
ASIAN J. MATH. c© 2010 International Press
Vol. 14, No. 2, pp. 175–212, June 2010 002

ON ALGEBRAIC EXPRESSIONS OF SIGMA FUNCTIONS

FOR (n, s) CURVES∗

ATSUSHI NAKAYASHIKI†

Dedicated to Masaki Kashiwara on his sixtieth birthday

Abstract. An expression of the multivariate sigma function associated with an (n,s)-curve is
given in terms of algebraic integrals. As a corollary the first term of the series expansion around
the origin of the sigma function is directly proved to be Schur function determined from the gap
sequence at infinity.
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1. Introduction. One of the prominent features of Weierstrass’ elliptic sigma
functions is their algebraic nature directly related to the defining equation of the
elliptic curve. Klein [19, 20] extended the elliptic sigma functions to the case of
hyperelliptic curves from this point of view. Since they are defined, it had been one of
the central problems to determine the coefficients of the series expansion of the sigma
functions. This problem was studied mainly by making linear differential equations
satisfied by sigma functions [28, 29, 4, 5, 6, 7], by making non-linear equations [3] for
genus two and by using algebraic expressions [19, 20, 13]. To determine a solution
of linear differential equations it is necessary to specify an initial condition which
requires separate consideration. Therefore the expansion was mainly studied for the
sigma functions with non-singular even half periods as characteristics.

Recently Klein’s sigma function is further generalized to the case of more gen-
eral plane algebraic curves called (n, s)-curves by Buchstaber, Enolski and Leykin
[9, 10, 11, 12, 8]. They made an important observation that the first term, with
respect to certain degree introduced in the theory of soliton equations, of the series
expansion of the sigma function, which corresponds to the most singular character-
istic, is described by Schur function. Although such connection is expected from the
theory of the KP-hierarchy [27, 15], a concrete description of the degeneration of the
quasi-periodic solutions to singular curves has not been done before. In order to es-
tablish the connection to Schur functions Buchstaber et al. [10] have developed the
rational theory of abelian integrals and characterized Schur functions by Riemann’s
vanishing theorem. Moreover Buchstaber and Leykin [8] have proposed a system of
linear differential equations satisfied by sigma functions, which is independent of char-
acteristics. Combining those results is expected to be effective for the further study
of sigma functions with singular characteristics. Unfortunately a basic formula ( the
formula (4) in [11]), on which some of results of [8, 10] including the assertion related
to Schur functions mentioned above depend, is not correct.

The purpose of this paper is to generalize Klein’s algebraic formulas for the hy-
perelliptic sigma functions to the case of (n, s)-curves and is to establish the relation
with Schur functions directly, that is, without using the results of [10, 11]. The sigma
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function, in this paper, signifies the sigma function with Riemann’s constant as its
characteristic [9].

The heart of the algebraic formula for the extended sigma function is in the
formula for the elliptic sigma function given by Klein [19]. Therefore let us briefly
explain it. Let σ(u) and ℘(u) be Weierstrass’ sigma and elliptic functions associated
with the periods 2ω1, 2ω2. Consider two variables u1, u2 and set pi = (xi, yi) =
(℘(ui), ℘

′(ui)). They are points on the elliptic curve y2 = 4x3 − g2x− g3. By making
use of the addition theorem for ℘(u) the bilinear form

ω̂ = ℘(u2 − u1)du1du2

can be written in an algebraic form as

ω̂ =
2y1y2 + 4x1x2(x1 + x2) − g2(x1 + x2) − 2g3

4y1y2(x1 − x2)2
dx1dx2.

With this ω̂ the elliptic sigma function is expressed as

σ(u2 − u1) =
x1 − x2√

y1y2
exp

(
1

2

∫ p̄2

p̄1

∫ p2

p1

ω̂

)
, (1)

where p̄i = (xi,−yi). What is remarkable for this formula is that the sigma function is
expressed by the algebraic functions xi, yi and the integral of the algebraic differential
form ω̂. This formula very clearly manifests the algebraic structure of the sigma
function. For example, prescribing degree 2i to gi, one can deduce that the coefficients
of the series expansion of σ(u) at the origin become homogeneous polynomials of g2

and g3 directly from this formula without using differential equations.
For higher genus curves one needs to introduce g variables in the sigma func-

tion. Already in the case of genus one it is possible to introduce arbitrary number of
variables. In fact the generalized addition formula due to Frobenius and Stickelberger
makes it possible to express the “n-point function” in terms of the “2-point function”:

σ

(
N∑

i=1

(ui − vi)

)
=

∏N
i,j=1 σ(ui − vj) det

(
℘(i−1)(uj)

)
1≤i,j≤2N∏

i<j σ(ui − uj)σ(vj − vi)
∏N

i,j=1 (℘(vj) − ℘(ui))
,

where in the determinant we set uN+j = −vj , 1 ≤ j ≤ N . This formula suggests how
one should increase the number of variables in the sigma function in general.

Consider the algebraic curve X defined by

yn − xs −
∑

ni+sj<ns

λijx
iyj = 0,

with n and s being relatively coprime integers satisfying 2 ≤ n < s. We call it a
(n, s) curve. If it is non-singular its genus is g = 1/2(n − 1)(s − 1). The sigma
function for X is defined as the holomorphic function on Cg which satisfies certain
quasi-periodicity and normalization conditions (see (43), (44)). It can be considered
as a holomorphic section of some line bundle on the Jacobian J(X) of X or as a
multi-valued holomorphic function on J(X) whose multivalued property is specified
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by the quasi-periodicity. In turn it can also be considered as a symmetric multi-
valued holomorphic function on Xg through Abel-Jacobi map. More generally we
construct a symmetric multi-valued holomorphic function on XN with the required
quasi-periodicity properties for any N ≥ 1.

The building block of the formula is the prime function which is a certain mod-
ification of the prime form [17]. It takes a similar form to the right hand side of
(1):

Ẽ(p1, p2) =
x(p2) − x(p1)√

fy(p1)fy(p2)
exp

(
1

2

n−1∑

i=1

∫ p
(i)
2

p
(i)
1

∫ p2

p1

ω̂

)
,

for certain algebraic bilinear form ω̂, where {p(0), ..., p(n−1)} is the inverse image of
p = p(0) by the map x : X −→ P1, x : (x, y) 7→ x. It is skew symmetric and has the
same transformation rule as that of the sigma function when one of the argument goes
round cycles of X . Therefore this function can be considered as something like the
sigma function restricted to the Abel-Jacobi image of X ×X although the restriction
of the sigma function itself vanishes identically. Then the function on XN (N ≥ 3)
is constructed in a form suggested by Frobenius-Stickelberger’s formula using the ”2-
point function” Ẽ(p1, p2). In this way the problem of constructing the sigma function
reduces to finding certain meromorphic function on XN . This problem is solved for
(n, s)-curves.

To write explicitly the formula we need to describe a basis of meromorphic func-
tions on X which are singular only at ∞. Prescribe degrees n and s to x and y, order
the functions xiyj , i ≥ 0, 0 ≤ j ≤ n− 1 from lower degrees and name them as f1 = 1,
f2, f3,... Then the formula for the sigma function takes the form (Theorem 2):

σ

(
N∑

i=1

∫ pi

qi

du

)
= CN MN FN ,

where du is the vector of a basis of holomorphic one forms (12), CN is the explicit
constant (62) and

MN =

∏N
i,j=1 Ẽ(pi, qj)

∏
i<j

(
Ẽ(pi, pj)Ẽ(qi, qj)

)∏N
i,j=1 (x(pi) − x(qj))

,

FN =
DN

∏
i<j (x(qi) − x(qj))

n−2∏N
k=1

∏
1≤i<j≤n−1

(
y(q

(i)
k ) − y(q

(j)
k )
) ,

DN = det (fi(pj))1≤i,j≤nN ,

where we set

pN+(n−1)(k−1)+j = q
(j)
k , 1 ≤ k ≤ N, 1 ≤ j ≤ n − 1.

In the case of hyperelliptic curves of genus g, that is, the case of (n, s) = (2, 2g+1),

FN = DN , q
(1)
k = (x,−y) for qk = (x, y) and the formula coincides with that given by

Klein [20].
It follows from this formula that, prescribing degree ns − ni − sj to λij , Taylor

coefficients of the sigma function become homogeneous polynomials of λij and the
first term, with respect to certain degrees, of the expansion of the sigma function is
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Schur function corresponding to the partition determined from the gap sequence at
∞ (Theorem 3). The results have important applications in the study of differential
structure of abelian functions [14, 24, 25].

The plan of the present paper is as follows. In section 2 necessary facts on
Riemann surfaces and related objects on them such as flat line bundles, prime form and
normalized bilinear form are reviewed. The meromorphic functions and differentials
on (n, s)-curves are studied in section 3. The Important object here is the algebraic
bilinear form ω̂. The existence of it is proved in section 3.3 and the relation with the
symplectic basis of the first cohomology group of an (n, s)-curve is given in section
3.4. In section 4 the properties of Schur functions are reviewed. The sigma function of
an (n, s)-curve is defined and studied in section 5. After giving the definition and an
analytic expression of the sigma function in section 5.1, an algebraic expression of the
prime form is given in section 5.2. In section 5.3 the prime function is introduced and
its properties are established using those of the prime form. The algebraic expressions
of the sigma function are given in section 5.4. Theorems 1 and 2 are main results of
this paper. In section 5.5 the series expansion of the sigma function is studied and the
proportionality constants in the proofs of main theorems are determined. Examples
of (2, 3) curve and more generally (2, 2g + 1) curves are given in section 5.6 and 5.7.
In section 6 some comments are given.

2. Preliminaries.

2.1. Riemann’s theta function. Let τ be a g × g symmetric matrix whose
imaginary part is positive definite and a, b ∈ Rg. Riemann’s theta function with
characteristics t(a, b) is defined by

θ

[
a
b

]
(z) =

∑

n∈Zg

exp
(
πit(n + a)τ(n + a) + 2πi(n + a)(z + b)

)
.

The theta function with zero characteristic is simply denoted by θ(z). We list here
some of the fundamental properties of Riemann’s theta functions.
(i)

θ

[
a
b

]
(z + m1 + τm2) =

exp
(
2πi(tam1 − tbm2) − πitm2τm2 − 2πitm2z

)
θ

[
a
b

]
(z), m1, m2 ∈ Z. (2)

(ii)

θ

[
a
b

]
(−z) = (−1)4

tabθ

[
a
b

]
(z), a, b ∈ 1

2
Zg (3)

(iii)

θ

[
a
b

]
(z) = exp

(
πitaτa + 2πita(z + b)

)
θ(z + τa + b). (4)

2.2. Flat line bundle. We briefly review some fundamental facts about Rie-
mann surfaces and the description of flat line bundles on them. We refer to [17, 18]
for more details.
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Let X be a compact Riemann surface of genus g, X̃ the universal cover of X and
π: X̃ −→ X be the projection. We fix a marking of X . It means that we fix a base
point p0 on X , a base point p̃0 on X̃ which lies over p0 and a canonical basis {αi, βj}
of π1(X, p0), . Then the covering transformation group can be canonically identified
with π1(X, p0). For k = 0, 1, a holomorphic k-form on X can be identified with that
on X̃ which is π1(X, p0)-invariant.

Let dvj , 1 ≤ j ≤ g be the basis of holomorphic one forms normalized as
∫

αj
dvi =

δij and τ the period matrix, τ = (
∫

βj
dvi). Set dv = t(dv1, ..., dvg). The Jacobian

variety J(X) is defined by J(X) = Cg/τZg + Zg.
Let SkX = Xk/Sk be the k-th symmetric product of X . An element of it can be

considered as a positive divisor on X of degree k. We denote by Ik the Abel-Jacobi
map with the base point p0:

Ik : SkX −→ J(X), Ik(p1 + · · · + pk) =

k∑

i=1

∫ pi

p0

dv.

Then J(X) can be identified with Pic0(X) of linear equivalence classes of divisors of

degree zero by Abel-Jacobi map: for A =
∑d

i=1 pi,B =
∑d

i=1 qi,

I : Pic0(X) −→ J(X),

B − A 7→ I(B − A) = Id(B) − Id(A).

We sometimes use Ik for the map Xk −→ J(X).
A flat line bundle on X is described by a representation χ : π1(X, p0) −→ C∗,

where C∗ is the multiplicative group of non-zero complex numbers. Namely a mero-
morphic section of the line bundle defined by χ is described by a meromorphic function
F on X̃ which satisfies

F (γp̃) = χ(γ)F (p̃).

Since C∗ is abelian, the image χ(γ) of γ ∈ π1(X, p0) depends only on the image of γ
in the homology group H1(X, Z), which we call the abelian image of γ.

Two representations χ1 and χ2 defines a holomorphically equivalent line bundle
if and only if

χ1(γ)χ2(γ)−1 = exp

(∫

γ

ω

)

for some holomorphic one form ω and any γ ∈ π1(X, p0).
The Jacobian variety can also be identified with the set of holomorphic equivalence

classes of flat line bundles on X . The flat line bundle corresponding to the degree
zero divisor A − B with A, B positive divisors as before, is described by

χ(αi) = 1, χ(βi) = exp

(
−2πi

∫ B

A

dvi

)
, (5)

where

∫ B

A

dv =

g∑

i=1

∫ qi

pi

dv,
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with a path from pi to qi being specified. Another choice of paths gives an equivalent

line bundle. We denote the equivalence class of this bundle by Lα, where α =
∫ B

A dv ∈
J(X).

For α ∈ Cg there exists a unique set of vectors α′, α′′ ∈ Rg such that

α = τα′ + α′′.

The vector t(α′, α′′) is called the characteristic of α. We sometimes identify α with its

characteristic. Let t(α′, α′′) be the characteristic of
∫ B

A
dv ∈ Cg, where the integration

paths are specified. Then the function on X̃

θ(
∫ p̃

p̃0
dv + τα′ + α′′ + e)

θ(
∫ p̃

p̃0
dv + e)

,

is a meromorphic section of Lα corresponding to χ, where e ∈ Cg is taken such that
numerators and denominators are not identically zero as a function of p̃.

There exists a unique unitary representation for each equivalence class of line
bundles. The unitary representation for Lα is given by

χ′(αj) = exp(2πiα′
j), χ′(βj) = exp(−2πiα′′

j ). (6)

A Meromorphic sections of Lα corresponding to χ′ is given by

θ[α](
∫ p̃

p̃0
dv + e)

θ(
∫ p̃

p̃0
dv + e)

,

where e satisfies the same conditions as before.

2.3. Prime form. Let δ0 be Riemann divisor for the choice {αi, βj} and L0 the
corresponding holomorphic line bundle of degree g−1. For α ∈ J(X) set Lα = Lα⊗L0.

There exists a non-singular odd half period α [23, 17]. By Riemann’s theorem
there is a unique divisor p1 + · · · + pg−1 such that

α = p1 + · · · + pg−1 − δ0,

in J(X). Considering the function θ[α](
∫ y

x dv) we see that the divisor of the holomor-
phic one form

g∑

i=1

∂θ[α]

∂zi
(0)dvi(p)

is 2
∑g−1

i=1 pi. Since α is non-singular, there is a unique, up to constant, holomorphic
section of Lα which vanishes on p1 + · · · + pg−1. Thus there exists a holomorphic
section hα of Lα such that

h2
α(p) =

g∑

i=1

∂θ[α]

∂zi
(0)dvi(p).

We use the same symbol hα for the pull back of hα to X̃. Then the prime form
[17, 23, 1] is defined as

E(p̃1, p̃2) =
θ[α](

∫ p̃2

p̃1
dv)

hα(p̃1)hα(p̃2)
, p̃1, p̃2 ∈ X̃. (7)



SIGMA FUNCTIONS FOR (n, s) CURVES 181

By construction it vanishes to the first order at π(p̃1) = π(p̃2) and at no other divisors.
Let πj : X ×X −→ X be the projection to the j-th component and I2−1 : X ×X −→
J(X) the map defined by I2−1(p1, p2) = I1(p2) − I1(p1). Then E(p̃1, p̃2) can be
considered as a holomorphic section of the line bundle π∗

1L−1
0 ⊗ π∗

2L−1
0 ⊗ I∗2−1Θ on

X ×X , where Θ is the line bundle on J(X) defined by the theta divisor Θ = {θ(z) =
0}. Notice that the prime form does not depend on the choice of α.

We list some fundamental properties of the prime form.

(i) E(p̃2, p̃1) = −E(p̃1, p̃2).

(ii) E(p̃1, p̃2) = 0 ⇐⇒ π(p̃1) = π(p̃2).

(iii) For p̃ ∈ X̃ take a local coordinate t around p̃. Then the expansion in t(p̃2) at
t(p̃1) is of the form

E(p̃1, p̃2)
√

dt(p̃1)dt(p̃2) = t(p̃2) − t(p̃1) + O
(
(t(p̃2) − t(p̃1))

3
)
.

(iv) Consider the function

F (p̃) =
E(p̃, p̃2)

E(p̃, p̃1)
,

for p̃1, p̃2 ∈ X̃ . If the abelian image of γ ∈ π1(X, p0) is
∑g

i=1 m1,iαi +
∑g

i=1 m2,iβi,

F (γp̃) = exp

(
2πitm2

∫ p̃2

p̃1

dv

)
F (p̃),

where mi = t(mi,1, ..., mi,g).

2.4. Normalized fundamental form. Let KX be the canonical bundle of X .
A section of π∗

1KX ⊗ π∗
2KX is called a bilinear form on X × X and a bilinear form

w(p1, p2) is called symmetric if w(p2, p1) = w(p1, p2). Since

H0(X × X, π∗
1KX ⊗ π∗

2KX) ≃ π∗
1H0(X, KX) ⊗ π∗

2H0(X, KX),

any holomorphic symmetric bilinear form can be written as

∑
cijdvi(p1)dvj(p2), cij = cji, (8)

where cij ’s are constants.
We denote by ∆ the diagonal set of X × X :

∆ = {(p, p) | p ∈ X }.

Definition 1. A meromorphic symmetric bilinear form ω(p1, p2) on X × X is
called a normalized fundamental form if the following conditions are satisfied.

(i) ω(p1, p2) is holomorphic except ∆ where it has a double pole. For p ∈ X take a
local coordinate t around p. Then the expansion in t(p1) at t(p2) is of the form

ω(p1, p2) =

(
1

(t(p1) − t(p2))2
+ regular

)
dt(p1)dt(p2). (9)
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(ii)

∫

αj

ω = 0, where the integration is with respect to any one of the variables.

Normalized fundamental form exists and unique. It can be expressed explicitly
using the prime form as [17]

ω(p1, p2) = dp̃1dp̃2 log E(p̃1, p̃2), (10)

where pi = π(p̃i). Integrating this formula we get

Proposition 1. [17, 18] For ã, b̃, c̃, d̃ ∈ X̃,

exp

(∫ b̃

ã

∫ d̃

c̃

ω

)
=

E(b̃, d̃)E(ã, c̃)

E(ã, d̃)E(b̃, c̃)
.

3. (n, s) curve.

3.1. Definition. For relatively coprime integers n and s satisfying s > n ≥ 2
consider the polynomial [11]

f(x, y) := yn − xs −
∑

in+js<ns

λijx
iyj . (11)

Let Xaff be the plane algebraic curve defined by f(x, y) = 0. We assume that Xaff

is non-singular. Denote X the corresponding compact Riemann surface which can be
considered as Xaff completed by one point ∞. The point ∞ becomes a ramification
point with the ramification index n. The genus of X becomes g = 1/2(n− 1)(s − 1).
Hereafter we take ∞ as a base point and fix a marking of X , (∞, ∞̃, {αi, βi}).

A basis of holomorphic one form on X is given by

dui = −xai−1yn−1−bidx

fy
, (12)

where {(ai, bi)} is the set of non-negative integers satisfying

1 ≤ b ≤ n − 1, 1 ≤ a ≤ [
sb − 1

n
],

and ordered as −na1 + sb1 < · · · < −nag + sbg [10]. This order is specified in such a
way that the order of zeros at ∞ is increasing.

Example. dug = −dx

fy
, dug−1 = −xdx

fy
.

3.2. Meromorphic functions on X. The space of meromorphic functions on
X which are holomorphic on X\{∞} coincides with the space of polynomials of x
and y. We describe a basis of this space. Let w1 < · · · < wg be the gap sequence at
∞. It means that there is no meromorphic function on X which has poles only at ∞
of order wi. Then

Lemma 1. [10] (i) w1 = 1 and wg = 2g − 1.
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(ii) Let 0 = w∗
1 < · · · < w∗

g be integers such that {w∗
i , wi|i = 1, ...g} = {0, 1, ..., 2g−1}.

Then (2g − 1 − w∗
1 , ..., 2g − 1 − w∗

g) = (wg , ..., w1).

Notice that {w∗
i } are non-gaps between 0 and 2g − 2.

A local parameter t around ∞ can be taken in such a way that

x =
1

tn
, y =

1

ts
(1 + O(t)) . (13)

In particular x and y have poles at ∞ of order n and s respectively. For a meromorphic
function h on X we denote by ord∞ h the order of poles at ∞. Then

ord∞ xiyj = ni + sj.

Let L(k∞) be the vector space of meromorhic functions on X which are holomor-
phic on X\{∞} and have poles at ∞ of order at most k. Set L(∗∞) = ∪∞

k=0L(k∞),
which is the space of meromorphic functions on X holomorphic outside ∞. A basis
of L(∗∞) is given by

xiyj, i ≥ 0, 0 ≤ j ≤ n − 1. (14)

There are exactly g-gaps in the set {ord∞xiyj}:

Z≥0\{ni + sj |i ≥ 0, 0 ≤ j ≤ n − 1 } = {w1 < · · · < wg}.

Let fi be the monomial basis (14) such that

0 = ord∞f1 < ord∞f2 < ord∞f3 < · · · .

In particular f1 = 1, f2 = x. By Riemann-Roch theorem

dimL((N + g − 1)∞) = N for N ≥ g.

Explicitly, using the local coordinate t, we have

fi =






1

tw
∗

i

(1 + O(t)) 1 ≤ i ≤ g

1

tg−1+i
(1 + O(t)) g + 1 ≤ i

(15)

Notice that ord∞ fg = 2g − 2.

Example. (n, s) = (2, 2g + 1):

(w1, ..., wg) = (1, 3, ..., 2g − 1), (w∗
1 , ..., w∗

g) = (0, 2, 4, ..., 2g − 2),

(f1, f2, ...) = (1, x, ..., xg, y, xg+1, xy, xg+2, x2y, ...).

(n, s) = (3, 4), g = 3:

(w1, w2, w3) = (1, 2, 5), (w∗
1 , w∗

2 , w
∗
3) = (0, 3, 4),

(f1, f2, ...) = (1, x, y, x2, xy, y2, x3, x2y, xy2, ...).

(n, s) = (3, 5), g = 4:

(w1, w2, w3, w4) = (1, 2, 4, 7), (w∗
1 , w∗

2 , w
∗
3 , w∗

4) = (0, 3, 5, 6),
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(f1, f2, ...) = (1, x, y, x2, xy, x3, y2, x2y, x4, xy2, x3y, ...).

(n, s) = (3, 7), g = 6:

(w1, ...w6) = (1, 2, 4, 5, 8, 11), (w∗
1 , ..., w∗

6) = (0, 3, 6, 7, 9, 10),

(f1, f2, ...) = (1, x, x2, y, x3, xy, x4, x2y, y2, ...).

(n, s) = (4, 5), g = 6:

(w1, ...w6) = (1, 2, 3, 6, 7, 11), (w∗
1 , ..., w∗

6) = (0, 4, 5, 8, 9, 10),

(f1, f2, ...) = (1, x, y, x2, xy, y2, x3, x2y, xy2, ...).

In terms of fi the holomorphic one form dui is simply described as

dui = −fg+1−i

fy
dx, 1 ≤ i ≤ g.

By Lemma 1 (ii) we have, around ∞,

dui =
(
twi−1 + O(twi)

)
dt. (16)

3.3. Algebraic fundamental form. A meromorphic symmetric bilinear form
which satisfies the condition (i) of Definition 1 can explicitly be constructed in terms
of algebraic functions. Such algebraic form plays a central role in the construction of
the sigma function.

Let pi = (xi, yi), i = 1, 2 and [11]

Ω(p1, p2) =

∑n−1
i=0 yi

1[
f(z,w)
wi+1 ]+|(z,w)=(x2,y2)

(x1 − x2)fy(p1)
dx1,

where

[
∑

n∈Z

anwn]+ =
∑

n≥0

anwn.

Consider

ω̂(p1, p2) = dp2Ω(p1, p2) +
∑

ci1j1;i2j2

xi1
1 yj1

1

fy(p1)

xi2
2 yj2

2

fy(p2)
dx1dx2, (17)

where (i1, j1) runs over (ai − 1, n − 1 − bi), 1 ≤ i ≤ g and i2 ≥ 0, 0 ≤ j2 ≤ n − 1,
ci1j1;i2j2 ’s are constants. Assign degrees as

degλij = ns − ni − sj, degx = deg dx = n, deg y = s.

Proposition 2. (i) If cij;kl is taken such that ω̂(p1, p2) = ω̂(p2, p1) then ω̂
defined by (17) satisfies the conditions (i) of Definition 1.

(ii) There exists a set of ci1j1;i2j2 such that ω̂(p1, p2) = ω̂(p2, p1), non-zero ci1j1;i2j2

is a homogeneous polynomial of {λkl} of degree 2sn − n(i1 + i2 + 2) − s(j1 + j2 + 2)
and ci1j1;i2j2 = 0 if 2ns − n(i1 + i2 + 2) − s(j1 + j2 + 2) < 0.

Notice that, if we take ci1j1;i2j2 as in (ii) in the proposition, then ω̂ becomes
homogeneous of degree 0. For the proof of the proposition we need several lemmas.



SIGMA FUNCTIONS FOR (n, s) CURVES 185

Let B be the set of branch points for the map x : X −→ P1, (x, y) 7→ x. For
p ∈ X set x−1(x(p)) = {p(0), ..., p(n−1)} with p = p(0), where the same p(i) is listed
according to its multiplicity.

Lemma 2. The one form Ω(p1, p2) is holomorphic except ∆∪{(p(i), p)|p ∈ B, i 6=
0} ∪ X × {∞} ∪ {∞} × X.

Proof. It is sufficient to prove that Ω does not have a pole at p1 = p
(i)
2 ,i 6= 0, for

p2 /∈ B. Let p
(i)
2 = (x2, y

(i)
2 ) and

f(x, y) =

n∑

j=0

fj(x)yj , fn = 1. (18)

Then, for i 6= 0,

n−1∑

k=0

(y
(i)
2 )k[

f(z, w)

wk+1
]+|(z,w)=(x2,y2) =

n−1∑

k=0

(y
(i)
2 )k

∑

j≥k+1

fj(x2)y
j−k−1
2

=

n∑

j=1

fj(x2)
(y

(i)
2 )j − yj

2

y
(i)
2 − y2

=
f(x2, y2) − f(x2, y

(i)
2 )

y
(i)
2 − y2

= 0, (19)

where we use y2 6= y
(i)
2 , i 6= 0 which follows from the assumption p2 /∈ B. Thus Ω is

holomorphic at p1 = p
(i)
2 , i 6= 0 as desired.

Lemma 3. Let p /∈ B, t a local coordinate around p and ti = t(pi). Then the
expansion of Ω in t2 at t1 is of the form

Ω(p1, p2) =

( −1

t2 − t1
+ O

(
(t2 − t1)

0
))

dt1. (20)

Proof. Since p /∈ B one can take x as a local coordinate around p. Therefore it is
sufficient to prove

n−1∑

k=0

yk
1 [

f(z, w)

wk+1
]+|(z,w)=(x1,y1) = fy(x1, y1). (21)

Let us write f(x, y) as in (18). Then the left hand side of (21) is equal to

n−1∑

k=0

yk
1

n∑

j=k+1

fj(x1)y
j−k−1
1 =

n∑

j=1

jfj(x1)y
j−1
1 = fy(x1, y1).

Lemma 4. The meromorphic bilinear form dp2Ω(p1, p2) is holomorphic except
∆ ∪ {(p(i), p)|p ∈ B, i 6= 0} ∪ X × {∞}.
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Proof. Due to Lemma 2 it is sufficient to prove that dp2Ω(p1, p2) is holomorphic
at (∞, p2), p2 6= ∞.

Let t be the local coordinate around ∞ such that x = 1/tn, y = (1/ts)(1 + O(t))
and ti = t(pi). Then at (∞, p2), p2 6= ∞, the expansion of Ω in t1 takes the form

Ω = −dt1
t1

(1 + O(t1)) .

Thus dp2Ω is holomorphic at (∞, p2), p2 6= ∞.

Lemma 5. There exist second kind differentials dr̂i, 1 ≤ i ≤ g which are holo-
morphic outside {∞} and satisfy the equation

ω(p1, p2) − dp2Ω(p1, p2) =

g∑

i=1

dui(p1)dr̂i(p2). (22)

Proof. Let us set

ω1(p1, p2) = ω(p1, p2) − dp2Ω(p1, p2).

By Lemma 2, 3, 4 and (9), the singularities of ω1 are contained in B2 ∪ X × {∞},
where B2 = {(b(i), b)|b ∈ B\{∞}, 0 ≤ i ≤ n − 1}. Since B2 is a finite set and
B2 ∩ (X × {∞}) = φ, ω1 is holomorphic except X × {∞}. Thus one can write, for
p2 6= ∞,

ω1(p1, p2) =

g∑

i=1

dui(p1)dr̃i(p2),

for some one forms dr̃i. Let us describe dr̃i more neatly in terms of ω(p1, p2). To this
end let us take q1, ..., qg ∈ X\B such that

∑g
j=1 qi is a general divisor and qj ’s are

in some small neighborhood of ∞. Take the local coordinate t around ∞ such that
x = 1/tn, y = (1/ts)(1 + O(t)) and write

dui(p) = hi(t)dt,

ω1(p1, p2) = K1(t(p1), p2)dt(p1).

Then we have a set of linear equations

g∑

i=1

hi(t(qj))dr̃i(p2) = K1(t(qj), p2).

Since
∑g

j=1 qj is a general divisor, det(hi(t(qj))) 6= 0. Thus dr̃i can be expressed as

dr̃i(p2) =
∑

cijK1(t(qj), p2)

for some constants, with respect to p2, cij .
Notice that K1(t(qj), p2) is a second kind differential whose only singularity is

∞. In fact the coefficient of ω(qj , p2) of dt(p1) is a second kind differential due to the
property (i) of ω and dp2Ω(qj , p2) is obviously of second kind. As already proved the
only singularity of K1(t(qj), p2) is p2 = ∞.
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Let us set

dr̂i(p) =

g∑

j=1

cijK1(t(qj), p),

which is a second kind differential singular only at ∞, and set

ω2(p1, p2) = ω1(p1, p2) −
g∑

i=1

dui(p1)dr̂i(p2).

Then ω2 = 0 on X × (X\{∞}). Thus ω2 = 0 on X × X . Consequently

ω(p1, p2) − dp2Ω(p1, p2) =

g∑

i=1

dui(p1)dr̂i(p2),

which proves the lemma.

Proof of Proposition 2. (ii) Let us write

dp2Ω(p1, p2) =

∑
j1,j2≤n−1 ai1j1;i2j2x

i1
1 yj1

1 xi2
2 yj2

2

(x1 − x2)2fy(p1)fy(p2)
dx1dx2.

It can be easily verified that ai1j1;i2j2 ∈ Z[{λkl}] and ai1j1;i2j2 is homogeneous of
degree 2(n − 1)s − n(i1 + i2) − s(j1 + j2).

On the other hand

∑
ci1j1;i2j2

xi1
1 yj1

1 xi2
2 yj2

2

fy(p1)fy(p2)
=

∑
(ci1−2,j1;i2j2 − 2ci1−1,j1;i2−1,j2 + ci1,j1;i2−2,j2)x

i1
1 yj1

1 xi2
2 yj2

2

(x1 − x2)2fy(p1)fy(p2)
.

Thus ω̂(p1, p2) = ω̂(p2, p1) is equivalent to

ci1−2,j1;i2j2 − 2ci1−1,j1;i2−1,j2 + ci1,j1;i2−2,j2 − ci2−2,j2;i1j1 + 2ci2−1,j2;i1−1,j1 − ci2,j2;i1−2,j1

= ai2,j2;i1j1 − ai1j1;i2j2 . (23)

This is a system of linear equations for ci1j1;i2j2 whose coefficient matrix has integers
as components.

Lemma 6. Any meromorphic differential on X which is singular only at ∞ is a
linear combination of (xiyj/fy)dx, i ≥ 0, 0 ≤ j ≤ n − 1.

Proof. Let η be a meromorphic differential which has a pole at ∞ of order k
and is holomorphic on X\{∞}. Consider the meromorphic function ηfy/dx. It has
a pole only at ∞ of order k − (2g − 2) since the zero divisor of dx/fy is (2g − 2)∞.
Any meromorphic function holomorphic except ∞ is a polynomial of x and y. Thus
η ∈ C[x, y]dx/fy.

By Lemma 5 and 6, the system of linear equations (23) has a solution, that is, it
consists of compatible equations. Moreover it has a solution such that each ci1j1;i2j2
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is a linear combination of ai′1j′1;i′2j′2
satisfying i1 + i2 +2 = i′1 + i′2, j1 + j2 = j′1 + j′2. In

particular one can set ci1j1;i2j2 = 0 if 2ns−n(i1 + i2 + 2)− s(j1 + j2 + 2) < 0 and has

deg ci1j1;i2j2 = 2ns − n(i1 + i2 + 2) − s(j1 + j2 + 2),

if ci1j1;i2j2 is non-zero.

(i) It is sufficient to prove the property (i) for ω. By Lemma 5 dp2Ω(p1, p2) is holo-
morphic except {(p, p)|p ∈ X} ∪ X × {∞} and so is ω̂. Since ω̂(p1, p2) = ω̂(p2, p1), ω̂
does not have a pole at p2 = ∞ and therefore is holomorphic except {(p, p)|p ∈ X}
where it has a double pole.

Let us prove that the expansion of ω̂ at the diagonal has the required form. Set

dri = −
∑

cai−1,n−1−bi;kl
xkyl

fy
dx. (24)

Then

ω̂ − ω =

g∑

i=1

dui(p1)(dri(p2) − dr̂i(p2)). (25)

Both hand sides of (25) are meromorphic on X×X . The singularities of the left hand
side are contained in {(p, p)|p ∈ X} and those of the right hand side are contained in
X ×{∞}. Thus the possible singularity of ω̂−ω is {∞}×{∞}. Therefore ω̂−ω and
dri −dr̂i are holomorphic on X ×X and X respectively. Then the required expansion
of ω̂ at (p, p), p ∈ X follows from (9).

Take one set of ci1j1;i2j2 satisfying (ii) of the proposition and define dri by (24).
Notice that dri is a second kind differential. In fact dri = dr̂i modulo holomorphic
one form as is just proved and dr̂i is a second kind differential by Lemma 5. We have

ω̂(p1, p2) = dp2Ω(p1, p2) +

g∑

i=1

dui(p1)dri(p2).

Define period matrices ω1, ω2, η1, η2 by

2ω1 =

(∫

αj

dui

)
, 2ω2 =

(∫

βj

dui

)
, −2η1 =

(∫

αj

dri

)
, −2η2 =

(∫

βj

dri

)
.

Notice that ω1 is invertible due to Riemann’s inequality. We set τ = ω−1
1 ω2. It is

symmetric and satisfies Im τ > 0.

3.4. Relation between ω and ω̂. We give the relation between ω and ω̂ using
the period matrices.

Lemma 7. Let ω1 and ω2 be meromorphic symmetric bilinear form satisfying the
condition (i) of Definition 1. Then

ω1 − ω2 =

g∑

i,j=1

cijdui(p1)duj(p2), (26)

for some constants cij such that cij = cji.
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Proof. The left hand side of (26) is holomorphic symmetric bilinear form. Thus
it can be written as desired by (8).

Set

du = t(du1, ..., dug).

Lemma 8. We have

ω(p1, p2) = ω̂(p1, p2) + tdu(p1)η1ω
−1
1 du(p2).

In particular η1ω
−1
1 is symmetric.

Proof. By Lemma 7

ω − ω̂ =

g∑

i,j=1

tdu(p1)C du(p2), (27)

where C = (cij) is a constant symmetric g × g matrix. Since
∫

αk
ω(p1, p2) = 0 we

have

g∑

i=1

dui(p1)(η1)ik =

g∑

i=1

cijdui(p1)(ω1)jk.

Thus

(η1)ik =

g∑

j=1

cij(ω1)jk,

and

C = η1ω
−1
1 .

3.5. Symplectic basis of cohomology. For the sake of simplicity we call,
hereafter, a meromorphic differential on X second kind if it is locally exact. In this
terminology a first kind differential is of second kind, the space of differentials of
the second kind becomes a vector space and the first cohomology group H1(X, C) is
described as the space of second kind differentials modulo exact forms.

The intersection form on H1(X, C) is given by

η ◦ η′ =
∑

Res

(∫ p

η

)
η′(p),

where η, η′ are second kind differentials, summation is over all singular points of η
and η′ and Res means taking a residue at a point.

Riemann’s bilinear relation can be written as

2πiη ◦ η′ =

g∑

i=1

(∫

αi

η

∫

βi

η′ −
∫

αi

η′

∫

βi

η

)
.
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Proposition 3. We have

dui ◦ duj = 0, , dui ◦ drj = δij , dri ◦ drj = 0, (28)

which means that {dui, drj} is a symplectic basis of H1(X, C).

Proof. It is sufficient to prove (28), since the linear independence follows from it.
The relation dui ◦ duj = 0 is obvious. Let us prove dui ◦ drj = δij . We calculate

ω̂(p1, p2) ◦ duj(p2) in two ways. By Proposition 2 (i)

ω̂(p1, p2) ◦ duj(p2) = Res
p2=p1

(

∫ p2

ω̂)duj(p2)

= −duj(p1). (29)

On the other hand

ω̂(p1, p2) ◦ duj(p2) =

(
dp2Ω(p1, p2) +

g∑

i=1

dui(p1)dri(p2)

)
◦ duj(p2)

=

g∑

i=1

dui(p1)(dri ◦ duj). (30)

Comparing (29) and (30) we have

dri ◦ duj = −δij ,

since {dui} are linearly independent.
Next let us prove dri ◦ drj = 0. Similarly to (30) we have

ω̂(p1, p2) ◦ drj(p2) =

g∑

i=1

dui(p1)(dri ◦ drj). (31)

Since duk ◦ drj = δkj as already proved, we have, using Lemma 8,

ω̂(p1, p2) ◦ drj(p2) = ω(p1, p2) ◦ drj(p2) −
g∑

i=1

dui(p1)(η1ω
−1
1 )ij . (32)

Let us calculate ω(p1, p2) ◦ drj(p2). By Riemann’s bilinear relation

2πiω(p1, p2) ◦ drj(p2) =

g∑

k=1

(∫

αk

ω

∫

βk

drj −
∫

αk

drj

∫

βk

ω

)

= 2

g∑

k=1

(η1)jk

∫

βk

ω, (33)

since
∫

αk
ω = 0.

Lemma 9. We have

∫

βk

ω = 2πi

g∑

i=1

(2ω1)
−1
ki dui(p1), (34)
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where the integral of the left hand side is with respect to p2 and (2ω1)
−1
ki denotes the

(k, i)-component of (2ω1)
−1.

Proof. Similarly to (29) we have

ω(p1, p2) ◦ dui(p2) = −dui(p1),

and similarly to (33)

2πiω(p1, p2) ◦ dui(p2) = −
g∑

k=1

(2ω1)ik

∫

βk

ω.

The assertion of the lemma follows from these.

Substitute (34) into (33) and get

ω(p1, p2) ◦ drj(p2) =

g∑

i=1

(η1ω
−1
1 )jidui(p1). (35)

Then we have, by (32),

ω̂(p1, p2) ◦ drj(p2) =

g∑

i=1

dui(p1)
(
(η1ω

−1
1 )ji − (η1ω

−1
1 )ij

)
,

which becomes zero since η1ω
−1
1 is symmetric by Lemma 8. It follows from (31) that

dri ◦ drj = 0.

Due to the relation (28) Riemann’s bilinear equations take the form

−tη1ω1 + tω1η1 = 0, (36)

−tη2ω2 + tω2η2 = 0, (37)

−tη1ω2 + tω1η2 = −πi

2
Ig, (38)

where Ig denotes the unit matrix of degree g. If we introduce the matrix

M =

(
ω1 ω2

η1 η2

)
,

those relations can be written compactly as

tM

(
0 1
−1 0

)
M = −πi

2

(
0 Ig

−Ig 0

)
.

4. Schur function. Let pn(T ) be the polynomial of T1, T2,... defined by

exp(
∞∑

n=1

Tnkn) =
∞∑

n=0

pn(T )kn,

where k is a variable making a generating function [15].
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Example. p0 = 1, p1 = T1, p2 = T2 +
T 2

1

2
, p3 = T3 + T1T2 +

T 3
1

6
.

A sequence of non-negative integers λ = (λ1, ..., λl) is called a partition if λ1 ≥
· · · ≥ λl. We set |λ| = λ1 + · · ·+λl. Denote by λ′ = (λ′

1, ..., λ
′
l′ ), l′ = λ1, the conjugate

of λ [21]:

λ′
i = ♯{j |λj ≥ i }.

For a partition λ = (λ1, ..., λl) define the polynomial Sλ(T ) of T1, T2, T3,... by

Sλ(T ) = det(pλi−i+j(T ))1≤i,j≤l, (39)

which we call Schur function. Notice that, for any r ≥ 0, we have

S(λ,0r)(T ) = Sλ(T ), (40)

where (λ, 0r) = (λ1, ..., λl, 0, ..., 0).

Example. S(1)(T ) = T1, S(2,1)(T ) = −T3 +
T 3

1

3
,

S(3,2,1)(T ) = T1T5 − T 2
3 − 1

3
T 3

1 T3 +
1

45
T 6

1 , S(3,1,1)(T ) = T5 − T1T
2
2 +

1

20
T 5

1 .

We prescribe the degree −i to Ti:

degTi = −i.

The following properties are well known (see for example [15]).

Lemma 10. (i) Sλ(T ) is a homogeneous polynomial of degree −|λ|.
(ii) Sλ(−T ) = (−1)|λ|Sλ′(T ).

For a partition λ = (λ1, ..., λl) we define a symmetric polynomial of t1, t2, ... tl
by

sλ(t) =
det(tλi+l−i

j )1≤i,j≤l∏
1≤i<j≤l(ti − tj)

, (41)

which we also call Schur function.
Two Schur functions are related by

Sλ(T ) = sλ(t) if Ti =
Pl

j=1 ti
j

i . (42)

If one takes l′ ≥ |λ| for λ = (λ1, ..., λl), then the symmetric function s(λ,0l′−l)(t)
can be expressed uniquely as a polynomial of power sum symmetric functions Ti =Pl′

j=1 ti
j

i , 1 ≤ i ≤ l′. This polynomial coincides with Sλ(T ).
We define a partition associated with an (n, s)-curve by

λ(n, s) = (wg , ..., w1) − (g − 1, ..., 1, 0).

Then
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Proposition 4. [10] (i) Sλ(n,s)(T ) does not depend on the variables other than
Tw1 , ..., Twg

, that is, it is a polynomial of the variables Tw1 , ..., Twg
.

(ii) λ(n, s)′ = λ(n, s).

(iii) |λ(n, s)| =
1

24
(n2 − 1)(s2 − 1).

(iv) Sλ(n,s)(−T ) = (−1)
1
24 (n2−1)(s2−1)Sλ(n,s)(T ).

Notice that properties (iii) and (iv) follow from (ii) and Lemma 10.

5. Sigma function.

5.1. Definition. Riemann’s constant of an (n, s)-curve with the base point ∞
becomes a half period, since the divisor of the holomorphic one form dug is (2g−2)∞.
Let

[
δ′

δ′′

]
, δ′, δ′′ ∈ {0,

1

2
},

be the characteristic of Riemann’s constant δ = δ0 − (g − 1)∞ ∈ J(X) with respect
to our choice (∞, {αi, βj}). We define the degree of ui to be −wi:

degui = −wi.

Definition 2. The fundamental sigma function or simply the sigma function
σ(u) is the holomorphic function on Cg of the variables u = t(u1, ..., ug) which satisfies
the following conditions.

(i) σ(u + 2ω1m1 + 2ω2m2)/σ(u) = (−1)
tm1m2+2(tδ′m1−

tδ′′m2)

× exp
(
t(2η1m1 + 2η2m2)(u + ω1m1 + ω2m2)

)
. (43)

(ii) The expansion at the origin takes the form

σ(u) = Sλ(n,s)(T )|Twi
=ui

+
∑

d

fd(u), (44)

where fd(u) is a homogeneous polynomial of degree d and the range of the summation
is d < −|λ(n, s)|.

It is possible to give an analytic expression of a function satisfying the condition
(i) in terms of Riemann’s theta function.

Proposition 5. [9] Let τ = ω−1
1 ω2. Then a holomorphic function satisfying (43)

is a constant multiple of the function

exp

(
1

2
tuη1ω

−1
1 u

)
θ

[
δ′

δ′′

]
((2ω1)

−1u, τ). (45)

The proposition can easily be proved using (36), (37), (38) and the uniqueness of
Riemann’s theta function θ(z) [22].

The existence of the sigma function is not obvious because of the condition (ii).
In the succeeding subsections we shall construct the sigma function explicitly using
the algebraic integrals.
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5.2. Algebraic expression of prime form. In this section an algebraic ex-
pression of the prime form is given using the map x : X −→ P1, (x, y) 7→ x.

Let B ⊂ X be the set of branch points of the map x, B′ = B\{∞}, B̃ = π−1(B) ⊂
X̃, B̃′ = π−1(B′) B̄ = x(B) ⊂ P1 and B̄′ = x(B′). Let p̃ ∈ X̃ and γ̃ be a path from
∞̃ to p̃ in X̃\B̃′. Then γ̄ = (x ◦ π)(γ̃) is a path from ∞ to (x ◦ π)(p̃). Let γ(i) be the
lift of γ̄ to X\B′ connecting p(i) to ∞ and γ̃(i) the lift of γ(i) to X̃ beginning at ∞̃.
Denote p̃(i) the end point of γ̃(i). Then p̃(i) lies over p(i).

In this way for each path γ̃ = γ̃(0) from ∞̃ to p̃ in X̃\B̃′ we have a uniquely

determined path from ∞̃ to p̃(i) in X̃\B̃′. Let γ̃i = γ̃
(0)
i , i = 1, 2 be paths from ∞̃ to

p̃i and γ̃
(j)
i be the corresponding path from ∞̃ to p̃

(j)
i . The path from p̃

(i)
1 to p̃

(i)
2 is

defined by γ̃
(i)
2 ◦ (γ̃

(i)
1 )−1. Hereafter, for p̃ ∈ X , we denote π(p̃) by p if there is no fear

of confusion.

Proposition 6. [17] We have

E(p̃1, p̃2)
2 =

(x(p2) − x(p1))
2

dx(p1)dx(p2)
exp

(
n−1∑

i=1

∫ p̃
(i)
2

p̃
(i)
1

∫ p̃2

p̃1

ω

)
.

Remark. In Fay’s book [17] (p17, formula (v)), the prime form is expressed by
the right hand side of Proposition 6 multiplied by the term exp(

∑g
i=1

∫ p2

p1
midvi). This

difference stems from the fact that E(p̃1, p̃2) is described on the universal covering
X̃ in this paper while it is described in the fundamental polygon cut out along the
homology basis {αi, βi} in [17].

For the sake to be complete and self-contained we give a proof of this proposition.

Lemma 11. We have

(x(w) − x(p2))(x(z) − x(p1))

(x(w) − x(p1))(x(z) − x(p2))
= exp

(
n−1∑

i=0

∫ w̃

z̃

∫ p̃
(i)
2

p̃
(i)
1

ω

)
. (46)

Proof. By Proposition 1

exp

(
n−1∑

i=0

∫ w̃

z̃

∫ p̃
(i)
2

p̃
(i)
1

ω

)
=

n−1∏

i=0

E(w̃, p̃
(i)
2 )E(z̃, p̃

(i)
1 )

E(w̃, p̃
(i)
1 )E(z̃, p̃

(i)
2 )

.

Let us consider the right hand side of this equation as a function of w̃ and denote it by
F (w̃). By the property (iv) of the prime form, if the abelian image of γ ∈ π1(X,∞)
is
∑g

i=1 m1,iαi +
∑g

i=1 m2,iβi then

F (γw̃) = F (w̃) exp



2πi

n−1∑

j=0

tm2

∫ p̃
(j)
2

p̃
(j)
1

dv



 . (47)

Lemma 12.

n−1∑

j=0

∫ p̃
(j)
2

p̃
(j)
1

dvi = 0, 1 ≤ i ≤ g.



SIGMA FUNCTIONS FOR (n, s) CURVES 195

Proof. It is sufficient to prove

n−1∑

j=0

∫ p̃
(j)
2

p̃
(j)
1

dui = 0. (48)

Let us fix p̃1 and consider the left hand side of (48) as a function of p̃2. We denote
it by G(p̃2). Then G(p̃2) is a holomorphic function on Y = X̃ − B̃. At each p̃(i) ∈ Y
one can take x-coordinate as a local coordinate around it. By differentiating G(p̃2)
with respect to the local coordinate x we get

dG(p̃2) =

n−1∑

j=0

xai−1(y(j))n−1−bi

fy(x, y(j))
dx, (49)

where p
(j)
2 = (x, y(j)).

Lemma 13. Let q ∈ X and q(i) = (x, y(i)). Suppose that q /∈ B. Then

n−1∑

j=0

(y(j))b

fy(x, y(j))
= 0, 0 ≤ b ≤ n − 2.

Proof. Let

f(x, y) =

n−1∏

j=0

(y − y(j)).

Since q is not a branch point, y(i) 6= y(j), i 6= j. For 0 ≤ b ≤ n − 2 we have

Res
z=∞

zb

∏n−1
j=0 (z − y(j))

dz = 0,

where z is a variable on P1. Thus, by the residue theorem on P1,

n−1∑

j=0

Res
z=y(j)

zb

∏n−1
i=0 (z − y(i))

dz =

n−1∑

j=0

(y(j))b

fy(x, y(j))
= 0.

By Lemma 13 and (49) we have

dG(p̃2) = 0,

on Y . Since G(p̃2) is continuous at each point of B̃, it is a constant on X̃. By the
definition of the integration path G(p̃1) = 0. Therefore G(p̃2) is identically zero as
desired.

Let us continue the proof of Lemma 11. By Lemma 12 and (47) F (w̃) is π1(X,∞)-
invariant and can be considered as a meromorphic function on X . By comparing zeros
and poles,

F (w̃) = C
x(w) − x(p2)

x(w) − x(p1)
,
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for some constant C. Since F (z̃) = 1

C =
x(z) − x(p1)

x(z) − x(p2)

which proves the lemma.

Proof of Proposition 6. In Lemma 11 take the limit z̃ → p̃1, w̃ → p̃2 and use

lim
w̃→q̃

x(w) − x(q)

E(w̃, q̃)
= −dx(q),

exp

(∫ w̃

z̃

∫ p̃2

p̃1

ω

)
=

E(w̃, p̃2)E(z̃, p̃1)

E(w̃, p̃1)E(z̃, p̃2)
. (50)

Then we easily get the desired result.

5.3. Prime function. Let
√

dug be the holomorphic section of the line bundle
on X defined by the divisor (g − 1)∞ satisfying

(
√

dug)
2 = dug, (51)

√
dug = tg−1 (1 + O(t))

√
dt, (52)

where t is the local parameter (13) around ∞.

Definition 3. We define the prime function Ẽ(p̃1, p̃2) on X̃ × X̃ by

Ẽ(p̃1, p̃2) = −E(p̃1, p̃2)
√

dug(p1)
√

dug(p2) exp

(
1

2

∫ p̃2

p̃1

tdu · η1ω
−1
1 ·

∫ p̃2

p̃1

du

)
. (53)

Since

δ = δ′τ + δ′′ = δ0 − (g − 1)∞ = (g − 1)∞− δ0 in J(X),

Ẽ(p̃1, p̃2) can be considered as a holomorphic section of the line bundle π∗
1Lδ ⊗π∗

2Lδ⊗
I∗2−1Θ on X × X .

By Proposition 6 and Lemma 8 we have

Ẽ(p̃1, p̃2)
2 =

(x(p2) − x(p1))
2

fy(p1)fy(p2)
exp

(
n−1∑

i=1

∫ p̃
(i)
2

p̃
(i)
1

∫ p̃2

p̃1

ω̂

)
. (54)

We need to put one of the variables in Ẽ(p̃1, p̃2) to be ∞̃ in order to describe the
sigma function. Since Ẽ(p̃1, p̃2) becomes zero at p̃i = ∞̃, it is defined in the following
manner. Take the local coordinate t (13) and the local frame

√
dt as above and define

E(∞̃, p̃2) = E(p̃1, p̃2)
√

dt(p1)|t(p1)=0, (55)

Ẽ(∞̃, p̃) = E(∞̃, p̃)
√

dug(p) exp

(
1

2

∫ p̃

∞̃

tdu · η1ω
−1
1 ·

∫ p̃

∞̃

du

)
. (56)
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Notice that E(∞̃, p̃) and Ẽ(∞̃, p̃2) can be considered as holomorphic sections of
L−1

0 ⊗ I∗1Θ and Lδ ⊗ I∗1Θ respectively. By (52) and the property (iii) of E(p̃1, p̃2) we
have

−Ẽ(p̃1, p̃2) = Ẽ(∞̃, p̃2)t(p1)
g−1 + O (t(p1)

g) .

The properties of the prime form imply those of Ẽ(p̃1, p̃2) and Ẽ(∞̃, p̃). The next
proposition follows from the properties (i) and (ii) of the prime form.

Proposition 7. (i) Ẽ(p̃2, p̃1) = −Ẽ(p̃1, p̃2).

(ii) As a section of a line bundle on X × X, the zero divisor of Ẽ(p̃1, p̃2) is

∆ + (g − 1)({∞} × X + X × {∞}).

(iii) As a section of a line bundle on X the zero divisor of Ẽ(∞̃, p̃) is g∞.

Later we shall study the series expansion of those functions (see Lemma 16).

Proposition 8. Let the abelian image of γ ∈ π1(X,∞) be
∑

m1,iαi +
∑

m2,iβi.
Then

(i) Ẽ(p̃1, γp̃2)/Ẽ(p̃1, p̃2) = (−1)
tm1m2+2(tδ′m1−

tδ′′m2)

× exp

(
t(2η1m1 + 2η2m2)(

∫ p̃2

p̃1

du + ω1m1 + ω2m2)

)
.

(ii) The equation (i) substituted by p̃1 = ∞̃ holds for Ẽ(∞̃, p̃2).

Proof. (i) Consider

F1(p̃1, p̃2) = E(p̃1, p̃2)
√

dug(p1)dug(p2).

It is a section of the bundle π∗
1Lδ ⊗π∗

2Lδ ⊗ I∗2−1Θ. For a non-singular odd half period
α = τα′ + α′′ set

F2 = F1/θ[α](

∫ p̃2

p̃1

dv),

which is a section of the line bundle π∗
1Lδ−α ⊗ π∗

2Lδ−α. Let

F2(p̃1, γp̃2) = χ(γ)F2(p̃1, p̃2), γ ∈ π1(X,∞),

where χ : π1(X,∞) −→ C∗ is a representation of π1(∞, X). Since

dug

h2
α

=
1

∑g
i,j=1

∂θ[α]
∂zi

(0)(2ω1)
−1
ij xaj−1yn−1−bj

is π1(X,∞)-invariant, so is F 2
2 . Thus χ(γ)2 = 1 and χ is a unitary representation.

Therefore, if the abelian image of γ is
∑

m1,iαi +
∑

m2,iβi, we have

χ(γ) = exp
(
2πi(t(δ′ − α′)m1 − t(δ′′ − α′′)m2)

)
,
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by (6) and consequently

F1(p̃1, γp̃2)

F1(p̃1, p̃2)
= (−1)2(

tδ′m1−
tδ′′m2) exp

(
−πitm2τm2 − 2πitm2

∫ p̃2

p̃1

dv

)
, (57)

by (2).
Next let

F3(p̃1, p̃2) = exp

(
1

2

∫ p̃2

p̃1

du η1ω
−1
1

∫ p̃2

p̃1

du

)
. (58)

By calculations we have

F3(p̃1, γp̃2)

F3(p̃1, p̃2)
= exp

(
t(2η1m1 + 2η2m2)(

∫ p̃2

p̃1

du + ω1m1 + ω2m2) + πitm1m2

)

× exp

(
πitm2τm2 + 2πitm2

∫ p̃2

p̃1

dv

)
. (59)

Here we use (36), (38) and the relation

dv = (2ω1)
−1du.

Multiplying (57) and (59) we get the desired result.

(ii) The statement is obvious from (55), (56) and (i).

5.4. Algebraic expression of sigma function. We now state our main theo-
rems of this paper.

Theorem 1. For N ≥ g

σ(

N∑

i=1

∫ p̃i

∞̃

du ) =

∏N
i=1 Ẽ(∞̃, p̃i)

N

∏
i<j Ẽ(p̃i, p̃j)

det(fi(pj))1≤i,j≤N . (60)

It is possible to derive a more general formula which contains Theorem 1 as a
limit.

Let N ≥ g, pi, qi, i = 1, ..., N be points on X and fi, i = 1, ..., nN the basis of
L((nN + g − 1)∞) defined before. Consider the function

FN =
DN

∏
i<j(x(qi) − x(qj))n−2

∏N
k=1

∏
1≤i<j≤n−1

(
y(q

(i)
k ) − y(q

(j)
k )
) ,

DN =

�������� f1(p1) · · · f1(pN ) f1(q
(1)
1 ) · · · f1(q

(n−1)
1 ) · · · f1(q

(1)
N

) · · · f1(q
(n−1)
N

)
...

...
...

...
...

...

fnN (p1) · · · fnN (pN ) fnN (q
(1)
1 ) · · · fnN (q

(n−1)
1 ) · · · fnN (q

(1)
N

) · · · fnN (q
(n−1)
N

)

�������� .
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Notice that, for each j, FN is symmetric in q
(1)
j , ..., q

(n−1)
j and does not depend

on the way of labeling the points x−1(x(qj))\{qj}.

Theorem 2. Suppose that N ≥ g. Then

σ(
N∑

i=1

∫ p̃i

q̃i

du ) = CN MNFN , (61)

where

MN =

∏N
i,j=1 Ẽ(p̃i, q̃j)

∏
i<j

(
Ẽ(p̃i, p̃j)Ẽ(q̃i, q̃j)

)∏N
i,j=1 (x(pi) − x(qj))

,

CN = (−1)
1
2

nN(N−1)

�
ǫ(s)

ǫ(1)

�N

ǫ
1
2

N(N−1)− 1
4

N(N−1)(n−1)(n−2)+ 1
2

Nn(n−1)− 1
2

gNn(n−3)
n , (62)

ǫn = exp(2πi/n), ǫ(r) =
∏

1≤i<j≤n−1(ǫ
ri
n − ǫrj

n ).

Proof of Theorem 1. Let G be the right hand side of (60) divided by the left
hand side. Obviously G is a symmetric function of p̃1, ..., p̃N . Using Proposition 8
and Proposition 7 one can easily verify the following properties.

(i) G(γp̃1, p̃2, ..., p̃N ) = G(p̃1, p̃2, ..., p̃N) for any γ ∈ π1(X,∞).

(ii) The right hand side of (60) is holomorphic as a function of p̃1.

Let us consider G as a function of p̃1, ..., p̃g. By (i) it can be considered as a
meromorphic function on the g-th symmetric product SgX = Xg/Sg and therefore
on the Jacobian J(X). As a meromorphic function on J(X) G has poles only on
Σ = {σ(u) = 0} of order at most one by (ii). Thus it is a constant which means that
it is independent of p̃i, 1 ≤ i ≤ g. Since G is symmetric, it does not depend on all
of the variables. The constant is calculated in the proof of Theorem 3 (i) in the next
section.

In order to prove Theorem 2 we have to study the properties of the function FN .

Lemma 14. (i) FN is skew symmetric with respect to {pi} and {qi} respectively.

(ii) In each of the variables {pi, qj} FN is a meromorphic function .

(iii) As a function of p1 FN has poles only at ∞ of order at most nN + g − 1 and

zeros at pj (j ≥ 2), q
(i)
k (1 ≤ k ≤ N, 1 ≤ i ≤ n − 1).

(iv) As a function of q1 FN has poles only at ∞ of order at most nN + g − 1 and

zeros at qj (j ≥ 2), p
(i)
k (1 ≤ k ≤ N, 1 ≤ i ≤ n − 1).

Proof. (i) The skew symmetry in {pi} is obvious and that in {qi} can be easily
verified.
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(ii) It is obvious that FN is a meromorphic function with respect to pi. Let us prove
that FN is a meromorphic function of q1. To this end we first prove that FN is a

symmetric polynomial of y(q
(1)
1 ),...,y(q

(n−1)
1 ). Notice that DN is a skew symmetric

polynomial of y(q
(1)
1 ),...,y(q

(n−1)
1 ), since fk(q

(i)
1 ) = x(q1)

ay(q
(i)
1 )b for some a, b and

permuting q
(1)
1 , ..., q

(n−1)
1 is the same as permuting columns. Thus

DN/
∏

i<j

(
y(q

(i)
1 ) − y(q

(j)
1 )
)

, (63)

is a symmetric polynomial of y(q
(1)
1 ),...,y(q

(n−1)
1 ). Obviously its coefficients are poly-

nomials of x(q1).
Now it is sufficient to prove that any symmetric polynomial of y(q(1)),...,y(q(n−1))

is a polynomial of x(q) and y(q). Let us write

f(x(q), y) =

n∑

i=0

Ai(x(q))yn−i =

n−1∏

i=0

(y − yi),

where A0 = 1, Ai(x) is a polynomial of x and yi = y(q(i)). Then

ei(y0, ..., yn−1) = (−1)iAi(x(q)),

where ei(t1, ..., tn) is the i-th elementary symmetric polynomial,

n∏

i=1

(t + ti) =
n∑

i=0

ei(t1, ..., tn)tn−i.

Using

ei(y0, ..., yn−1) = y0ei−1(y1, ..., yn−1) + ei(y1, ..., yn−1),

one can easily prove that every ei(y1, ..., yn−1) is a polynomial of y0 = y(q) and x(q).
Thus any symmetric polynomial of y1, ..., yn−1 is a polynomial of x(q) and y(q).

(iii) This is obvious.

(iv) As proved in (ii) (63) is a polynomial of x(q1), y(q1) and therefore its only
singularity is ∞. Let us examine the zeros of DN .

Notice that DN has zeros at q1 = qj , j 6= 1 of order at least n− 1. In fact q1 = qj

implies that {q(1)
1 , ..., q

(n−1)
1 } = {q(1)

j , ..., q
(n−1)
j }. Therefore DN has zeros of order at

least n − 1 at q1 = qj .

In a similar manner DN has zeros at q1 = q
(i)
j , i 6= 0, of order at least n − 2,

because, in this case, the number of elements in {q(1)
1 , ..., q

(n−1)
1 } ∩ {q(1)

j , ..., q
(n−1)
j } is

n − 2.
Consequently the only singularity of FN is at most q1 = ∞. Moreover FN has

zeros at q1 = qj , j 6= 1. The fact that FN is zero at q1 = p
(i)
j , i 6= 0 can be easily

verified.
The order of poles at ∞, which we denote by ord∞ FN , is estimated as

ord∞ FN ≤ O1 − O2 − O3,

O1 = (nN + g − 1) + · · · + (nN + g − (n − 2)) ,

O2 = (n − 2)n(N − 1),

O3 = s

(
n − 1

2

)
,
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where O1 is the maximal possible order of poles of DN , O2 is the order of poles of∏N
j=2(x(q1) − x(qj))

n−2 and O3 is that of
∏

i<j(y(q
(i)
1 ) − y(q

(j)
1 )). By calculation we

get

O1 − O2 − O3 = nN + g − 1.

Proof of Theorem 2. The proof is similar to that of Theorem 1. Let
G(p1, ..., pN |q1, ..., qN ) be the right hand side divided by the left hand side of (61).

The function G is π1(X,∞)-invariant in each of the variables {p̃i, q̃j} by Proposi-
tion 8. Consider G as a function of p1, ..., pg. By Lemma 14 G can be considered as a
meromorphic function on J(X) which has poles only on Σ of order at most one. Thus
it does not depend on p1, ..., pg. Since G is symmetric in {pi} it does not depend on
any pi. Similarly G does not depend on {qi}. Thus G is a constant. The constant is
calculated in the next section.

5.5. The series expansion of sigma function. In this section we study the
series expansion of the sigma function using the expression obtained in the previous
section.

Let us use the multi-index notations like

uα = uα1
1 · · ·uαg

g , α = (α1, ..., αg).

We set

|α| =

g∑

i=1

wiαi,

so that deguα = −|α|.
Theorem 3. (i) The expansion of σ(u) at the origin takes the form

σ(u) = Sλ(n,s)(T )|Twi
=ui

+
∑

aαuα,

where aα ∈ Q[{λij}] and the sum is taken for α such that |α| > |λ(n, s)|.
(ii) In (i) aα is homogeneous of degree −|λ(n, s)| + |α|. In particular σ(u) is homo-
geneous of degree −|λ(n, s)| with respect to the variables {ui, λjk}.
(iii) σ(−u) = (−1)|λ(n,s)|σ(u).

In the remaining of this section t denotes the local parameter around ∞ specified
by (13). Set

deg t = −1.

Lemma 15. (i) If we write y = 1
ts

∑∞
i=0 cit

i, c0 = 1, then ci belongs to Q[{λkl}]
and is homogeneous of degree i.

(ii) If we write dx/fy = −t2g−2(1 +
∑∞

i=1 c′it
i)dt, then c′i belongs to Q[{λkl}] and is

homogeneous of degree i.
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(iii) Let ti = t(pi) and

ω̂(p1, p2) =



 1

(t1 − t2)2
+

∞∑

i,j=0

aijt
i
1t

j
2



 dt1dt2.

Then aij = aji, aij belongs to Q[{λkl}] and is homogeneous of degree i + j + 2.

Proof. (i) Substitute the expressions of x, y in t to the defining equation f(x, y) =
0 with f being given by (11). Then

y =
1

ts



1 +
∑

ni+sj<ns

λijt
ns−ni−sj(

∞∑

r=0

crt
r)j





1
n

.

If we write

1 +
∑

ni+sj<ns

λijt
ns−ni−sj(

∞∑

r=0

crt
r)j =

∞∑

i=0

bit
i, b0 = 1, (64)

then each bi is a polynomial of c1, ..., ci−1 and {λkl} with the coefficients in Q, since
ns − ni − sj > 0.

In the expansion

(

∞∑

i=0

bit
i)1/n = 1 +

∞∑

j=1

(
1/n
j

)
(

∞∑

i=1

bit
i)j , (65)

the coefficient of tr is a polynomial of b1, ..., br with the coefficient in Q and con-
sequently is a polynomial of c1, ..., cr−1, {λkl} with the coefficient in Q. Thus the
equation

∞∑

i=0

cit
i = (

∞∑

i=0

bit
i)1/n (66)

implies that cr ∈ Q[c1, ..., cr−1, {λkl}] for r ≥ 1. This proves cr ∈ Q[{λkl}].
Next let us prove deg cl = l by the induction on l. The case l = 0 is obvious.

Suppose that l ≥ 1 and deg ci = i for i ≤ l − 1. Then the equation (64) to determine
bi, i ≤ l can be written as

1 +
∑

ni+sj<ns

λijt
ns−ni−sj(

l−1∑

r=0

crt
r)j =

l∑

i=0

bit
i mod. (tl+1). (67)

Since the left hand side of (67) is of degree 0 by the induction hypothesis, deg bi = i
for any i ≤ l. Similarly the equation (66) determining cl from b1, ..., bl can be written
as

l∑

i=0

cit
i = (

l∑

i=0

bit
i)1/n mod. (tl+1) (68)

The right hand side of this equation is of degree 0. Thus deg cl = l.
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(ii) This easily follows from (i).

(iii) By the property (9) for ω̂,

ω̂ − dt1dt2
(t1 − t2)2

is holomorphic near {∞} × {∞}. Thus it is possible to expand it as

ω̂(p1, p2) −
dt1dt2

(t1 − t2)2
=




∞∑

i,j=0

aijt
i
1t

j
2



 dt1dt2. (69)

Let us prove that aij is a homogeneous polynomial in {λkl} of degree 2 + i + j.
Since ω̂(p1, p2)(t1 − t2)

2 is holomorphic near {∞} × {∞} one can write

ω̂(p1, p2)(t
n
1 − tn2 )2 = (

∞∑

i,j=0

bijt
i
1t

j
2)dt1dt2.

We first prove bij ∈ Q[{λkl}].
Using

fxdx + fydy = 0, (x1 − x2)
2 = (t1t2)

−2n(tn1 − tn2 )2,

we see that

ω̂(p1, p2)(t
n
1 − tn2 )2 = (t1t2)

2n P
dx(p1)dx(p2)

fy(p1)fy(p2)

for some homogeneous polynomial P in x1, y1, x2, y2, {λkl} with the coefficient in Q

of degree 2s(n − 1). By (i), (ii) one has bij ∈ Q[{λkl}] and deg bij = −2n + 2 + i + j.
Therefore one can write

(
ω̂ − dt1dt2

(t1 − t2)2

)
(tn1 − tn2 )2 =




∞∑

i,j=0

cijt
i
1t

j
2



 dt1dt2,

where cij ∈ Q[{λkl}] and deg cij = −2n + 2 + i + j. By (69) we have

(tn1 − tn2 )2
∞∑

i,j=0

aijt
i
1t

j
2 =

∞∑

i,j=0

cijt
i
1t

j
2,

which is equivalent to

aij − 2ai+n,j−n + ai+2n,j−2n = ci+2n,j . (70)

Here we set aij = 0 if i < 0 or j < 0.
Define (i, j) < (k, l) if and only if i+ j < k+ l or i+ j = k+ l and j < l. It defines

a total order on the set {(i, j)| i, j ≥ 0}. The equation (70) expresses aij as a linear
combination of akl with (k, l) < (i, j), k + l = i + j and {crs} with r + s = i + j + 2n.
Since ak0 = ck+2n,0, any aij is a linear combination of {crs} with r + s = 2n + i + j.
Thus aij is in Q[{λkl}] and is homogeneous of degree 2 + i + j.
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Lemma 16. (i) The expansion of Ẽ(p̃1, p̃2) near (∞̃, ∞̃) is of the form

Ẽ(p̃1, p̃2) = (t1 − t2)(t1t2)
g−1(1 +

∑

i+j≥1

cijt
i
1t

j
2),

where cij is a homogeneous element in Q[{λkl}] of degree i + j.

(ii) The expansion of Ẽ(∞̃, p̃) near ∞̃ is of the form

Ẽ(∞̃, p̃) = tg(1 +
∞∑

j=1

c0jt
j),

where c0j is the same as that in (i).

Proof. (i) Using the definition, property (iii) of the prime form and (52) we have
the expansion of the form

Ẽ(p̃1, p̃2) = (t1 − t2)(t1t2)
g−1(1 +

∑

i+j≥1

cijt
i
1t

j
2).

In order prove that cij has the required properties we use (54). The right hand side
of (54) is calculated in the following way.

Let εn = exp(2πi/n). Since x(p(i)) = x(p) = 1/tn, we take t(i) = ε−i
n t as a local

parameter of p(i) by rearranging i of p(i) if necessary. Then

x(p
(i)
k ) = 1/tnk , y(p

(i)
k ) =

εis
n

tsk
(1 + · · · ) = y(pk)|tk−→ε−i

n tk
.

Using these local parameters we get

exp

 
n−1X
i=1

Z p̃
(i)
2

p̃
(i)
1

Z p̃2

p̃1

bω!
= n

2 (t1t2)
n−1Qn−1

i=1 (t1 − t
(i)
2 )2

exp

0�n−1X
i=1

∞X
k,l=0

akl

(k + 1)(l + 1)
((t

(i)
2 )k+1

− (t
(i)
1 )k+1)(tl+1

2 − t
l+1
1 )

1A ,

and

(x(p2) − x(p1))
2

fy(p1)fy(p2)
=

1

n2
(t1t2)

2g−n−1(tn1 − tn2 )2
2∏

j=1

(
1 +

∞∑

i=1

c′it
i
j

)
,

where c′i is that in Lemma 15, (ii). The assertions for cij follow from these expressions
and Lemma 15.

Proof of Theorem 3. (i), (ii): Let ti = t(pi). By Lemma 16 we have

∏N
i=1 Ẽ(∞, pi)

N

∏
i<j Ẽ(pi, pj)

=
(
∏N

i=1 ti)
N+g−1

∏
i<j(ti − tj)

(1 +
∑

k1+···+kN≥1

c̃k1...kN
tk1
1 · · · tkN

N ),
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where c̃k1...kN
∈ Q[{λkl}] and deg c̃k1...kN

=
∑

ki. By (15) we have

(f1(t), ..., fN (t))

= (1,
1

tw
∗

2
(1 + O(t)), ...,

1

tw
∗

g
(1 + O(t)),

1

t2g
(1 + O(t)), ...,

1

tN+g−1
(1 + O(t))),

where all O(t) parts are series in t with the coefficients in Q[{λkl}] and are homoge-
neous of degree 0 with respect to {t, λkl}. Using Lemma 1 we get

(N + g − 1, ..., N + g − 1) + (0,−w∗
2 , ...,−w∗

g ,−2g, ...,−(N + g − 1))

= (λ(n, s)1, ..., λ(n, s)g, 0, ..., 0) + (N − 1, N − 2, ..., 1, 0).

Let us denote the partition (λ(n, s), 0N−g) by λ(N)(n, s). Then

(
QN

i=1 ti)
N+g−1Q

i<j
(ti − tj)

det(fi(tj))1≤i,j≤N = sλ(N)(n,s)(t1, ..., tN ) +
Xbck1...kN

t
k1
1 · · · t

kN

N , (71)

where ĉk1...kN
∈ Q[{λkl}], deg ĉk1...kN

= −|λ(n, s)|+
∑

ki and the summation is taken
for ki’s satisfying

∑
ki > |λ(n, s)|.

By (16) we have

∫ p̃

∞

dui =
twi

wi
+

∞∑

j=1

ci,jt
j+wi , ci,j ∈ Q[{λkl}], deg cij = j.

Let

Tk = Tk(t1, ..., tN ) =

∑N
j=1 tkj

k
.

Then T1, ..., TN are algebraically independent and become a generator of the ring of
symmetric polynomials of t1, ..., tN with the coefficients in Q,

Q[t1, ..., tN ]SN = Q[T1, ..., TN ].

Moreover if we prescribe degrees for ti and Ti by

deg ti = −1, degTi = −i,

a symmetric homogeneous polynomial of t1, ..., tN of degree k can be uniquely written
as a homogeneous polynomial of T1, ..., TN of degree k.

We have

ui =

N∑

k=1

∫ p̃k

∞

dui = Twi
+

∞∑

j=1

(j + wi)cijTj+wi

= Twi
+

∑P
jkj>wi

c̃k1...kN
T k1

1 · · ·T kN

N , (72)

where c̃k1...kN
∈ Q[{λkl}], deg, c̃k1...kN

= −wi +
∑

jkj and the second expression is
unique.
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Let us take N ≥ 2g − 1 = wg. Then Tw1 ,...,Twg
are algebraically independent.

We denote the right hand side of (60) by F (p̃1, ..., p̃N ). By Theorem 1 the series
expansion of F in t1, ..., tN can be rewritten as a series in u1, ..., ug.

Let

F (p1, ..., pN ) = sλ(N)(n,s)(t1, ..., tN ) +
∑

F−k (73)

be the homogeneous decomposition of the series in ti and

F (p1, ..., pN ) =
∑

d≥0

F̂−d (74)

the homogeneous decomposition of the series in ui, where in (73) the sum in k is taken

for k > |λ(n, s)|. Let d0 be the smallest integer such that F̂−d 6= 0. Write

F̂−d(u) =
∑P
liwi=d

ĉd;l1...lgu
l1
1 · · ·ulg

g .

Then

F̂−d0(u) =
∑P

liwi=d0

ĉd0;l1...lgT
l1
w1

· · ·T lg
wg

+
∑P
jkj>d0

c′k1...kN
T k1

1 · · ·T kN

N , (75)

for some constants, with respect to Ti’s, c′k1...kN
. By comparing (73) with (75) we

have d0 = |λ(n, s)| and

∑P
liwi=d0

ĉd0;l1...lgT
l1
w1

· · ·T lg
wg

= sλ(N)(n,s)(t1, ..., tN ).

Since

sλ(N)(n,s)(t1, ..., tN ) = Sλ(n,s)(T ),

by (40) and (42) and Tw1 ,...,Twg
are algebraically independent, we have

F̂−d0(u) =
∑P

liwi=d0

ĉd0;l1...lgu
l1
1 · · ·ulg

g = Sλ(n,s)(T )|Twi
=ui

.

For d > d0 one can write

F−d(t1, ..., tN ) =
∑

bd;l1...lN T l1
1 · · ·T lN

N ,

with bd;l1...lN ∈ Q[{λkl}] and deg bd;l1...lN = −d0 +d. Comparing this with the expres-

sion of F̂−d(u) and using the algebraic independence of T1, ..., TN , we see inductively

that F̂−d is a polynomial in {ui} with the coefficients in Q[{λkl}] which is homoge-
neous of degree −d0 with respect to {ui, λkl}. Consequently the equation (60) holds
and (i),(ii) of Theorem 3 is proved.

(iii) Since Riemann’s constant τδ′ + δ′′ is a half period, σ(u) is even or odd by Propo-
sition 5 and (4). Thus the relation in (iii) follows from Proposition 4 (iv).

Calculation of CN in Theorem 2. We set t1i = ti = t(p̃i) and t2i = t(q̃i). We
take the limit q̃i → ∞̃, i = 1, ..., N . Since we know that FN is holomorphic in q̃i by
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the already proved part of Theorem 2, we can calculate the limit by taking the limits
t21 → 0, t22 → 0,... t2N → 0 in this order. Therefore we assume |t21| < · · · < |t2N |
and expand everything first into Laurent series in t21 and take the top term of the
expansion. Next we expand this top term in t22 and so on. Below, if we simply write
A + · · · , then it means such an expansion. Let us carry out such calculations.

We have

DN = (−1)
1
2 (n−1)N(N−1)ǫ

− 1
2 N(N−1)− 1

4N(N−1)(n−1)2(n−2)+ 1
2N(n−1)(2g−n)+ 1

2 gN(n−1)(n−2)
n

×ǫ(1)N det(fi(pj))1≤i,j≤N

N∏

j=1

t
(j−1)(n−1)2−

Pn−1
i=1 (nN+g−i)

2j + · · · . (76)

By Lemma 16 (i) we have

MN = (−1)N

∏N
i=1(t1it2i)

nN+g−1
∏N

i,j=1(t1i − t2j)
∏

i<j(t1i − t1j)(t2i − t2j) ·
∏N

i,j=1(t
n
1i − tn2j)

(1 + (regular term)) . (77)

By calculation

FN/DN = (−1)
1
2N(N−1)(n−2)ǫ(s)−N

× (
∏N

i=1 t2i)
(N−1)n(n−2)+ 1

2 (n−1)(n−2)s

∏
i<j(t

n
2i − tn2j)

n−2
(1 + (regular term)) . (78)

Let HN be the product of FN/DN and MN . Then

HN = (−1)
1
2N(N+1)ǫ(s)−N (

∏N
i=1 t1i)

N+g−1

∏
i<j(t1i − t1j)

×
N∏

i=1

t
−(i−1)(n−1)2+nN+g−1+(N−1)n(n−2)+ 1

2 (n−1)(n−2)s
2i + · · · . (79)

Multiplying (76) and (79) we have

MNFN = C−1
N

(
∏N

i=1 t1i)
N+g−1

∏
i<j(t1i − t1j)

det(fi(pj))1≤i,j≤N + · · · .

Thus, by (71), in the limit t21 → 0,..., t2N → 0 we get

MNFN = C−1
N sλ(N)(n,s)(t1, ..., tN ) + · · ·

= C−1
N Sλ(n,s)(T )|Twi

=ui
+ · · · ,

where in the last + · · · part is a series in ti, i = 1, ..., N of degree less than −|λ(n, s)|.
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5.6. Example−g = 1−. We take f(x, y) = y2 − x3 − λ10x − λ00, that is, we
set λ20 = λ01 = λ11 = 0. In this case cij;kl satisfying (ii) of Proposition 2 is unique,
c00;10 = 1 and other cij;kl’s are all zero. Then

ω̂(p1, p2) = dp2

(
y1 + y2

2y1(x1 − x2)
dx1

)
+

dx1

2y1

x2dx2

2y2

=
2y1y2 + x1x2(x1 + x2) + λ10(x1 + x2) + 2λ00

4y1y2(x1 − x2)2
dx1dx2,

and

du1 = −dx

2y
, dr1 = −xdx

2y
.

Theorem 2 gives

σ

(∫ p̃1

q̃1

du1

)2

= Ẽ(p̃1, q̃1)
2 =

(x(p1) − x(q1))
2

4y(p1)y(q1)
exp

(∫ p̃
(1)
1

q̃
(1)
1

∫ p̃1

q̃1

ω̂

)
.

Notice that p(1) = (x,−y) for p = (x, y). One can transform the defining equation of
the elliptic curve to Weierstrass form

Y 2 = 4X3 − g2X − g3,

by

X = x, Y = −2y, g2 = −4λ10, g3 = −4λ00.

The sigma function in this case coincides with that of Weierstrass. Let ℘(u) be the
Weierstrass elliptic function. The symplectic basis du1, dr1 are transformed to

du =
dX

Y
, dr =

XdX

Y
.

and ω̂ becomes

ω̂ =
2Y1Y2 + 4X1X2(X1 + X2) − g2(X1 + X2) − 2g3

4Y1Y2(X1 − X2)2
dX1dX2

= ℘(v2 − v1)dv1dv2,

where

vi =

∫ p̃i

∞̃

du.

The formula for the sigma function gives

σ (v2 − v1)
2

=
(X1 − X2)

2

Y1Y2
exp

(∫ p̃
(1)
2

p̃
(1)
1

∫ p̃2

p̃1

ω̂

)
.

This formula coincides with that given by Klein [19].
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5.7. Example: Hyperelliptic case. Consider the case

f(x, y) = y2 − x2g+1 −
2g∑

i=0

λi,0x
i.

We set λ2g+1,0 = 1. One can take ci1,0;i2,0 = (i2 − i1)λi1+i2+2,0 for 0 ≤ i1 ≤ g − 1,
i1 + 1 ≤ i2 ≤ 2g − i1 and all other ci1j1;i2j2 to be zero. Then [9, 2]

ω̂ = dp2

(
y1 + y2

2y1(x1 − x2)

)
+

g∑

i=1

dui(p1)dri(p2)

=
2y1y2 +

∑g
i=0 xi

1x
i
2 (2λ2i,0 + λ2i+1,0(x1 + x2))

4y1y2(x1 − x2)2
dx1dx2,

and

dui = −xg−idx

2y
,

dri = −
g+i∑

k=g+1−i

(k − g + i)λk+g+2−i,0
xkdx

2y
.

Set pi = (xi, yi) and qi = (Xi, Yi). The formula of the sigma function is given by (61)
with

FN =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 · · · 1 1 · · · 1
x1 · · · xN X1 · · · XN

...
...

...
...

xg
1 · · · xg

N Xg
1 · · · Xg

N

y1 · · · yN −Y1 · · · −YN

xg+1
1 · · · xg+1

N Xg+1
1 · · · Xg+1

N

x1y1 · · · xNyN −X1Y1 · · · −XNYN

...
...

...
...

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

and

CN = (−1)
1
2N(N+1)+gN .

This is Klein’s formula [19, 20].

6. Concluding remarks. In this paper we have established the formula for the
sigma function associated to an (n, s)-curve X in terms of algebraic integrals. Some
properties of the series expansion of the sigma function are deduced from it. Namely
it is shown that the first term of the expansion becomes Schur function corresponding
to the partition determined from the gap sequence at infinity and the expansion
coefficients are homogeneous polynomials of the coefficients of the defining equation
of the curve.

The building block of the formula is the prime function. It is a multi-valued func-
tion on X × X with some vanishing property and has the same transformation rule
as that of the sigma function if one of the variables goes round a cycle of X . Remark-
ably, in the case of hyperelliptic curves, Ônishi [26] has constructed a function with
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the same properties as a certain derivative of the sigma function. By the uniqueness
of such a function they coincide. In general it is expected that the prime function can
be expressed as a derivative of the sigma function.

Fay’s determinant formula ((43) in [17]) expresses Riemann’s theta function in
terms of prime form and some determinant. To get a formula of the sigma function
one needs to take a limit sending some parameter to a singular point of the theta
divisor. To this end one has to know the structure of sigularities of the theta divisor.
So it is difficult to get the formula of the sigma function by taking a limit of Fay’s
formula in general. We have avoided this task and directly constructed a formula of
the sigma function.
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