quantity of the competitive good, the Qis are the consumed
quantities of the differentiated goods and L is quantity of labor. Essentially, all goods
are perishable in this one-period model.8 The parameter ρ, which is constrained to
ρ ∈ (0, 1), determines the “love of variety” of households, which is the extent to
which households value diversity of the products they purchase from firms in the dif-
ferentiated goods sector. Values of ρ closer to zero are associated with a stronger love
of variety. Parameter θ ∈ (0, 1) determines the importance of the other goods and
services relative to the agricultural produce in the consumer’s consumption bundle.
The higher the level of θ , the smaller the share of income the consumer is willing to
spend on agricultural goods. The parameter δ is the inverse of the Frisch (1959) elas-
ticity of labor supply, δ ∈ (0, 1). The higher the level of δ, the less responsive labor
supply will be to changes in wages.

Households maximize their utility subject to their budget constraint. The budget
constraint of the households reads

wL + �(Q) = qZ + 1

n

n∑
i=1

piQi, (3)

where w is the wage rate, where q and pi are the goods prices, and where �(Q)

are the profits of firms in the differentiated goods sector which are distributed as
dividends to the households.9

The production of firms in both sectors depends on their productivity and labor
inputs. For their production functions we assume classical Ricardian technologies
(e.g., Turnovsky 1974), where

Z = BN, (4)
and

Qi = ANi . (5)
The N and Ni are the labor inputs. The A and B are the respective productivity
coefficients that determine how many goods the firms in both sectors can produce per
unit of labor. Both A and B are random variables. Shocks to A and B are productivity

8Our objective is to analytically derive the tail distribution of agricultural commodity prices. We do not
explicitly model the role of storage. The reason is that specifications of models with storage generally do
not allow for analytical solutions due to the introduction of nonnegativity constraints; see, e.g., Wright and
Williams (1982) and Williams and Wright (2005). An exception is the model of Aiyagari et al. (1989), but
their model imposes a finite endpoint for the statistical distribution of the commodity prices by assuming
an upper bound (see p. 40). This upper bound rules out the possibility of a power law tail ex ante. As a
consequence, our model provides a description of the price distribution of perishable goods, rather than
that of commodities that decay at a very low rate.
9The quantities of the differentiated goods, the Qis, are normalized by the number of differentiated goods,
n. This notation is analogous to the common continuous good notation often used in the theoretical macro
literature.
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shocks in the sense that changes in A and B translate into identical changes in the
amount of goods a firm can produce per unit of labor. In the case of variable A,
which measures productivity in the differentiated goods sector, such shocks are the
in macroeconomics familiar supply side total factor productivity shocks. The shocks
to variable B in the agricultural sector capture the shocks to agricultural productivity
that are inherent to nature.

Firms in the economy maximize profits. The market for the agricultural product is
assumed to be perfectly competitive, and, hence, the aggregate profit of all firms in
the agricultural sector,

�θ(Z) = qZ − wN, (6)

equals zero in equilibrium. The producers of the differentiated products aim to
maximize their profit functions

�i(Qi) = piQi − wNi . (7)

They do so by exploiting their pricing power while ignoring their pricing effect on
consumer income wL + �(Q) and on the price index of the differentiated goods,

P =
(

1

n

n∑
i=1

p
ρ/(ρ−1)
i

) ρ−1
ρ

. (8)

Finally, to determine the general price level we assume a simple quantity-type
relationship (Fisher 1911),

M = wL, (9)

where M is defined as the total quantity of money.

2.1 Equilibrium price distribution

With the above preparations, we can now obtain the implications for the equilibrium
prices.

Proposition 1 Equilibrium prices result when consumers maximize utility (2) and
firms in both sectors maximize profits. The equilibrium prices of the differentiated
goods are,

pi = M
1/ρθ/δ+1

A
(
θθ (1 − θ)1−θ AθB1−θ

)1/δ
for all i. (10)

For the agricultural good the equilibrium price is

q = M
1/ρθ/δ

B
(
θθ (1 − θ)1−θ AθB1−θ

)1/δ
. (11)

Proof See Appendix A.
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Most macro models consider shocks to M , A and B. Let us focus on the agri-
cultural productivity shocks due to randomness in B.10 Assuming M and A to be
constant, we can write the price of the agricultural good as

q(B) = �B− 1+δ−θ
δ , (12)

where

� = M
1/ρθ/δ(

θθ (1 − θ)1−θ Aθ
)1/δ

.

Note that the power in Eq. 12 is negative. From Eqs. 10 and 11 it transpires that
a positive productivity shock to A or B lowers the equilibrium prices pi and q.
This is because when more produce comes to the market, this extra supply can only
be absorbed if prices are lowered. This reflects what happens in both well-known
real business cycle models and the now standard New Keynesian Model that is the
backbone to most current day macro models.11

For illustrative purposes, consider the situation where B follows a beta distribution
(we relax this assumption later):

Pr {B < t} = tβ (13)

on [0, 1] and β > 0. The likelihood of extremely adverse productivity shocks under
this distribution is lower for higher values of β. Under the assumption of the beta
distribution, we can derive the price distribution of the agricultural product as follows.
Denote the randomness in q by q̃. Then

Pr {q̃ > u} = Pr
{
�B− 1+δ−θ

δ > u
}

= Pr
{
B < �

δ
1+δ−θ u− δ

1+δ−θ

}
= �

βδ
1+δ−θ u− βδ

1+δ−θ , (14)

with support on [�,∞). The distribution of equilibrium prices in Eq. 14 has the same
functional form as the heavy-tailed distribution in Eq. 1, where α = βδ/(1 + δ − θ).

We proceed by relaxing the assumption of the beta distribution. More specific, we
derive a general condition for the density function of the productivity shocks fB(t).
Any density function of the productivity shocks that satisfies this condition will imply

10For our results to hold true, it is not necessary to assume a constant A and M . For example, the heavy-
tailedness of the equilibrium price distribution due to natural shocks is preserved if the productivity of
the differentiated sector does not collapse completely, which implies that the support of A is bounded
away from zero. Further, the heavy-tailedness of the equilibrium price distribution is not affected if the
distribution of M has exponential tails, such as the lognormal distribution.
11In his popular textbook, Gali (2008) reviews the ins and outs of this model that consists of an aggregate
demand and supply equation and a monetary policy rule, which together determine the output gap (out-
put relative to what is optimally attainable) and the inflation rate. A positive shock to productivity leads
unambiguously to a decline in inflation (Gali 2008, Subsections 3.4.1.2 and 4.4.1), as in our setting.
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a equilibrium price distribution that is heavy-tailed. Let L(u) denote a slowly varying
function, in the sense that

lim
u→∞

L(tu)

L(u)
= 1 for any t > 0.

Then the following proposition provides a general condition that results in the heavy-
tailedness of the commodity price distributions. The essential requirement is that zero
is in the support of B.

Proposition 2 Suppose that the distribution and density of the agricultural pro-
ductivity coefficient B are continuous. Given the price-productivity relationship for
agricultural produce in Eq. 12, we have that

Pr(q̃ > u) ∼ L(u)u−α as u → ∞, (15)

with

α = ξ
δ

1 + δ − θ
, (16)

if

lim
s↓0

wfB(sw)

fB(s)
= wξ with ξ ∈ R

+. (17)

Proof See Appendix B.

Whether the condition on the distribution of B in Eq. 17 is satisfied depends on the
shape of the density of the productivity shocks, fB(B), for values close to zero. The
reason is that high price levels occur in periods of low agricultural productivity, such
as severe droughts. The tail distribution for those low levels of productivity determine
the shape of the distribution function for extremely high prices.

Corollary 1 The shape of the distribution of the agricultural productivity coefficient
B close to zero determines whether the equilibrium price distribution is heavy-tailed.
The more slowly the density of B converges to zero for extremely low productivity
levels, i.e., the lower ξ , the heavier is the tail of the agricultural price distribution,
i.e., the lower is α.

The condition in Proposition 2 holds true with different values for ξ for a broad
range of distribution functions with positive support. For the beta distribution, which
we considered for illustrative purposes, the condition in Eq. 17 is satisfied with
ξ = β. The condition also holds true for distribution functions that follow very dif-
ferent functional forms. For instance, the standard uniform distribution and standard
exponential distribution satisfy the condition in Eq. 17 with ξ = 1. More general, the
distribution function Pr(B < u) = 1 − exp(−λxβ) with λ, β > 0 satisfies the con-
dition with ξ = β. Other popular distribution functions that satisfy the condition in
Eq. 17 are the Chi-squared distribution with l degrees of freedom, which satisfies the
condition with ξ = l/2; the Gamma distribution with shape parameter l, which satis-
fies the condition with ξ = l; and the (heavy-tailed) Burr (Type XII) distribution with
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parameters (c, l), which satisfies the condition with ξ = c. All the aforementioned
distributions would result in a heavy-tailed equilibrium price distribution.

The condition also shows that not every possible distribution does lead to heavy-
tailed prices in our macro-economic framework. An example of a popular exception
is the lognormal distribution: Its limit in Eq. 17 converges to 0.12 Seriously low levels
of agricultural productivity are too rare under the lognormal distribution to generate
a heavy tail among the occurrences of high agricultural prices in the model.

As follows from Proposition 2, the shape parameter of the tail of the distribution
of agricultural prices not only depends on the distribution of productivity shocks, but
also on the preference parameters θ and δ.

Corollary 2 The greater the share of agricultural produce in consumption, i.e., the
higher 1 − θ , and the higher the elasticity of labor supply, i.e., the higher 1/δ, the
heavier is the tail of the distribution of agricultural prices, i.e., the lower is α.

Given the distribution function of productivity shocks, it follows from Eq. 16 that
a high value of 1 − θ results in a low shape parameter of the equilibrium price dis-
tribution of agricultural goods, α, and hence in a fatter tail. This finding has the
following intuition. The importance of the share of the agricultural good in the con-
sumption bundle of the agents is represented by 1−θ , see the utility function in Eq. 2.
The larger the role of the agricultural good for the agents’ utility, the more extreme
price reactions one may expect if supply falls. This is reflected in a fatter tail of the
equilibrium price distribution, i.e., a lower α.

It also follows from Eq. 16 that a high value of parameter δ results in a high value
of shape parameter α. Adverse productivity shocks (low realizations of B) have a dual
effect on the output of the competitive sector. First, given the amount of labor used,
an adverse technology shock in the competitive sector directly reduces output, since
Z = BN . Second, low productivity decreases the equilibrium amount of labor used
in the competitive sector, which further reduces output. In particular, the equilibrium
labor supply L = cB(1−θ)/δ, where c > 0 is a constant (see Eq. 31 in Appendix A).
Therefore, in equilibrium, the change in the production of the competitive good in
response to a shock to B is smaller for higher values of parameter δ (lower elasticity
of the labor supply), which results in thinner tails of the equilibrium price distribution,
i.e., a higher α.

The property of the model that allows the equilibrium price distribution to be
heavy-tailed, even if the productivity shocks are not heavy-tailed themselves, is that
the equilibrium prices respond in a nonlinear fashion to shortages due to adverse pro-
ductivity shocks. More precisely, the price of the agricultural product in our model
is inversely proportional to the productivity. So, increasingly larger shortages of the
agricultural product have an increasingly larger impact on its price in absolute terms.
The property that product prices are inversely proportional to productivity is not
unique to the environment we study above, and, in fact, a property that is very com-
mon to other economic models. Heavy-tailed price distributions can be obtained in

12The statistical distribution of crop yields has been the topic of a wide body of literature, see, e.g., Ramı́rez
et al. (2003), Harri et al. (2009) and Koundouri and Kourogenis (2011).
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those other models in a very similar manner as in the stylized model above. For
various reasons, however, price distributions may not be heavy-tailed in a macroe-
conomic model. For example, one reason in our model would be that productivity
shocks are bounded away from zero. In some macroeconomic models, prices are a
linear though negative function of productivity, in which case prices would only be
heavy-tailed if productivity shocks are heavy-tailed distributed. Finally, the relation-
ship between α and ξ in Eq. 16 suggests a way to calibrate the value for the tail index
ξ of agricultural productivity.13

3 Empirical methodology

The previous section discussed the plausibility of fitting a power law to the right tail
distribution of changes in food prices. Section 3.1 discusses how we test whether the
right tail of the distribution of agricultural commodity returns follows a power law.
Section 3.2 explains how we fit a power law and estimate risk measures under the
assumption that returns are heavy-tailed, while Section 3.3 discusses how we estimate
the risk without assuming heavy tails.

Next, we apply EVT to determine the parameters of the power law.

3.1 Testing the power law

We start by testing whether the right tail of the distribution of agricultural commod-
ity returns follows the power law in Eq. 1 against thin-tailed alternatives. We do
so by using the generalized extreme value distribution. This distribution describes
the behaviour of the largest observation in a sufficiently large number of randomly
observed draws. Let ỹm denote the maximum of m i.i.d. observations of x̃. The distri-
bution of x̃ is said to be in the domain of attraction of the generalized extreme value
distribution, if, for some normalizing sequences of constants μm ∈ R and σm > 0,
and γ ∈ R, the limit probability

lim
m→∞ Pr

(
ỹm − μm

σm

≥ s

)
= Gγ (s), (18)

where
Gγ (s) = exp(−(1 + γ s)−1/γ ). (19)

One distinguishes three types of extreme value distributions depending on whether
γ < 0, γ > 0 or γ = 0 (where (1 + γ s)−1/γ is read as e−s for γ = 0). If γ < 0,
then the maximum possible value of ỹm is finite.

13Reichling and Wahlen (2012) conclude in their literature review that macroeconomic estimates of the
Frisch elasticity typically fall in a range from 2 to 4, which implies a value of δ in the range from 1/4 to
1/2. Moreover, the gross output of farms as a percentage of total consumption expenditures could be used
as an estimate of 1 − θ . Over the period 2014-18, this number was in a range between 2.8 and 3.8 percent
in the United States based on data from the US Bureau of Economic Analysis, suggesting 1 − θ ≈ 0.03.
Plugging these numbers into Eq. 16 would suggest a level of ξ in a range between α/0.95 and α/0.85 for
the United States.
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By estimating parameter γ in Eq. 19, we can test whether commodity price returns
are heavy-tailed (i.e., γ > 0) versus thin-tailed and other alternatives (i.e., γ ≤ 0).
The density of the generalized extreme value distribution resembles a power law
when γ > 0

gγ (s) =
{

(1 + γ s)−1/γ−1 Gγ (s) if γ 
= 0,

e−sGγ (s) if γ = 0.
(20)

Balkema and De Haan (1974) establish the one-to-one relationship between the
parameters in the generalized extreme value distribution and the heavy-tailedness of
a distribution. All distributions for which the distribution of exceedances beyond a
sufficiently large threshold converges weakly in the limit to the power law in Eq. 1
with shape parameter α > 0, must be in the domain of attraction of the generalized
extreme value distribution with γ = 1/α, and vice versa (Balkema and De Haan
1974, Theorem 4). By contrast, all distributions for which the tail converges to a thin-
tailed exponential distribution must be in the domain of attraction of the generalized
extreme value distribution with γ = 0 (Balkema and De Haan 1974, Theorem 3).

The literature has developed estimators for γ that allow for testing whether γ > 0.
Since the theoretical model is predicated on the heavy-tailedness of the upper tail of
the commodity price return distribution, we first test whether the data do not reject
this presumption. To this end, we first use three estimators that allow for γ to fall
into all three possible classes. Once we have confidence that γ > 0, we employ the
Hill estimator which only applies if γ > 0, but is more efficient. The general esti-
mators can be somewhat ambiguous depending on how many observations are taken
into account. We will therefore test for the heavy-tailedness using three different esti-
mators: the generalized Hill estimator of Beirlant et al. (1996) (γ̂BV T ), the moment
estimator of Dekkers et al. (1989) (γ̂DEH ) and the mixed moment estimator of Fraga
Alves et al. (2009) (γ̂FGHN ).

3.2 Estimating risk with heavy tails

After establishing the heavy-tailedness of the right tail of agricultural commodity
returns, we proceed with estimating the parameters in the power law. Let a series
with n discrete returns be ordered from high to low: X1 ≥ · · · ≥ Xn. Let k denote
the number of returns considered in the tail of the distribution. Then, following Hill
(1975), one can estimate the shape and the scale parameter in Eq. 1 as

1

α̂
= γ̂H = 1

k

k∑
j=1

ln
Xj

Xk+1
(21)

and

Ĉ = k

n
Xα̂

k+1. (22)

One can easily convert the estimated parameters into economically meaningful
risk measures, such as Value-at-Risk (VaR). The VaR is defined as the loss level that
is exceeded with probability p, that is, for return Rt , V aR(p) = − sup{c : Pr(Rt ≤
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c) ≤ p)}. Using the Hill-estimators in Eqs. 21–22 in the Pareto distribution in Eq. 1
gives the VaR-estimator for the right tail as

V̂ aRH (p) = Xk+1

(
k

np

)1/α̂

. (23)

The VaR plays an important role in the safety-first framework developed by Roy
(1952) and Telser (1955). Agents with the safety-first principle of Telser (1955) in
their utility functions maximize their expected return, while limiting the probability
that a loss larger than some disaster level occurs at some admissible level p.

3.3 Estimating risk without assuming heavy tails

The theory in Section 2 suggests why the right tail of the distribution for commodity
prices follows a power law. Different from the right tail of the distribution, the left tail
of the distribution has a theoretical endpoint, provided that the price of an agricultural
commodity cannot fall below zero. One could therefore object to using a power law,
which has an unbounded support, for modelling the tail risk in the left tail. Since
the tail risk in the left tail is important for several market participants (e.g., farmers,
exporters), we therefore consider two different methods to estimate the downside tail
risk.

Our first method is to simply estimate the downside tail risk as if the left tail fol-
lows a power law. The basis for following this approach is a Taylor approximation,
by a power function; which may work well at medium to higher loss levels. The-
oretically, one may expect the risk estimates under the assumption of a power law
to be increasingly upward biased in situations where changes in prices get closer to
the maximum possible price decline. However, the method could still be useful from
a pragmatic point of view as long as it is supported by empirical evidence that the
method provides accurate risk estimates.

Our second method is to estimate the VaR under a more general distribution that
allows tails with finite endpoints. In particular, we estimate parameter γ in Eq. 19
with an estimator that allows for all three cases γ > 0, γ = 0 and γ < 0. Let γ̂G

denote a consistent general estimator of γ . Then the estimate γ̂G can be used in the
general quantile estimator developed by Dekkers et al. (1989) to estimate the VaR as

V̂ aRG(p) =
[
Xk+1

(
k

np

)γ̂G

− Xk+1

]
× γ̂H

γ̂G min{1, 1/|1 − γ̂G|} + Xk+1. (24)

Note that this general estimator for the VaR condenses to the specific VaR estimator
that assumes heavy tails in Eq. 23 whenever γ̂G = γ̂H . In our application using the
general quantile estimator in Eq. 24, we report VaR estimates based on the general
estimator of Fraga Alves et al. (2009), but the estimators of Dekkers et al. (1989) and
Beirlant et al. (1996) generate qualitatively similar results.

We compare the performance of the VaR estimator assuming heavy tails and the
general VaR estimator in the back-testing procedure in Section 8.
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3.4 Other estimation details

We obtain standard errors of the shape parameters and risk measures from a bootstrap
procedure. The asymptotic normality of the Hill estimator also holds in the pres-
ence of serial dependence; see, e.g., Drees (2008). Following Hartmann et al. (2006),
we refrain from assumptions on the specific dependence structure and apply a boot-
strap procedure with fixed block length and 10,000 replications. Following Hall et al.
(1995), we set the optimal block length equal to n1/3. We aim to choose a threshold
parameter k that balances the bias and variance of the estimator as usual (Drees et al.
2000).

4 Data

For our purposes, we rely on two different categories of price series. The first series
concerns monthly prices of agricultural commodities in the spot market going back
to 1928. The second series concerns weekly returns on contracts traded on the futures
market from 1979 onward. Our estimates for weekly returns on futures contracts are
in particular interesting from a risk management perspective. The lower frequency of
the series with spot prices is better aligned with the macroeconomic model in which
power law spikes observed in agricultural commodity prices may arise endogenously
in the economy. For each price series, we calculate discrete returns from the observed
prices as Rt = (Pt − Pt−1)/Pt−1.

The monthly spot prices from 1928 to 2014 are obtained from Global Financial
Data. These series are likely to be impacted by price controls, resulting in a lower
level of volatility during the World War II period. Price controls were effective since
May 1942, and, although most were removed in 1946, they may have had some
impact on prices until 1948Q2; see Evans (1982). To avoid these price controls from
impacting our estimates, we removed all observations from 1942M1 until 1948M6
from our dataset. To account for potential illiquidity in spot markets impacting our
estimates, we removed from each spot price series the observations in months with-
out price changes and those in months following a month without price change. This
resulted in the removal of on average 47 observations in each series.

Futures contracts for delivery at a particular date are usually traded for a rela-
tively short period, ranging from several months to several years. To obtain long-term
futures returns series, or so-called continuous series, we combine consecutive data
from several futures contracts, see, e.g., De Roon et al. (2000). We take consider-
able effort to construct high-quality continuous futures return series. Our procedure
is as follows. First, we download daily open interest and price series of all available
futures contracts from Thomson Reuters Datastream for each commodity. Those time
series are available over a period of 34 years: from January 1979 until December
2012. Subsequently, daily returns are calculated for all futures price series. Finally,
we construct the continuous futures returns series from the individual return series. In
January 1979 we start with the futures contract that has the largest open interest. For
each day we include its returns in the new continuous series until six weeks before
the contract’s last trading day. At this date we switch to the futures contract with the
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largest open interest and a later last trading day. Again we include the returns until six
weeks before the last trading day and repeat the last step. This procedure results for
each commodity in a daily continuous futures returns series, which is then converted
into a weekly returns series of 1,773 observations from, on average, 164 different
futures contracts.

Our method has an important advantage compared to Datastream’s procedure to
construct continuous futures series. By calculating returns prior to constructing the
continuous series, no returns are calculated over price observations from two dif-
ferent futures series. Therefore, our series represents the return that investors could
achieve by rolling over futures contracts as opposed to the continuous Datastream
series which includes price jumps due to changes in the underlying futures series.
The extreme returns in our series thus represent genuine financial risks to market
participants.14

From all agricultural commodities traded in the United States, the following com-
modities are investigated: Corn, cotton, oats, soybeans, wheat, live cattle, orange
juice (futures market) or oranges (spot market), and sugar.15

5 Testing for heavy-tailedness

Table 1 reports the descriptive statistics of the monthly returns in the spot market and
the weekly returns on futures contracts. A quick overview of the data confirms the
non-normality of the returns. Six out of eight series with monthly returns in the spot
market contain at least one observation with a distance of more than 6 standard devi-
ations from the mean, an observation that would occur roughly once every 42 million
years under the assumption of a normal distribution.16 For the weekly returns, six
out of eight series contain at least one observation with a distance of more than five
standard deviations from the mean. The probability of such a return occurring under
the assumption of the normal distribution is about once every 33,500 years. Figure 2
reports QQ-plots of three arbitrarily chosen weekly return series (corn, cotton and
live cattle) as an illustration. The non-normality is strongly confirmed by QQ-plots
of the return series against the normal distribution. Only the right tail of the return
series for live cattle seems to be quite close to the normal distribution.

We proceed with a formal test of whether the upper tail distribution is heavy-tailed
by estimating parameter γ in Eq. 19 for each of the returns series. The theory shows
how heavy-tailedness can arise in the right tail of agricultural commodity returns as

14In addition, shifts in the roll-over date often occur in the Datastream continuous series. To give an
extreme example: the second largest daily price fall during the last 30 years in the unadjusted Datastream
series for cotton (NCTCS00) is caused by a delayed roll-over date. The return of -26.3% is caused by
the difference between 113.6, which is the price for delivery in July 1995 listed on the 4th of July, 1995,
and 83.75, which is the price for delivery in October 1995 listed on the 5th of July, 1995. Such extreme
observations may distort the assessment of the actual tail of the risk distribution.
15See Appendix C for details on the selection process of the commodities. The continuous futures returns
are available from the corresponding author on request.
16If x̃ follows a standard normal distribution, then Pr(|x̃| > 6) ≈ 1.97 × 10−9.
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Table 1 Descriptive Statistics

Commodity Mean St.dev. Min. Min. Date Max. Max. Date Obs.

Panel (a): Monthly returns in the spot market (percentages), 1928-2014

Corn 0.36 8.1 –45.7 1937-10 48.1 1936-07 944

Cotton 0.33 5.8 –29.2 2010-12 44.5 1986-09 929

Oats 0.49 8.9 –41.5 1935-08 68.4 1988-06 940

Soybeans 0.42 8.6 –36.6 1931-10 58.1 1974-07 922

Wheat 0.59 8.2 –35.1 2014-09 39.7 1973-07 912

Live cattle 0.30 5.1 –16.6 1931-12 33.6 1935-01 953

Oranges 2.37 25.1 –85.7 2000-08 393.1 2000-10 941

Sugar 0.67 11.1 –39.3 1979-08 75.4 1983-05 914

Panel (b): Weekly returns in the futures market (percentages), 1979-2012

Corn –0.02 3.4 –16.4 2008-10-03 20.8 2008-12-12 1,773

Cotton 0.01 3.2 –13.9 2008-10-10 18.4 2010-12-03 1,773

Oats –0.04 4.1 –16.5 1988-07-22 31.4 1988-06-10 1,773

Soybeans 0.04 3.2 –14.8 2008-10-03 15.4 1999-07-23 1,773

Wheat –0.06 3.5 –15.3 2008-12-05 16.5 2012-05-18 1,773

Live cattle 0.05 2.1 –14.4 2004-01-02 8.8 1982-01-08 1,773

Orange juice 0.00 4.1 –16.6 2012-05-18 37.7 1981-01-16 1,773

Sugar 0.09 4.9 –18.5 1988-07-29 38.8 1985-07-26 1,773

Note: The numbers in the table are expressed in percentage price changes. The first two columns report
the mean and the standard deviation of the monthly and weekly returns series. The other columns report
the minima and maxima of the returns and the dates of these observations

a consequence of price spikes from adverse productivity shocks that are not heavy-
tailed themselves. Values of γ̂ larger than 0 suggest that the tail of a distribution is
heavy-tailed. Table 2, panels (a) and (b) report the estimates for the upper tail of
the monthly returns in the spot market and the weekly returns in the futures mar-
ket, respectively. Heavy-tailedness is rejected at a 5 percent significance level for
t-statistics smaller than −1.6. Rejection of the thin-tailed distribution at a five percent
significance level requires a t-statistic larger than 1.6.

Table 2, panel (a) shows that all estimates for γ , except one, are positive for the
upper tail distribution of monthly returns in the spot market. This suggests that the
right tails of these distributions are heavy-tailed. The exception to the rule is live cat-
tle, which did also seem relatively close to the thin-tailed alternative in the QQ-plot.
It is possible to reject the thin-tailed alternative for 5 out of 8 series based on the esti-
mators of Beirlant et al. (1996) and Fraga Alves et al. (2009), with the strongest test
results for corn, cotton, oats and sugar. The Dekkers et al. (1989) estimator, which
exhibits somewhat larger standard errors, also rejects the thin-tailed alternative for 4
out of 8 series. None of the estimates suggest the rejection of heavy-tailedness for
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Fig. 2 QQ-plots of agricultural commodity returns. Note: QQ-plots of the weekly returns of futures con-
tracts for corn, cotton and live cattle against a normal distribution with the same mean and standard
deviation

the upper tail of monthly returns in the spot market. The pattern of heavy-tailedness
is very similar when turning to the right tail distribution of weekly futures returns
reported in Table 2, panel (b), although the results for weekly futures returns are
somewhat less strong than for the monthly returns in the spot market. The thin-tailed
alternative can be rejected at a 5 percent significance level for 2 out of 8 futures
returns series based on the Dekkers et al. (1989) estimator, and for 3 out of 8 futures
returns series based on the Beirlant et al. (1996) and Fraga Alves et al. (2009) estima-
tors. The point estimates for live cattle and wheat are slightly negative. None of the
estimates suggest the rejection of heavy-tailedness for the upper tail of weekly future
returns.

6 Empirical tail estimates

Table 3 documents the estimated tail parameters under the assumption of heavy-tailed
distributions. Unreported Hill plots show that the Hill estimates are relatively stable
when a total of k = 50 tail observations are used for the monthly returns series and
a total of k = 75 tail observations for the weekly returns series. This corresponds to
5.4% of all monthly observations and 4.2% of all weekly observations.

Table 3, panel (a) documents the estimated tail parameters using the Hill estimator
for the monthly returns in the spot market. The value of most shape parameters is
estimated to be in the range from 2 to 3. The most risky commodities with respect to
the shape parameter describing price spikes are oranges, with an estimated tail index
of around 1.95, and sugar, with an estimated tail index of around 2.36. The table
also reports the Hill estimator for the left tail of the distribution. These estimates can
be used to approximate the distribution using a Taylor approximation in the form
of a power law function even though it is known that the returns in the left tail are
bounded.

Table 3, panel (b) documents the estimated tail parameters for the weekly futures
returns. Theoretically, the estimates of the shape parameters should be robust for
changes in the data frequency in case of independent and identically distributed
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Table 2 Testing for Heavy-tailedness

γ̂DEH (s.e.) (t-stat) γ̂BV T (s.e.) (t-stat) γ̂FGHN (s.e.) (t-stat)

Panel (a): Right tail of monthly returns in the spot market, 1928-2014

Corn 0.231 (0.13) (1.8) 0.242 (0.10) (2.3) 0.228 (0.12) (1.8)

Cotton 0.268 (0.15) (1.8) 0.268 (0.12) (2.2) 0.262 (0.13) (2.1)

Oats 0.438 (0.11) (4.0) 0.338 (0.11) (3.1) 0.597 (0.20) (3.0)

Soybeans 0.260 (0.20) (1.3) 0.231 (0.15) (1.6) 0.225 (0.15) (1.5)

Wheat 0.165 (0.14) (1.2) 0.088 (0.12) (0.7) 0.194 (0.09) (2.1)

Live cattle -0.016 (0.20) (-0.1) 0.087 (0.17) (0.5) 0.032 (0.12) (0.3)

Oranges 0.320 (0.23) (1.4) 0.350 (0.16) (2.1) 0.248 (0.18) (1.4)

Sugar 0.248 (0.14) (1.7) 0.216 (0.11) (1.9) 0.263 (0.11) (2.3)

Panel (b): Right tail of weekly returns in the futures market, 1979-2012

Corn 0.187 (0.12) (1.5) 0.154 (0.09) (1.7) 0.186 (0.10) (1.9)

Cotton 0.125 (0.12) (1.0) 0.116 (0.10) (1.1) 0.143 (0.09) (1.6)

Oats 0.280 (0.13) (2.1) 0.278 (0.12) (2.4) 0.269 (0.15) (1.8)

Soybeans 0.032 (0.12) (0.3) 0.047 (0.10) (0.5) 0.077 (0.07) (1.1)

Wheat -0.015 (0.13) (-0.1) -0.019 (0.10) (-0.2) 0.055 (0.07) (0.7)

Livecattle -0.108 (0.15) (-0.7) -0.064 (0.10) (-0.7) -0.018 (0.07) (-0.2)

Orange juice 0.307 (0.11) (2.8) 0.297 (0.12) (2.6) 0.320 (0.14) (2.2)

Sugar 0.149 (0.21) (0.7) 0.147 (0.15) (1.0) 0.122 (0.14) (0.9)

Note: The table reports the point estimates and standard errors for parameter γ in the generalized extreme
value distribution in Eq. 19. The columns correspond to the generalized Hill estimator of Beirlant et al.
(1996) (γ̂BV T ), the moment estimator of Dekkers et al. (1989) (γ̂DEH ) and the mixed moment estimator
of Fraga Alves et al. (2009) (γ̂FGHN ). For the monthly returns in the spot market, each tail consists of 50
observations, or approximately 5.4% of the observations. For the weekly returns in the futures markets,
each tail consists of 75 observations, or approximately 4.2% of the observations. Heavy-tailedness is not
rejected for any of the series (rejection of heavy-tailedness at the 5% significance level requires a t-statistic
smaller than −1.6)

returns.17 Nevertheless, time series characteristics such as volatility clustering could
result in differences in tail behavior at different data frequencies. Moreover, there are
differences between the futures market and the spot market for commodities, where
the latter is, in general, characterized by lower liquidity and higher trading costs in
terms of organizing the logistics of storage and transportation. The tail parameter
estimates for the weekly returns in the futures market are overall somewhat higher

17Mandelbrot (1963b) shows that power law distributions are invariant with respect to the shape parameter
under several basic transformations. The shape parameter is invariant with regard to summation of random
variables, mixing random variables with different scale parameters and selection of maxima. It follows
that the power law distribution is independent of data frequency choices, distribution mixture assumptions
and missing data. As a consequence, sample-specific data problems are unlikely to affect the observed
shape parameter. But at lower frequencies, estimates are less efficient.
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Table 3 Tail parameter estimates

Commodity Left tail Right tail

Shape (s.e.) Scale Shape (s.e.) Scale

Panel (a): Monthly returns in the spot market, 1928-2014

Corn 3.10 (0.45) 130.42 2.88 (0.41) 85.87

Cotton 3.52 (0.52) 96.84 2.57 (0.33) 17.12

Oats 2.54 (0.41) 28.17 2.94 (0.46) 130.58

Soybeans 2.72 (0.46) 53.78 2.59 (0.42) 41.03

Wheat 2.84 (0.48) 55.04 3.14 (0.39) 227.09

Live cattle 2.94 (0.42) 18.28 2.93 (0.42) 24.56

Oranges 2.46 (0.30) 173.72 1.95 (0.32) 56.90

Sugar 3.49 (0.41) 554.36 2.36 (0.41) 56.04

Panel (b): Weekly returns in the futures market, 1979-2012

Corn 3.21 (0.36) 10.55 3.79 (0.39) 49.73

Cotton 3.50 (0.38) 13.47 3.06 (0.35) 8.29

Oats 3.81 (0.40) 72.21 3.40 (0.52) 30.67

Soybeans 3.04 (0.33) 6.70 3.30 (0.36) 11.46

Wheat 3.40 (0.46) 12.92 3.20 (0.27) 14.63

Live cattle 4.04 (0.54) 8.63 3.93 (0.40) 7.49

Orange juice 3.10 (0.30) 13.38 2.85 (0.35) 11.77

Sugar 4.20 (0.51) 348.86 3.63 (0.45) 108.49

Note: The columns report the shape and scale parameters estimated using the Hill estimator in Eqs. 21
and Eq. 22. The standard errors are obtained from the block bootstrap procedure. The third columns report
the estimated scale parameter from Eq. 22. For the monthly returns in the spot market, each tail consists
of k = 50 observations, or approximately 5.4% of the observations. For the weekly returns in the futures
markets, each tail consists of k = 75 observations, or approximately 4.2% of the observations

than those of the monthly returns in the spot market with estimates that are more
often in the range from 3 to 4. Hence, our estimates suggest the presence of a higher
risk of extreme price spikes in the spot market than is documented for the futures
market. Finally, live cattle is the commodity with the highest estimates for the shape
parameters, implying less heavy tails, which is consistent with our previous results
in Table 2.

While the shape parameter α is relatively similar across commodities within each
market, there is a larger variation in the estimates of the scale parameter C. The vari-
ation in the scale at least partly explains the variation in the VaR estimates within
each market; see Tables 4 and 5 discussed in the next section. Suppose that the
shape parameter α is identical across commodities within a particular market. Then,
assuming independence of returns across commodities, an optimal portfolio could be
constructed on the basis of the mean and the scale (Hyung and De Vries 2005). Here,
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Table 4 Risk estimates for monthly returns in the spot market, 1928-2014

Commodity Probability level: 1.00% Probability level: 0.25%

VaR (95% conf. int.) VaR (95% conf. int.)

Panel (a): Left tail

Corn 19.68 (16.87, 23.31) 26.79 (21.39, 36.57)

Cotton 13.04 (11.03, 14.79) 17.97 (14.00, 22.91)

Oats 20.41 (17.52, 24.44) 29.12 (22.92, 39.88)

Soybeans 20.47 (17.73, 23.25) 26.57 (23.17, 31.27)

Wheat 18.30 (16.02, 21.93) 24.21 (20.28, 32.10)

Live cattle 11.50 (10.08, 12.97) 14.66 (12.78, 16.40)

Oranges 45.20 (40.20, 51.53) 61.06 (53.88, 71.08)

Sugar 21.15 (18.78, 23.56) 27.49 (23.74, 32.58)

Panel (b): Right tail

Corn 23.23 (19.40, 27.75) 37.59 (28.47, 50.01)

Cotton 18.14 (14.48, 22.70) 31.11 (22.70, 44.16)

Oats 25.03 (20.69, 31.86) 40.09 (30.34, 61.07)

Soybeans 24.77 (19.93, 31.12) 42.28 (31.01, 60.20)

Wheat 24.33 (20.68, 29.37) 37.82 (30.54, 51.91)

Live cattle 14.41 (12.16, 16.27) 23.15 (17.50, 27.49)

Oranges 84.61 (65.27, 108.60) 172.37 (111.73, 259.72)

Sugar 38.76 (32.33, 47.48) 69.74 (52.32, 105.24)

Note: The Value-at-Risk (VaR) estimates are expressed in percentage price changes. VaR estimates for the
left tail in panel (a) are calculated from Eq. 24 using the general estimator of Fraga Alves et al. (2009)
for γ̂G. VaR estimates for the right tail in panel (b) are calculated from Eq. 23 using the Hill estimator.
Estimates use k = 50 observations, or approximately 5.4% of the observations. The confidence intervals
(conf. int.) at a 95% level in parentheses are based on a block bootstraps procedure

the scale substitutes for the variance as in more traditional mean-variance portfolio
optimization.18

7 Risk estimates

This section discusses the empirical results of the risk estimates. Table 4 reports risk
estimates for monthly returns in the spot market. The risk estimates for the right
tail are based on the estimator in Eq. 23, which assumes heavy tails in line with the
theory and results shown above. The risk estimates for the left tails are based on the
generalized estimator in Eq. 24. As an illustration take the VaR levels for increases

18Without independence of returns across commodities, the tail dependence among commodity returns
would also play a role; see, e.g., Van Oordt and Zhou (2016).
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Table 5 Risk estimates for weekly returns in the futures market, 1979-2012

Commodity Probability level: 0.25% Probability level: 0.05%

VaR (95% conf. int.) VaR (95% conf. int.)

Panel (a): Left tail

Corn 11.19 (9.52, 13.11) 15.09 (12.13, 19.81)

Cotton 9.81 (8.44, 11.74) 12.84 (10.18, 17.17)

Oats 12.31 (11.26, 13.59) 15.31 (13.50, 17.95)

Soybeans 10.81 (9.35, 12.30) 14.56 (11.77, 18.12)

Wheat 10.55 (8.99, 12.40) 14.21 (11.24, 18.94)

Live cattle 7.09 (5.74, 9.56) 9.88 (6.95, 18.35)

Orange juice 12.40 (11.17, 13.99) 15.98 (13.84, 19.66)

Sugar 14.33 (13.11, 16.17) 17.63 (15.29, 21.52)

Panel (b): Right tail

Corn 13.62 (12.08, 16.39) 20.82 (17.49, 27.85)

Cotton 14.14 (11.21, 18.12) 23.92 (17.18, 34.28)

Oats 15.93 (12.64, 20.99) 25.57 (18.04, 38.59)

Soybeans 12.88 (10.59, 15.39) 20.97 (15.79, 27.43)

Wheat 14.98 (12.63, 17.27) 24.75 (19.64, 30.52)

Live cattle 7.65 (6.81, 8.74) 11.52 (9.73, 14.36)

Orange juice 19.50 (15.82, 24.49) 34.32 (25.03, 49.07)

Sugar 18.90 (16.39, 22.92) 29.43 (23.72, 40.19)

Note: The Value-at-Risk (VaR) estimates are expressed in percentage price changes. VaR estimates for the
left tail in panel (a) are calculated from Eq. 24 using the general estimator of Fraga Alves et al. (2009)
for γ̂G. VaR estimates for the right tail in panel (b) are calculated from Eq. 23 using the Hill estimator.
Estimates use k = 75 observations, or approximately 4.2% of the observations. The confidence intervals
(conf. int.) at a 95% level in parentheses are based on a block bootstraps procedure

in the price of oranges of 84.6% and 172.6% at a 1.00% and 0.25% probability level,
respectively.19 The first estimate means that once every 100 months (around 8 years),
one may expect the spot price of oranges to increase by more than 80% within a
single month. The price is likely to more than double once every 400 months, or
about once every 33 years. The risk estimates also reflect the pattern that the largest
price spikes tend to exceed the largest price declines in the data (Table 1), with larger
risk estimates for the right tail than the left tail.

The highly volatile behaviour of the agricultural commodity prices is again evi-
denced in the table with the risk estimates for weekly futures returns (Table 5). In
the same vein, the table reports the 0.25% and 0.05% VaR for the weekly futures

19We refer to Boudoukh et al. (2007) for a study of the underlying causes for highly volatile orange juice
prices.
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returns.20 The 0.25% VaR is expected to be exceeded about once every eight years,
and the 0.05% VaR about once every 40 years, or about once during the career of an
investment professional.

The relevant risk management information for an investor with a long position
is contained in the left tail of the distribution, shown in Table 5, panel (a). We find
that sugar has the highest risk estimates for price declines in the futures market of
all commodities studied. Once every forty years the price of sugar is expected to
fall by more than 17.6% within a week. The safest commodity, in terms of price
development, appears to be live cattle. Once every forty years the price of live cattle
is expected to fall by more than 9.9% within a week. Orange juice tends to have the
highest upside price risk in the futures market, with a price spike that exceeds 34.3%
within a week once every forty year.

In the introduction, a question was posed regarding the likelihood of a price change
occurring in excess of an market participant’s tolerance level for price increases of
25% (e.g., a food processor or importing country). We apply Eq. 1 using the estimated
parameters Ĉ and α̂ for the right tail of the weekly return distribution for wheat
in Table 3. This gives the probability of exceeding the threshold as Pr(x̃ > u) ≈
14.63 × 25−3.20 ≈ 4.84 × 10−4. The inverse of this number yields the number of
weeks in which at least one price spike of more than 25% is expected to occur. The
outcome is around 2,065 weeks. Hence, with 52 weeks per year, we expect to see
such a large price jump for wheat once every 40 years.

8 Back-testing

To examine the accuracy of the V aR(p) estimates, we employ an out-of-sample
back-testing procedure. In this method, the V aR(p) estimates based on historical
price changes are compared to the realized price changes. Thus, first V aRt−n+m+1
(p) is estimated using a horizon of m past returns: {Rt−n, ..., Rt−n+m}. If the
realized return Rt−n+m+1 exceeds the estimated V aRt−n+m+1(p), then a “VaR-
exceedance” is registered. The above procedure is repeated with a rolling window at
time t − n + m + 2 et cetera. For a series containing n returns, the procedure yields
a total of n − m observations of whether a VaR-exceedance occurred. According to
the VaR definition, if the methodology provides accurate predictions of V aR(p),
then the proportion of VaR-exceedances should have a value close to p. Thus,∑n

j=m+1 1(Rt−n+j > V aRt−n+j (p))/(n − m) = p should match approximately
for accurate VaR estimates, where 1(·) denotes the indicator function. An uncondi-
tional coverage test is used to test whether the number of observed VaR-exceedances
deviates statistically significantly from the expected number (Kupiec 1995).

The procedure is implemented as follows. The back-testing procedure is executed
under the assumption of the normal distribution, the generalized EVT distribution

20Note that the magnitude of the VaR estimates in Tables 5 and 4 cannot be compared directly by the
“square-root-of-time” as would be possible under normality. With heavy tails, one would have to scale up
the weekly VaRs by approximately 41/α (Dacorogna et al. 2001, Proposition 2). For α ≈ 3, the proper
scaling factor is approximately 1.6, not

√
4 = 2.
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and the power law. For the monthly returns in the spot market, the length of the
rolling window for the estimation is set at m = 360 observations (30 years) and
each tail is assumed to contain the most extreme 8.3% (1/12th) of the observations
in the estimation horizon. For the weekly returns in the futures market, the length of
the rolling window is set at m = 520 weekly observations (10 years) and each tail
is assumed to contain the most extreme 5.0% of the observations in the estimation
horizon. A visual representation of the procedure’s results is given in Fig. 3. The
spikes show weekly wheat returns. The bold lines show the 0.25% VaR estimates
from the normal distribution (in gray), the generalized EVT distribution (in blue) and
the power law (in red). The first period without the VaR bands reflects the window
needed for estimation.

The results of the back-testing procedure are reported in Tables 6 and 7 for
monthly and weekly data, respectively. The columns report the number of VaR-
exceedances at three different VaR probabilities for each commodity and each
distribution. The line labelled “average” reports the average number of observed
VaR-exceedances in each column. The bottom line indicates the expected number of
VaR-exceedances for accurate VaR estimates. A risk assessment methodology that
underestimates the risk would lead to an average of observed VaR-exceedances that
is higher than the expected number, while risk estimates that are too conservative
would lead to a number of VaR-exceedances that is too low. Finally, the bottom line
reports the number of unconditional coverage tests that are rejected at a 5 percent
significance level for each column.

Back-testing risk estimates for the right tail of the monthly returns in the spot
market for agricultural commodities exemplify the benefits of assuming a power law
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Fig. 3 Backtesting agricultural prices Value-at-Risk Note: The spikes show the weekly wheat returns. The
lines report the VaR estimated using a rolling window of 520 weeks. The estimates are based on the normal
distribution (in gray), generalized EVT distribution using the estimator of Fraga Alves et al. (2009) (in
blue) and a power law tail distribution using the estimator of Hill (1975) (in red). The VaR estimate from
the normal distribution and generalized EVT distribution are exceeded at a frequency higher than once
every eight years
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Table 6 Back-testing Monthly Returns in the Spot Market, 1928-2014

Distribution: Normal Generalized EVT Heavy-tailed

1.00% 0.50% 0.25% 1.00% 0.50% 0.25% 1.00% 0.50% 0.25%

Panel (a): Number of VaR-exceedances in left tail

Corn 14 10 6 19 11 6 8 2 0

Cotton 15 12 11 16 11 5 8 2 1

Oats 12 9 5 17 10 3 6 1 0

Soybeans 13 9 7 16 8 1 7 2 1

Wheat 17 12 7 17 9 6 10 5 0

Live cattle 6 4 3 9 4 3 4 1 0

Orange juice 11 9 7 19 13 9 7 0 0

Sugar 6 4 3 9 4 1 3 1 1

Average 11.8 8.6 6.1 15.2 8.8 4.2 6.6 1.8 0.4

(Expected) (6.7) (3.3) (1.7) (6.7) (3.3) (1.7) (6.7) (3.3) (1.7)

Rejected tests 4 6 5 6 6 3 0 0 0

Panel (b): Number of VaR-exceedances in right tail

Corn 12 9 8 11 6 4 7 5 4

Cotton 24 19 16 16 9 5 8 2 2

Oats 18 14 10 15 7 4 10 3 2

Soybeans 13 7 5 8 5 4 5 4 4

Wheat 22 17 14 22 11 7 13 7 2

Live cattle 15 9 7 12 8 5 6 2 0

Orange juice 19 17 14 14 10 4 11 3 2

Sugar 25 19 17 16 7 4 5 0 0

Average 18.5 13.9 11.4 14.2 7.9 4.6 8.1 3.2 2.0

(Expected) (6.7) (3.3) (1.7) (6.7) (3.3) (1.7) (6.7) (3.3) (1.7)

Rejected tests 7 7 7 5 4 1 1 0 0

Note: The table reports the number of VaR-exceedances in the back-testing procedure. We estimate the
VaR with a rolling-window of 360 months based on the normal distribution, the generalized EVT dis-
tribution using the estimator of Fraga Alves et al. (2009) and the power law tail distribution. For each
commodity, we count how often the return in any particular month exceeds the VaR estimate based on the
past 360 months (a “VaR-exceedance”). The lines labelled “average” and “expected” report the average
number and expected number of VaR-exceedances for accurate VaR estimates for each column. The bot-
tom line reports the number of unconditional coverage tests that were rejected at a 5 percent significance
level for each column

tail. Table 6, panel (b) shows that assuming a normal distribution leads to far too
many VaR-exceedances in the right tail. The predictions from the normal distribu-
tion increasingly underestimate the risk when one moves further into the tail. The
third column in the table shows that assuming a normal distribution leads to a num-
ber of 0.25% VaR-exceedances that is more than 5 times too high. Moving to the
generalized EVT distribution partly alleviates this problem, since the actual number
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Table 7 Back-testing Weekly Returns in the Futures Market, 1979-2012

Distribution: Normal Generalized EVT Heavy-tailed

1.00% 0.50% 0.25% 1.00% 0.50% 0.25% 1.00% 0.50% 0.25%

Panel (a): Number of VaR-exceedances in left tail

Corn 27 16 11 29 20 11 25 12 5

Cotton 23 13 10 31 18 9 23 9 5

Oats 25 17 11 26 15 7 21 5 2

Soybeans 26 17 13 23 13 8 16 8 4

Wheat 17 10 8 30 14 9 24 10 5

Live cattle 17 12 8 14 8 4 13 6 3

Orange juice 28 19 15 28 16 8 24 12 3

Sugar 21 14 10 18 11 6 13 5 1

Average 23.0 14.8 10.8 24.9 14.4 7.8 19.9 8.4 3.5

(Expected) (12.5) (6.3) (3.1) (12.5) (6.3) (3.1) (12.5) (6.3) (3.1)

Rejected tests 6 6 8 6 6 5 5 0 0

Panel (b): Number of VaR-exceedances in right tail

Corn 37 27 19 23 12 4 15 6 2

Cotton 30 22 17 24 15 7 20 8 3

Oats 21 13 7 12 7 4 10 5 5

Soybeans 23 13 10 19 10 3 17 3 1

Wheat 35 23 18 24 15 10 18 11 4

Live cattle 18 11 8 20 9 4 17 6 3

Orange juice 32 24 20 22 13 7 18 9 2

Sugar 18 12 6 18 9 4 13 4 1

Average 26.8 18.1 13.1 20.2 11.2 5.4 16.0 6.5 2.6

(Expected) (12.5) (6.3) (3.1) (12.5) (6.3) (3.1) (12.5) (6.3) (3.1)

Rejected tests 6 6 6 4 3 1 0 0 0

Note: The table reports the number of VaR-exceedances in the back-testing procedure. We estimate the
VaR with a rolling-window of 520 weeks based on the normal distribution, the generalized EVT dis-
tribution using the estimator of Fraga Alves et al. (2009) and the power law tail distribution. For each
commodity, we count how often the return in any particular week exceeds the VaR estimate based on the
past 520 weeks (a “VaR-exceedance”). The lines labelled “average” and “expected” report the average
number and expected number of VaR-exceedances for accurate VaR estimates for each column. The bot-
tom line reports the number of unconditional coverage tests that were rejected at a 5 percent significance
level for each column

of VaR-exceedances is closer to the expected number of VaR-exceedances, but still
exceeds the expected number of VaR-exceedances by more than a factor two for the
probability levels 0.50% and 0.25%. In contrast, assuming heavy-tailedness leads to a
number of VaR-exceedances that is close to the expected number. For the probability
levels of 0.50% and 0.25%, the average number of exceedances is, respectively, 3.2
and 2.0, which is close to their expected number of 3.3 and 1.7, respectively. These
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estimates concern the most extreme events, or about one observation in 16.7 and
33.3 year, respectively. The generally better performance of assuming a heavy-tailed
distribution is also reflected in the lower number of rejected unconditional coverage
tests in the bottom line of the table, in particular for the smaller probability levels.

As discussed, one may expect for the left tail that the heavy-tailed approximation
leads to risk estimates that are somewhat too conservative. This is indeed con-
firmed in Table 6, panel (a), where the heavy-tailed approximation leads to fewer
VaR-exceedances than expected. For the probability levels of 0.50% and 0.25%, the
average number of exceedances is, respectively, 1.8 and 0.4, which is less than the
expected number of 3.3 and 1.7, respectively. However, depending on the context, it
may still be better to use the power law approximation than the generalized EVT dis-
tribution, which turns out to lead to more VaR-exceedances than expected, and to a
rejection of the unconditional coverage test for some of the series.

Assuming heavy-tailedness also works well when modeling the risk for weekly
returns in the spot market for observations both far in the right and far in the left
tail (Table 7). The average number of observed exceedances in the left and right tail
at the 0.25% probability is, respectively, 3.5 and 2.6, which is close to the expected
number of 3.1. These estimates concern events that are expected to occur only once
every 8 years. The accuracy of risk estimates for weekly returns based on the power
law is also substantially better when compared to the normal and the generalized
EVT distribution, which both tend to underestimate the risk and lead to too many
VaR-exceedances. The results for the left tail provide support for using a Taylor
approximation in the form of a power law function to estimate extreme price risks
at medium to higher loss levels in the context of weekly futures returns, even in
situations where the theoretical return distribution is bounded.

9 Conclusion

A proper understanding of extreme commodity returns is instrumental to any market
participant in agricultural commodity markets. Especially knowledge regarding the
largest price swings is important for risk management purposes. We construct a two-
sector general equilibrium model which describes how productivity shocks affect
agricultural commodity prices. In our model, extreme price spikes arise as a result of
productivity shocks in the agricultural sector, which are translated into upward price
changes in a nonlinear manner, resulting in a heavy-tailed equilibrium return distri-
bution in the commodity market. Our study shows how this mechanism may result in
heavy-tailed price distributions, even if the productivity shocks are not heavy-tailed
themselves.

We provide further empirical evidence on the heavy-tailedness of agricultural
commodity price returns in both the futures market and the spot market. Extreme
Value Theory is used to estimate the parameters of the power law in the tail of their
distribution. These estimates are used to measure an agricultural commodity investor’s
exposure to extreme price risks. We calculate Value-at-Risk measures to provide esti-
mates of the likelihood and size of the largest losses an investor may encounter.
Back-testing shows that this methodology provides relatively accurate estimates of
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risk measures for agricultural commodities when compared to estimates based on the
normal distribution or the generalized EVT distribution, in particular for the right tail.

Our results have two implications. First, we document that market participants
in this asset class are likely to encounter large future price swings. Our model sup-
ports the prevalence of fat-tailed commodity price distributions and thus a highly
volatile return behaviour. Secondly, the risk measurement framework in this paper
informs market participants on a well-suited method to quantitatively assess the
largest price risks, with our empirical results providing essential knowledge on when
the methodology performs particularly well.

An interesting observation is that the price spikes of live cattle tend to be less
heavy-tailed (if at all) than the price spikes of the crop commodities. One potential
explanation that is consistent with our theoretical framework is that the production
of crop commodities in our dataset are strongly affected by adverse productivity
shocks arising from short-term weather conditions, while the supply of live cattle is
less impacted by such adverse productivity shocks. Arguably, a single commodity is
insufficient to validate our framework, but exploring the factors that can explain the
differences in heavy-tailedness among a broader set of commodities is an interesting
direction for future research.

Acknowledgments Comments and suggestions from Alexis A. Toda, Chen Zhou, Job Swank, and Pierre
M. Lafourcade are gratefully acknowledged. Maarten van Oordt is grateful for the hospitality shown by the
Economics department of the Erasmus School of Economics. Views expressed do not necessarily reflect
those of the Bank of Canada.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons
licence, and indicate if changes were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://creativecommonshorg/licenses/by/4.
0/.

Appendix A: Derivation of equilibrium prices

A.1 Demand

The first order conditions for optimality entail, for each j = 1, (...), n,
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and

wL + �(Q) = qZ + 1

n

n∑
i=1

piQi .

The first order conditions imply the familiar price and wage ratios. For each i, j =
1, (...), n, we have
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for each j = 1, (...), n, we have
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where the price index for differentiated goods P is defined as in equation Eq. 8.
Then the labor supply can be written as

L =
(

(1 − θ)1−θ θθ w

q1−θP θ

)1/δ

. (25)

The competitive good demand is

Z = (1 − θ)
wL + �(Q)

q
. (26)

The differentiated goods demanded can be expressed for each i = 1, (...), n as
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(pi

P

)ρ/(ρ−1)

. (27)

A.2 Supply

From the perfectly competitive agricultural market we have that equilibrium profits
in the agricultural sector equal zero, that is,

�θ(Z) = qZ − wN =
(
q − w

B

)
Z = 0,

so that
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The differentiated goods profit function for each i = 1, (...), n reads
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The producer exploits his pricing power, but ignores his pricing effect on the price
index P of the differentiated goods and the consumer income wL + �(Q).21

Differentiation gives for each i = 1, (...), n

∂�i(Qi)

∂pi

= 1

ρ − 1
Qi

(
ρ − 1

A

w

pi

)
.

Exploiting the pricing power therefore implies setting prices for each i = 1, (...), n

pi = w

ρA
. (29)

Hence, P = w/ρA as all prices are identical. Total profits in the differentiated goods
sector equal

�(Q) = 1

n
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θ [wL + �(Q)]
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= (1 − ρ) θ [wL + �(Q)] .

Solve for the total sectorial profits as

�(Q) = (1 − ρ) θ

1 − (1 − ρ) θ
wL. (30)

A.3 Equilibrium

It follows in equilibrium, after substituting the price levels into the labor supply
Eq. 25, that

L =
(
θθ (1 − θ)1−θ AθB1−θ

)1/δ

ρθ/δ = ϕρθ/δ, (31)

say, and where

ϕ =
(
θθ (1 − θ)1−θ AθB1−θ

)1/δ

.

Furthermore, from Eqs. 26, 30 and 31, we obtain

Z = (1 − θ)
B

1 − (1 − ρ) θ
ϕρθ/δ . (32)

Similarly, using Eqs. 27, 30 and 31, we obtain for each j = 1, (...), n

Qj = θ
A

1 − (1 − ρ) θ
ρϕρθ/δ .

Hence,
1

n

n∑
j=1

Qj = θ
A

1 − (1 − ρ) θ
ϕρθ/δ+1. (33)

21One can easily incorporate this effect as well, if desired. For two reasons we do not follow this route.
One may doubt that producers take this macro effect of their pricing behavior into account. Moreover,
it adds little to the insights derived from specifying the differentiated goods sector. The macro literature
usually ignores this effect as well.

559On agricultural commodities’ extreme price risk



With the above preparations, we now derive the implications for the equilibrium
prices. From Eq. 28, combined with Eqs. 9 and 31, we obtain

q = w

B
= M

B

1

L
= M

1/ρθ/δ

B
(
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)1/δ
.

Similarly, using Eq. 29 combined with Eqs. 9 and 31 yields for each i = 1, (...), n
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L
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A
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)1/δ
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Appendix B: Proof of Proposition 2

Given Eq. 12, we want to find the condition on the density for B such that probability
distribution of the price q̃ follows a heavy-tailed distribution. We have that Pr(q̃ >

u) ∼ L(u)u−α as u → ∞ if q̃ is regularly α-varying at infinity with 0 < α < ∞,
i.e., if

lim
t→∞

1 − Fq(tu)

1 − Fq(t)
= u−α with α ∈ R

+, (34)

where Fq denotes the cumulative distribution function of q̃, see also De Haan (1970).
We need to find the condition such that Fq it is regularly varying at infinity. Rewriting
Eq. 34 with L’Hôpital’s Rule gives the condition

lim
t→∞

ufq(tu)

fq(t)
= u−α with α ∈ R

+, (35)

where fq denotes the density of q̃. Given Eq. 12, we have that the equilibrium
price q(B) is a strictly decreasing function of B for θ ∈ (0, 1). Therefore, by a
transformation of variable we have that

fq(q̃) =
∣∣∣∣dB(q̃)

dq̃

∣∣∣∣ fB(B(q̃)), (36)

where B(q̃) denotes the inverse of q̃(B). With the inverse of Eq. 12 and the derivative
of the inverse of Eq. 12 this gives

fq(q̃) = 1

η
�1/ηq̃−(1/η+1)fB(�1/ηq̃−1/η), (37)

where

η = 1 + δ − θ

δ
.

Substituting Eq. 37 into Eq. 35 gives

lim
t→∞

u 1
η
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1
η
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Simplifying gives

lim
t→∞

u−1/ηfB(�1/ηt−1/ηu−1/η)

fB(�1/ηt−1/η)
= u−α with α ∈ R

+;
lim
s↓0

wfB(sw)
fB(s)

= wηα with α ∈ R
+. (38)

where we use the notation w = u−1/η and s = �1/ηt−1/η. Hence, given Eq. 12, if
Eq. 38 holds true for the density function of B, we have that Pr(q̃ > u) ∼ L(u)u−α

as u → ∞. Proposition 2 is then obtained by writing ξ = ηα in the condition in
Eq. 38 and using η > 0.

Appendix C: Commodity selection

In this appendix we explain how the commodities for this research are selected.
The employed futures series need to satisfy two conditions: Availability and rel-
evance for the US agricultural industry. Initially, our sample contains all traded
commodity futures within the US. A list of 19 commodities remains after remov-
ing non-agricultural and identical commodities. Four commodities from this list are
removed because of data availability (butter, milk, dry whey and rice are only avail-
able from 1996 onwards or even later). Next, six of the remaining fifteen series are
removed because of low relevance: Because soybeans is included, soy meal and soy-
bean oil are removed. Because live cattle is included, cattle feeder is removed. Cocoa
and coffee are removed because of relatively low relevance for the US agricultural
sector. Finally, lean hogs and frozen pork bellies were dropped because of lack of
reliable long time series with spot prices. With both the Thomson Reuters Datastream
codes and Global Financial Data tickers provided in parenthesis, this leaves us with
corn (CC.; C US2D), cotton (NCT; COT AFRD), oats (CO.; OATS RAD), soy-
beans (CS.; SYB TD), wheat (CW.; W USSD), live cattle (CLC; ICXD), orange
juice (NJO; CMORANGM), sugar (NSB; SU1599D).
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