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ABSTRACT Petri nets are an important and popular tool to model and analyze deadlocks in automated

manufacturing systems. The state space of a Petri net model can be divided into two disjoint parts: a

live-zone and a dead-zone. A first-met bad marking (FBM) is a marking in the dead-zone, representing

the very first entry from the live-zone to the dead-zone, and the calculation of FBMs to a large extent

contributes to the complexity of designing optimal liveness-enforcing supervisors.Most existing studies have

to fully enumerate the reachable markings of a Petri net model to obtain the FBMs, which exacerbates the

computational overheads. This paper first explores a variation mechanism of calculating FBMs with respect

to the resource capacity in a class of S3PR (Systems of Simple Sequential Processes with Resources) from

the structural analysis perspective, which contains a ξ -resource.More generally, for the class of S3PRwith an

η-resource as defined in this paper, the FBMs can be calculated in an algebraic way by a customized structural

analysis technique without enumerating all the reachable markings. Finally, the variation mechanism of

calculating FBMs is revealed for these considered classes of Petri net models. Examples are given to

demonstrate the proposed method.

INDEX TERMS Petri net, first-met bad marking, deadlock control, automated manufacturing system.

I. INTRODUCTION

Over the passed two decades, the development of science and

technology has reached an unprecedented height. Traditional

manufacturing systems cannot meet the demands of human

society in terms of production throughput or diversity of

products. Nowadays, increasing importance has been given

to automated manufacturing systems for their quick response

to the market and production efficiency. For highly auto-

mated manufacturing systems with resource-sharing, a series

of mechanisms are needed to deal with the deadlock phe-

nomenon [1] that arises in a running system.

The associate editor coordinating the review of this article and approving
it for publication was Shouguang Wang.

System blocking caused by deadlocks may lead to catas-

trophic consequences and enormous economic losses, which

should be considered when designing a supervisory con-

troller for automated manufacturing systems (AMSs). In [2],

the author proposes four necessary conditions for the occur-

rence of deadlocks: mutual exclusion, hold and wait, no pre-

emption, and circuit wait. The first three conditions depend

on a system’s structure and its resources, while the last one

is decided by the request, allocation and release of system

resources. Once a deadlock occurs, the above four conditions

must hold.

Petri nets [3], as a major mathematical model, have been

applied to many problems in discrete event systems [4]–[10],

such as modeling and analysis [11], [52], control [12]–[17],
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opacity verification and enforcement [18], [19], scheduling

[20]–[28], [50], [51], performance evaluation [29], [30], [53],

fault identification and diagnosis [32], [33], [61], [62], val-

idation of various properties [18], [19], [54], and deadlock

analysis and control [31], [32], [34], [35], [45]–[48].

To manage the deadlock problem in a system, three types

of methods have been developed by researchers: deadlock

detection and recovery, deadlock avoidance, and deadlock

prevention [35]–[41], [49]. A deadlock avoidance approach

dynamically examines each system state to guarantee that

deadlocks never happen. The implementation of deadlock

avoidance is usually done by an online control policy. Dur-

ing the operation of a system, a deadlock controller can

disable the occurrence of some events such that a dead-

lock never occurs. Preventing a system from entering the

dead-zone (DZ) of the state space of a system by deadlock

prevention is an effective method to design a deadlock con-

troller. Therefore, the first-met bad markings (FBMs) [43],

defined as the states in the dead-zone (DZ), representing

the very first entries from the live-zone (LZ) to the DZ,

need to be calculated in advance for a system model [42].

The notion of FBMs has received much attention,

based on which various deadlock resolution methods are

reported [4], [42], [44], [52], [57].

Reachability analysis is a common and powerful means to

explore the behavior of a Petri net model. The reachability

graph of a Petri net can reflect its complete behavior, from

which one identifies intuitively the states that can lead a

system to a deadlock state. The calculation of FBMs to a

large extent contributes to the computational complexity of

designing a deadlock controller. Chen et al. [44] develop

a method that can derive a maximally permissive liveness-

enforcing supervisor for Petri nets based on the pre-computed

FBMs if such a supervisor exists, where a maximally permis-

sive control place is devised via a place invariant (PI) which

forbids one or more FBMs and none of markings in the LZ is

forbidden.

Traditionally, before the FBMs are computed, one has to

enumerate all the reachable markings of a Petri net. With the

increase of the initial marking or the size of a system model,

the computational cost of FBMs grows dramatically and

sometimes their computation becomes impossible because

of the limited memory of computers. From the structural

perspective, this paper primarily focuses on the analysis of

subclasses of S3PR with and without ξ -resources and pro-

poses a number of ways to identify FBMs.

In [38], [41], a resource-transition circuit (RT-circuit) is

defined as a kind of structure in a Petri net modeling a flexible

manufacturing system, which consists of resource places and

transitions only. Amaximal perfect resource transition circuit

(MPRT-circuit) whose definition is given in Section III in

this paper is said to be perfect if the output transitions of

the activity places on the circuit are exactly the transitions

of this circuit. A resource is said to be a ξ -resource if its

capacity is one and shared by two or more MPRT-circuits

that do not contain each other. In this work, the existence of

a ξ -resource [55], [56] plays an important role in deter-

mining the FBMs for a kind of S3PRs (η-S3PR) as

described later, and divides the FBMs into several types for

analysis.

The rest of the paper is organized as follows. Section II

reviews some basic notions and definitions of Petri nets

and S3PR. Section III defines and analyzes an η-S3PR to

identify its FBMs. Section IV gives an example to demon-

strate the proposed approach. Conclusions and future work

are summarized in Section V. Appendix shows the outcome

of an example given in Section IV.

II. PRELIMINARIES

A. BASICS OF PETRI NETS

A Petri net is a directed bipartite graph consisting of two

components – a net structure and an initial marking. The

net structure includes two types of nodes: places and tran-

sitions, linked by directed arcs. A directed arc cannot link

the same type of nodes. Arcs are labeled by positive inte-

gers to represent their weights. In a Petri net representation,

places are graphically shown as circles and transitions as

boxes or bars. A place can hold tokens, graphically denoted

by black dots, or a non-negative integer to represent their

number. The distribution of tokens over the places of a net

is called a marking that corresponds to a state of a modeled

system. Token distribution at the initial state is called the

initial marking. Let N denote the set of non-negative integers

and N
+ the set of positive integers.

Definition 1: A Petri net structure is a quadruple N =

(P,T ,F,W ), where

1) P = {p1, p2, . . . , pn} is a finite set of places, n ∈ N
+;

2) T = {t1, t2, . . . , tm} is a finite set of transitions with

P ∩ T = ∅, m ∈ N
+;

3) F ⊆ (P × T ) ∪ (T × P) is called a flow relation of

the net, represented by arcs with arrows from places to

transitions or from transitions to places.

4) W: (P× T ) ∪ (T × P) → N is a mapping that assigns

a weight to an arc: W (f ) > 0 if f ∈ F and W (f ) = 0

otherwise. It is called the weighted function of a Petri

net.

Let N = (P,T ,F,W ) be a Petri net (structure). N is called

an ordinary net if for any f ∈ F ,W (f ) = 1; a generalized one

if there exists at least an arc f ∈ F with W (f ) > 1. The Petri

nets considered in this paper are ordinary ones. An ordinary

Petri net can be denoted as N = (P,T ,F).

A marking of Petri net N = (P,T ,F,W ) is a mapping

M : P → N. (N ,M0) is referred to as a net system or marked

net with M0 being its initial marking. In a Petri net, a place

p ∈ P is said to be marked at M if M (p) > 0. A set of places

D ⊆ P is marked atM if at least one place is marked.M (D) =∑
p∈DM (p) is the total number of tokens in D at M .

Let x ∈ P ∪ T be a node in a Petri net N = (P,T ,F,W ).

The preset of x, denoted by •x, is defined as •x = {y ∈

P∪T |(y, x) ∈ F}, and its postset, denoted by x•, is defined as

x• = {y ∈ P ∪ T |(x, y) ∈ F}. Given a place (transition) p (t),
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the nodes in its preset are called the pre-transitions (pre-

places) of p (t) and the nodes in its postset are called the post-

transitions (post-places) of p (t).

Given a Petri net N and a marking M , a transition t ∈ T

is enabled at M if for all p ∈ •t , M (p) ≥ W (p, t), denoted

by M [t〉. When an enabled transition fires, the Petri net

evolves to a new marking M ′ according to M ′(p) = M (p) −

W (p, t) + W (t, p), ∀p ∈ P, which is denoted as M [t〉M ′.

Marking M ′′ is reachable from M if there exist a sequence

of transitions σ = t0t1 . . . tn and markings M1,M2, . . . ,Mn

such that M [t0〉M1[t1〉M2[t2 . . .Mn[tn〉M
′′ holds, which is

denoted byM [σ 〉M ′′. The set of markings reachable fromM

in N is called the reachability set of Petri net (N ,M ), denoted

as R(N ,M ).

Definition 2: Let N = (P,T ,F,W ) be a Petri net.

A nonempty set S ⊆ P is said to be a siphon (trap) if •S ⊆

S• (S• ⊆ •S). A siphon (trap) is minimal if the removal of

any place from S makes the fallacy of •S ⊆ S• (S• ⊆• S).

A minimal siphon S is said to be strict if •S ⊂ S•. The set of

strict minimal siphons in a Petri net is denoted by 5.

Definition 3: The output and input incidence matrices of a

net N are defined as [N+](p, t) = W (t, p) and [N−](p, t) =

W (p, t), respectively. The incidence matrix of a net N is

defined as [N ] = [N+] − [N−], where [N ](p, t) =

W (t, p) − W (p, t).

Definition 4: A P-vector is a column vector I : P → Z

indexed by P and a T-vector is a column vector J: T → Z

indexed by T , where Z is the set of integers. P-vector I is

called a P-invariant (place invariant, PI for short) if I 6= 0

and IT [N ] = 0T . T-vector J is called a T-invariant (transition

invariant) if J 6= 0 and [N ]J = 0. P-invariant I is a

P-semiflow if every element of I is non-negative. ||I || =

{p|I (p) 6= 0} is called the support of I .

B. S3PR MODELS

This section mainly reviews the basic concepts and notions

of a system of simple sequential processes with resources,

called an S3PR [37]. An S3PR is an ordinary net mod-

eling a flexible manufacturing system producing multi-

ple products with sequential processing stages by using

different resource types, in which each processing stage

needs one unit of a resource type only and one resource

cannot participate in two or more consecutive processing

stages.

Definition 5: A simple sequential process (S2P) is a Petri

net N = (PA ∪ {p0},T ,F), satisfying the following

statements:

1) PA 6= ∅ is called the set of the activity (operation)

places;

2) p0 /∈ PA is called the process idle place or idle place;

3) N is a strongly connected state machine;

4) Every circuit of N contains place p0;

Definition 6: An S2P with resources (S2PR) is a Petri net

N = ({p0} ∪ PA ∪ PR,T ,F), satisfying:

1) The subnet generated from X = PA ∪ {p0} ∪ T is

an S2P;

2) PR 6= ∅; (PA ∪ {p0}) ∩ PR = ∅;

3) ∀p ∈ PA, ∀t ∈ •p, ∀t ′ ∈ p•, ∃rp ∈ PR,
• t ∩ PR =

t ′• ∩ PR = {rp};

4) ∀r ∈ PR,
••r ∩ PA = r•• ∩ PA 6= ∅; ∀r ∈ PR,

•r ∩ r• = ∅;

5) ••(p0) ∩ PR = (p0)•• ∩ PR = ∅.

Definition 7: Given an S2PR N = ({p0} ∪PA ∪PR,T ,F),

an initial marking M0 is called an acceptable one for N if:

1) M0(p
0) ≥ 1;

2) M0(p) = 0, ∀p ∈ PA;

3) M0(r) ≥ 1, ∀r ∈ PR;

Definition 8: An S3PR, i.e., a system of S2PR, can be

defined recursively as follows:

1) An S2PR is an S3PR;

2) Let N1 = (PA1 ∪ {p01} ∪ PR1 ,T1,F1) and N2 = (PA2 ∪

{p02} ∪ PR2 ,T2,F2) be two S
3PRs, satisfying (PA1 ∪

{p01}) ∩ (PA2 ∪ {p02}) = ∅, PR1 ∩ PR2 = PC 6= ∅, and

T1 ∩ T2 6= ∅. The Petri net N = (PA ∪ P0 ∪ PR,T ,F)

composed by N1 and N2 through PC , denoted by N =

N1 ◦ N2, is still an S3PR, defined as PA = PA1 ∪

PA2 ,P
0 = {p01} ∪ {p02},PR = PR1 ∪ PR2 , T = T1 ∪ T2,

and F = F1 ∪ F2.

Definition 9: Let N be an S3PR. (N ,M0) is called an

acceptably marked S3PR if one of the following conditions

is satisfied:

1) (N ,M0) is an acceptably marked S
2PR.

2) N = N1 ◦ N2, where (Ni,M0i ) (i = 1, 2) is an accept-

ably marked S3PR. Moreover, for all i ∈ {1, 2} and

p ∈ PAi ∪ {p0i },M0(p) = M0i (p); for all i ∈ {1, 2} and

r ∈ PRi\PC ,M0(r) = M0i (r); for all r ∈ PC ,M0(r) =

max{M01 (r),M02 (r)}.

Transitions in (P0)• (•(P0)) are called source (sink) tran-

sitions, representing the entry (exit) of raw materials (com-

pleted products) when a manufacturing system is modeled

with an S3PR.

C. RT-CIRCUIT, η-S3PR, AND FBMS

In [36], a resource-transition circuit (RT-circuit) 2 in an

S3PR is defined as a circuit that contains resource places

and transitions only. We use 3(•) to denote the set of all

nodes on a circuit ‘‘•’’. An RT-circuit is said to be a perfect

one (PRT-circuit) if the output transitions of the activity

places on the circuit are exactly the transitions on it. Let

R0 be a set of resource places and G(R0) the set of all

PRT-circuits formed by resource set R0. If 21, 22 ∈ G(R0),

then 21 ∪ 22 ∈ G(R0). Therefore, G(R0) contains a unique

maximal PRT-circuit (MPRT-circuit). A resource in an S3PR

is said to be a ξ -resource if its capacity is one and shared

by two or more MPRT-circuits that do not contain each

other.

Definition 10: Given an S3PR (N ,M0), if there exist two

MPRT-circuits 21 and 22 that do not contain each other

such that (3(21) ∩ 3(22)) ∩ PR = {r}, then r is called an
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FIGURE 1. An η-S3PR.

η-resource. An η-resource is said to be a ξ -resource if

M0(r) = 1.

Definition 11: Given a resource r ∈ PR in an S
3PR, the set

of its holders is defined as H (r) = (••r)∩PA. For a siphon S

in an S3PR, S = SR∪SA, where SR = S∩PR and SA = S∩PA.

Definition 12: A holder-resource circuit (HR-circuit) with

respect to resource r in an S3PR is a simple circuit if it

contains resource r, an activity place p ∈ H (r), and tran-

sitions. If a resource is associated with one holder-resource

circuit only, i.e., |H (r)| = 1, the holder-resource circuit is

said to be monoploid. Let [S] = (
⋃

r∈SR
H (r))\S denote the

complentary of siphon S.

Definition 13: Let S ∈ 5 be a strict minimal siphon in

an S3PR. Resource r ∈ PR is said to be independent if there

does not exist a strict minimal siphon S such that H (r)∩SA 6=

∅; otherwise, it is said to be a dependent resource. Let SRin
denote the set of independent resources in PR.

In the rest of this paper, subclasses of S3PR, depend-

ing on different initial token distributions, called η-S3PR

with or without a ξ -resource, are discussed from the Petri

net structural perspective. Motivated by the work in [55],

an η-S3PR is redefined as follows.

Definition 14: An S3PR (N ,M0) is said to be an η-S3PR if

the following three conditions are satisfied:

1) There is only one η-resource;

2) ∀r ∈ PR, there exists an RT-circuit 2 such that

r ∈ 3(2);

3) ∀r ∈ SRin, r is associated with a monoploid HR-circuit.

In an η-S3PR (N , M0), if an η-resource r is of

one-unit, i.e., M0(r) = 1, then it is a ξ -resource.

Accordingly, M0(r) > 1 indicates that r is not a

ξ -resource. For example, Fig. 1 shows an S3PR, where

p1–p8, p9–p13, and p14, p15 are activity, resource, and

idle places, respectively. Circuit t3p3t4p11t3 is a monoploid

HR-circuit. There are three strict minimal siphons: S1 =

{p2, p8, p9, p10}, S2 = {p4, p7, p10, p11, p12, p13}, and S3 =

{p4, p8, p9, p10, p11, p12, p13}, i.e.,5 = {S1, S2, S3}. Accord-

ing to Definition 13, SRin = {p11, p12}. There are two

MPTR-circuits, p9t9p10t2p9 and p10t8p12t7p13t4p11t3p10.

Place p10 is an η-resource shared by these twoMPRT-circuits.

According to Definition 14, this S3PR is an η-S3PR. If

η-resource p10 contains one token initially, then this net is

an η-S3PR with a ξ -resource.

Property 1: In an η-S3PR, there are only three shared

resources denoted by ra, rb, and rη that are in strict minimal

siphons with one of them being an η-resource.

Proof: It follows from Definition 14.

A reachability graph of a Petri net model for an AMS can

be classified into two parts: a live-zone (LZ) and a deadlock-

zone (DZ). In the case of no confusion, we use LZ (DZ ) to

indicate the set of markings in the LZ (DZ). The LZ contains

all the markings that form the maximal strongly connected

component in the reachability graph including the initial

marking. A marking in the DZ inevitably leads to deadlock

states. An FBM (First-met bad marking) is a marking in the

DZ, representing the very first entry from LZ to DZ. The

set of FBMs is defined as: MFBM = {M |M ∈ DZ , ∃M ′ ∈

LZ , ∃t ∈ T ,M ′[t〉M}. A system cannot reach DZ if all FBMs

are forbidden. That is to say, when designing a liveness-

enforcing supervisor, we need to consider the FBMs only,

whereas other markings in DZ can be ignored. This is the

reason why the concept of FBMs is of interest.

According to Section IV.C in [36], in an η-S3PR with

a ξ -resource, there exists a marking M in DZ, for all S ∈ 5,

M (S) 6= 0, where S ∈ 5 is a strict minimal siphon. These

kinds of markings are called spurious-safe markings whose

set is denoted by DZ∗. Let DZ∗
f represent the markings that

are FBMs and belong to DZ∗ and DZf the markings that are

FBMs, at which there exists an empty siphon. In this case,

we have MFBM = DZ∗
f ∪ DZf and DZ

∗
f ∩ DZf = ∅.

III. IDENTIFICATION OF FBMS IN η-S3PR

This section explores the laws to identify FBMs in a class

of S3PR, called η-S3PR. The traditional way of obtaining

FBMs is to analyze the reachability by enumerating all the

markings of a system. The degree of difficulty in enumerating

all the reachable states depends on the structural complexity

of a Petri net model and its initial marking. Generally, it is

infeasible to practically generate all the states due to the lim-

ited computer memory, which is known as the state explosion

problem. For the class of Petri nets, η-S3PR, we show that the

FBMs can be directly computed in an algebraic way, without

enumerating all reachable markings.

The Petri net in Fig. 2 is an η-S3PR with rη being an

η-resource, where idle places are omitted. We assume that the

number of tokens in the idle places is initially big enough.

In this sense, the removal of idle places does not impact

deadlock analysis and supervisor design. In the case of no

confusion, in the rest of this paper, we do not consider
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FIGURE 2. An η-S3PR model.

idle places in a marked η-S3PR that is then denoted by

(PA ∪ PR,T ,F,M0). In Fig. 2, let α ∈ {m, n, u, q} ⊆ N

and the α-part represent the number and the location of the

monoploid HR-circuits in the net. Let Prα and Phα represent

the sets of resource places and holder places of the α mono-

ploid HR-circuits, respectively. For example, m-part consists

of Phm , Prm , and its associated transitions. In this net, there

are two RT-circuits 21 and 22. RT-circuit 21 consists of ra,

Prn , rη, Prm , and transitions linking these places. RT-circuit

22 consists of rη, Pru , rb, Prq , and transitions linking them.

Assume thatM0(rη) = 1. Then, rη is a ξ -resource. The initial

marking can be expressed as

M0 = ara +

m∑

i=1

△m
i p

m
ri

+

n∑

i=1

△n
i p
n
ri

+ rη +

u∑

i=1

△u
i p
u
ri

+

q∑

i=1

△
q
i p
q
ri

+ brb

In this expression, M0(ra) = a and M0(rb) = b, where

a, b ∈ N
+. pα

rx
’s represent resource places in the monoploid

HR circuits and α ∈ {m, n, u, q}, the superscript of place pα
rx
,

indicates the location of this place. Let△α
x denote the number

of resource units in pα
rx
, where △α

x ∈ N, x ∈ {1, 2, . . . , α},

α ∈ {m, n, u, q}. There are three strict minimal siphons,

i.e., S1 = {p2, p6, ra, rη} ∪ Prm ∪ Prn , S2 = {p3, p5, rb, rη} ∪

Pru ∪Prq , and S3 = {p3, p6, ra, rη, rb}∪Prm ∪Prn ∪Pru ∪Prq .

FIGURE 3. A parameterized η-S3PR model (N , M0).

The process that contains p4, p5, p6, ra, rη, rb, q + n mono-

ploid HR-circuits and corresponding transitions is namedX 1,

while the process that contains p1, ra, p2, rη, p3, rb, and

m + u monoploid HR-circuits and corresponding transitions

is called X 2, denoted by X 1 = (PA1 ∪ PR1 ,T1,F1) and

X 2 = (PA2 ∪ PR2 ,T2,F2), respectively.

Any reachable marking M in an η-S3PR consists of two

parts: the submarking of the activity places and that of the

resource places. Let MA indicate the submarking of activity

places and MR the one of other part. Then, a marking M

in an η-S3PR can be described as M = MA ⊕ MR. Given

an η-S3PR with a ξ -resource as shown in Fig. 2, the set of

places in each HR-circuit forms the support of a P-semiflow.

Hence, given an initial marking, any reachable marking M

can be decided if MA is known. For the sake of clarity and

visualization, we use submarking of activity places instead

of the marking of all places when a marking is mentioned.

A. IDENTIFICATION OF FBMS IN AN η-S3PR

WITH A ξ-RESOURCE

As stated above, if M0(rη) = 1, then the η-resource in an

η-S3PR is a ξ -resource. We aim to find the relationship

between the structure of an η-S3PR and its FBMs. Consider

the η-S3PR shown in Fig. 3, where m = 2, n = 2, u = 2,

and q = 2. In Fig. 3, we assume thatM0(p20) = 1, i.e., p20 is

the ξ -resource. There are 10 parameters a, b, . . . , and j that

are all positive integers, i.e., M0(p15) = a, M0(p16) = c,

M0(p17) = d , M0(p18) = e, M0(p19) = f , M0(p21) = g,

M0(p22) = h, M0(p23) = i, M0(p24) = j, and M0(p25) = b.
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TABLE 1. DZ∗

f
of the net in Fig. 3.

We set a = 2, b = 3, c = 4, d = 3, e = 5, f = 3,

g = 3, h = 2, i = 4, and j = 4 as the initial marking of

this net. Up to now, there is no study that directly exposes

the relationship between M0 and FBMs in an S3PR. With

MFBM = DZ∗
f ∪ DZf , according to [36], the existence of

an emptied siphon can separate DZf from MFBM. However,

there is no distinctive feature to specify DZ∗
f . First, we use a

traditional way to enumerate the markings inMFBM to obtain

DZ∗
f as shown in TABLE 1.

There are only five markings in DZ∗
f . Note that, at these

markings, activity places p1–p3 and p8–p10 hold all tokens

of their associated HR-circuits, respectively. We can find

MR via MA. Thus, at these markings, for resources p15–p25,

we have M1(p20) = 1, M2(p19) = 1, M3(p17) = 1,

M4(p21) = 1, M5(p23) = 1, and the resources are emptied

for all other cases. It can be noted that the number of states

in DZ∗
f is n + q + 1 and at these markings there is only

one token held by Prn , rη, and Pru , i.e., for all M ∈ DZ∗
f ,

M (Prn ∪ rη ∪ Pru ) = 1. To show the relationship between

a parametered initial marking in Fig. 3 and its DZ∗
f , we use

different initial markings to compute its DZ∗
f , and the five

parametered markings are shown in TABLE 2.

Next, another example is used to expound the rules among

the structure of the η-S3PR, initial marking, and DZ∗
f .

In Fig. 4, we have m = 1, n = 3, u = 3, and q = 1,

and parametersM0(p15) –M0(p19) andM0(p21) –M0(p25) are

denoted by a – e and f – j, respectively, which are all in N
+.

Compared with the net in Fig. 3, in Fig. 4, we decrease m

and q from 2 to 1, respectively, to test if the places in these

locations affect the number of states in DZ∗
f , and increase n

and u from 2 to 3, respectively, to uncover the relationship

between states in DZ∗
f and places in the n− and u-parts. Its

DZ∗
f is shown in TABLE 3. In this case, we have the results

similar to those in Fig. 3.

By comparing TABLEs 2 with 3, two rules can be sum-

marized: 1) the number of states in DZ∗
f is n + u + 1; 2)

for all M ∈ DZ∗
f , M (Prn ∪ Pru ∪ rη) = 1, M (PR\(Prn ∪

Pru ∪ rη)) = 0. In order to further confirm these findings,

in what follows, we analyze the structure of the η-S3PR by

first introducing a net called X -activity linear system with

resources.

Definition 15: A Petri net X = (PA,T ,F) is said to be an

Xh-activity linear system (Xh-ALS, h ∈ N, h ≥ 3, indicating

that it has h activity places) if it satisfies:

1) PA = {p1, p2, . . . , ph} is a set of activity places;

2) T = {t1, t2, . . . , th+1} is a set of transitions;

FIGURE 4. A parameterized η-S3PR model (N , M0).

3) F ⊆ (PA ×T )∪ (T ×PA), ∀k, l ∈ {1, 2, . . . , h}, k 6= l,

|p•
k | = |•pk | = 1, p•

k 6= p•
l ,

•pk 6= •pl , p
•
k = {tk+1},

•pk = {tk}.

Definition 16: An Xh-ALS with resources (Xh-ALSR)

X = (PA ∪ PR,T ,F) is a Petri net satisfying:

1) The subnet generated by X = PA ∪ T is an Xh-ALS.

2) PA ∩ PR = ∅, |PA| = |PR|;

3) ∀p ∈ PA, ∀t ∈ •p, ∀t ′ ∈ p•, ∃rp ∈ PR,
• t ∩ PR =

t ′• ∩ PR = {rp};

4) ∀r ∈ PR,
••r ∩ PA = r•• ∩ PA 6= ∅; ∀r ∈ PR,

•r ∩ r• = ∅.

In the case of no confusion, anXh-ALSR can also be called

anX -ALSRwhen the number of activity places is of no inter-

est. The net in Fig. 5 is anXh-ALSR (X -ALSR), where p1–ph
and r1–rh are activity and resource places, respectively. t1 and

th+1 are called the source and sink transitions, respectively.
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TABLE 2. DZ∗

f
of the net in Fig. 3.

TABLE 3. DZ∗

f
of the net in Fig. 4.

FIGURE 5. An Xh-ALSR system (X , M0).

According to Definition 14, combined with the general

η-S3PR as shown in Fig. 2, an η-S3PR can be divided into two

parts, i.e., two X -ALSRs that share the same shared resource

places. The two X -ALSRs in an η-S3PR can be called

X 1-component and X 2-component (X 1 and X 2 for short),

respectively. For the convenience of notation, let TX
i
and

PX
i
be the sets of transitions and places in X i-component,

respectively, and MX
i

represents a marking of X i-

component, i ∈ {1, 2}. For example, in Fig 2, X 1-component

consists of p4–p6, ra, rη, rb, all places in Phn, Phq, Prn,

and Prq, and the associated transitions, and X 2-component

consists of p1–p3, ra, rη, rb, all places in Phm, Phu, Prm,

and Pru, and the associated transitions. These two parts share

the same resources ra, rb, and rη. The concept ‘‘composition’’

in an S3PR context can be used to describe this kind of

net construction that an η-S3PR N is composed of two

X -ALSRs X 1 and X 2 through Pr = {ra, rb, rη}, denoted

by N = X 1 ◦ X 2. A marking MX
i
of an X i-component is

said to be safe if for all r ∈ PX
i

R , MX
i
(r) +MX

i
(H (r)) > 0,

i ∈ {1, 2}; otherwise, it is unsafe.

Lemma 1: Let M be a reachable marking of an η-S3PR

(N ,M0) with shared resources rj, j ∈ {a, η, b}. If MX
i
is

safe, there exists a sequence of transitions σ ∈ (TX
i
)∗, such

that MX
i
[σ 〉M ′ with M ′(PX

i

A ) = M0(P
X
i

A ) and M ′(rj) =

MX
i
(rj) +MX

i
(H (rj)), j ∈ {a, η, b}, i ∈ {1, 2}.

Proof: If MX
i
is safe, then an X -ALSR (X , M0) can be

used to model this subnet. This lemma indicates that there

exists a sequence of transitions σ , M ∈ R(X ,M0), such that

M [σ 〉M0. We use induction to prove this with an X -ALSR,

as shown in Fig. 5,

1) M [σ1〉M1 where σ1 = th+1th+1 . . . th+1, |σ1| = M (ph),

M1(rh) = M0(rh).

2) M1[σ2〉M
′
1, if M1(ph−1) < M1(rh), σ2 = thth . . . th,

|σ2| = M1(ph−1), M
′
1(rh−1) = M0(rh−1). If M1(ph−1) >

M1(rh), σ2 consists of several th and th+1, such that

M ′
1(rh−1) = M0(rh−1). Then, similar to 1), M ′

1[σ3〉M2,

σ3 = th+1th+1 . . . th+1, |σ3| = M ′
1(ph), M2(rh) = M0(rh)

and M2(rh−1) = M0(rh−1). Similarly, we could empty

ph−2, ph−3, . . . , p1 sequentially and get the initial state.

A path L is a string of nodes that are all different, i.e., L =

x1x2 . . . xk , where xi ∈ P ∪ T and (xi, xi+1) ∈ F , i ∈

{1, 2, . . . , k − 1}. In a path L = x1x2 . . . xk , x1 is said to

be the head and xk the tail of L. In an X -ALSR X , let
−−→
H (r)(X ) denote the set of activity places on a path whose

121338 VOLUME 7, 2019



D. Sun et al.: On Algebraic Identification of Critical States for Deadlock Control

head is in H (r) and the tail is the sink transition of X , and
−−→
H (r)(•) denote the union of all

−−→
H (r)(X i), where X i is an

X -ALSR system associated with r . In Fig. 5,
−−−→
H (r3)(X ) =

{p3, p4, . . . , ph}. In Fig. 2,
−−−→
H (rη)(X

2) = {p2} ∪ {p3} ∪ Phu ,−−−→
H (rη)(X

1) = {p5} ∪ {p6} ∪ Phn , and
−−−→
H (rη)(•) =

−−−→
H (rη)(X

1)

∪
−−−→
H (rη)(X

2).

On the basis of what have been expounded above, after

analyzing the markings in TABLEs 2 and 3, we find that

there is only one of the resource places associated with the

activity places in
−−−→
H (rη)(•)\(H (ra) ∪ H (rb)) that is marked

with one token at each marking in DZ∗
f , i.e., for all M ∈

DZ∗
f ,M ((

⋃
H (r)⊆

−−−→
H (rη)(•)

{r})\{ra, rb}) = 1. According to this

finding, a rule of algebraically computing DZ∗
f is obtained.

Before showing this conclusion, we present a lemma first.

Lemma 2: Let M be a reachable marking of an η-S3PR

(N ,M0) with shared resources ri, i ∈ {a, η, b}. If M (ri) > 0

and M (rj) > 0, then there exists a sequence of transitions

σ ∈ T ∗ such that M [σ 〉M0, where i, j ∈ {a, η, b}, i 6= j.

Proof: Let M ∈ R(N ,M0) with M (ri) > 0 and

M (rj) > 0. For a shared resource rk (k ∈ {a, η, b},

k 6= i, k 6= j), we have two cases:

1) M (rk ) > 0: This indicates that both MX
1
andMX

2
are

safe. According to Lemma 1, there exists a sequence

of transitions σ1 ∈ (TX
1
)∗ such that M [σ1〉M

′ and

M ′(PX
1

A ) = M0(P
X

1

A ). That is, the markings of all

activity places in X 1-component are at their initial

state, i.e., M ′(PX
1

A ) = 0. In this case, M
′
X

2
is

safe. Similarly, there exists a sequence of transitions

σ2 ∈ (TX
2
)∗ such that M ′[σ2〉M

′′
and M

′′
(PX

2

A ) =

M0(P
X

2

A ) = 0. All transitions in σ1 and σ2 are in

TX
1
and TX

2
, respectively. Thus, M ′(PX

1

A ) = 0 holds

during the firing of σ2. That is, we have M
′′

= M0.

Therefore, there exists a transition sequence σ ∈ T ∗

such that M [σ 〉M0, where σ = σ1σ2.

2) M (rk ) = 0: Under this circumstance, there is at least

one of X 1 and X 2 whose marking is safe. Assume

the marking of X i is safe. Similar to the proof of (1),

the result holds.

Lemma 2 can be used to decide whether a marking M

satisfying some particular condition is in LZ or not. For

example, in Fig 3, if M (p20) = 1 and M (p25) 6= 0, then M is

in LZ .

Proposition 1: Given an η-S3PR (N , M0) with rη being

a ξ -resource, ra and rb being dependent non-ξ -resources,

if there exists M ∈ R(N ,M0), M (((
⋃

H (r)∈
−−−→
H (rη)(•)

{r})\

{ra, rb, rη})∩ P
Xi

R ) = M (H (rη)∩P
Xi

A ) = 1, i ∈ {1, 2}, and for

all p ∈ PA\
−−−→
H (rξ )(•), M (p) = M0(

••p∩PR), then, M ∈ DZ∗
f .

Proof: For the sake of visualization, we use a general

η-S3PR as shown in Fig. 2 to prove this result. According to

Lemma 2, suppose that M is in DZ. Then, there is at most one

shared resource r such that M (r) > 0. Under this condition,

there exist at most four kinds of markings in DZ: 1) M (ra) >

0, M (rη) = 0, and M (rb) = 0; 2) M (ra) = 0, M (rη) = 1, and

M (rb) = 0; 3) M (ra) = 0, M (rη) = 0, and M (rb) > 0; and

4) M (ra) = 0, M (rη) = 0, and M (rb) = 0.

1) M (ra) > 0, M (rη) = 0, and M (rb) = 0: If M

is in DZ, then M (p4) = M0(rb); otherwise, M (p3) > 0

indicates that p•
3 is firable, which meets Lemma 2 and M is

in LZ. The existence of tokens in p3 means that rb can be

marked by firing the output transition of p3. Furthermore,

M (p2) = M0(rη) = 1 means that the marking of X 2-

component is safe. In order to hold tokens in places p2 and

p4, M (Phu ) = M0(Pru ) and M (Phq ) = M0(Prq ) must hold,

leading to an emptied siphon S = {p3, p5, rη, rb}∪Pru ∪Prq ,

which contradicts the definition of DZ∗
f . Then, we conclude

M /∈ DZ∗
f .

2) M (ra) = 0, M (rη) = 1, and M (rb) = 0: In the

case that ra or rb is marked, we have M (p4) = M0(rb),

M (p1) = M0(ra), M (Phm ) = M0(Prm ), and M (Phq ) =

M0(Prq ). However this resource configuration would cause

the fact that t2 and t3 are firable. Assume that t2 fires. Then

M (p2) = 1, implying that there exists a transition sequence

σm ∈ (•Phm )
∗ such that M [σm〉M1 with M1(ra) > 0. In order

not to make false Lemma 2, the transitions in p•
2 should be

prohibited from firing. This indicates that M (Phu ) = M0(Pru ).

Similarly, M (Phn ) = M0(Prn ) holds.

If M ′(SRin) = 0, M ′(rη) = 1, M ′(ra) > 0, and M ′(rb) > 0,

then M ′ is in LZ. There exists a sequence of transitions σ =

t1t1 . . . t1t4t4 . . . t4 which contains M
′(ra) t4 and (M

′(rb)− 1)

t1. M
′[σ 〉M

′′
, M

′′
∈ LZ,M

′′
[t1〉M,M ∈ DZ withM (SRin) = 0.

Thus, M is inMFBM.

3) M (ra) = 0, M (rη) = 0, and M (rb) > 0: Similar to 1),

we have M /∈ DZ∗
f .

4) M (ra) = 0, M (rη) = 0, and M (rb) = 0: This indicates

that M (p1) = M0(ra), M (p4) = M0(rb), M (Phm ) = M0(Prm ),

and M (Phq ) = M0(Prq ), which can prevent ra and rb from

being marked. Since the markings in DZ∗
f are considered

instead of those in DZf , if M (p2) = 1, then M (Pru ) 6= 0

(M (Pru ) = 0 indicates that siphon S = {p3, p5, rη, rb}∪Pru∪

Prq is emptied). Thus, there exists a transition sequence σu ∈

(•Phu )
∗ such that M [σu〉M2 with M2(rη) = 1, which is the

same as the condition of Case 2) if M and M2 belong to DZ.

Therefore, M2 should meet constraints in 2): M2(S
R
in) = 0.

For this reason, M (Pru ) = 1. Similarly, if M (p5) = 1, then

M (SRin) = 1 with M (Prn ) = 1. The approach to prove that

these states are FBMs is similar to that in 2).

According to Conditions 2) and 4) above, we can get

that there exists M ∈ R(N ,M0), if M (((
⋃

H (r)∈
−−−→
H (rη)(•)

{r})\

{ra, rb, rη}) ∩ P
Xi

R ) = M (H (rη) ∩ P
Xi

A ) = 1, i ∈ {1, 2},

and for all p ∈ PA\
−−−→
H (rξ )(•), M (p) = M0(

••p ∩ PR), then

M ∈ DZ∗
f .

Corollary 1: Given an η-S3PR N with rη being a

ξ -resource, we have |DZ∗
f | = n+ u+ 1.

Proof: According to Conditions 2) and 4) in the proof

of Proposition 1, if M (ra) = 0, M (rη) = 1, and M (rb) = 0,

thenM (SRin) = 0 andM ∈ DZ∗
f . For Condition 4),M (ra) = 0,

M (rη) = 0, and M (rb) = 0, if M (Prn ) = 1, then there are n

markings which are in DZ∗
f . Similarly, if M (Pru ) = 1, there
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FIGURE 6. A parameterized η-S3PR model (N , M0).

are u markings which are in DZ∗
f . With the above analysis,

we have |DZ∗
f | = n+ u+ 1.

Proposition 1 shows the relationship betweenM0 andDZ
∗
f .

However, denoted by DZf , the markings inMFBM\DZ∗
f that

have not been considered share the same characteristic of an

emptied siphon at these markings. We take the net in Fig. 6

as an example. There are six parameters with p14 being a

ξ -resource, i.e., M0(p11) = a, M0(p17) = b, M0(p12) = c,

M0(p13) = d , M0(p15) = e, M0(p16) = f , and M0(p14) = 1.

Assume that a = 2, b = 2, c = 1, d = 1, e = 1, and

f = 1.We use traditional way to calculateDZf first, as shown

in Table 4.

FromTABLE 4, we can see thatMA
1 –M

A
23 andM

A
24–M

A
46 are

markings, at which siphons S1 = {p5, p8, p14, p15, p16, p17}

and S2 = {p3, p10, p11, p12, p13, p14} are emptied, respec-

tively. Let us consider MA
1 –M

A
23. For M

A
1 –M

A
6 , only mark-

ings of p1, p10 and p11 change while those of the other

two monoploid HR-circuits associated with p12 and p13
keep unchanged. The place set at the HR-circuit associated

with p11 is the support of a P-semiflow I1, i.e., ||I1|| =

{p1, p10, p11}.M
A
1 –M

A
6 consist of all the possible token distri-

butions at ||I1||. Similarly, all these 23 markings are combina-

tions of token distributions in the support of each P-semiflow,

i.e., ||I1|| = {p1, p10, p11}, ||I2|| = {p2, p12}, and ||I3|| =

{p9, p13}. By M0(p11) = 2, there are six ways to randomly

distribute tokens at ||I1||, denoted by I1 = 6. Then, there

should be I1 × I2 × I3 = 6×2×2 = 24 markings. However,

there is no state at which a trap is emptied, i.e., M (S∗
1 ) 6= 0

with S∗
1 = {p1, p11, p12, p13, p14, p8}. This is the reason why

there are 23 markings. The same findings can be elaborated

from MA
24–M

A
46 where trap S∗

2 = {p3, p14, p15, p16, p17, p6}

cannot be emptied. There also exists a third emptied

siphon, i.e., S3 = {p5, p10, p11, p12, p13, p14, p15, p16, p17}.

Markings in DZf associated with emptied siphon S3 are

included when S1 and S2 are analyzed, i.e., MA
23 and MA

44.

If we use the net in Fig. 6 with a parameterized initial mark-

ing, then |DZf | = I1 × I2 × I3 + I4 × I5 × I6 − 1 =

(1+ 2+ . . . (a+ 1)) × (c+ 1)× (d + 1)+ (1+ 2+ . . . (b+

1)) × (e + 1) × (f + 1) − 1, where (1 + 2 + . . . (a + 1)) is

the number of different token distributions in the support of

I1, c+ 1 is the number of different token distributions in the

support of I2, and the rest can be done by the same reasoning.

According to these findings, we have the following results.

Proposition 2: Given an η-S3PR (N , M0) with rη being a

ξ -resource, and ra and rb being dependent non-ξ -resources,

for all M ∈ DZf , there exists S0 ∈ 5 such that M (S0) = 0,

then, for all r ∈ PR\SR0 , M (r) + M (H (r)) = M0(r) with

M (r) ∈ {0, 1, . . . ,M0(r)} and M (H (r)) ∈ {0, 1, . . . ,M0(r)},

where there does not exist trap S∗ such that M (S∗) = 0.

Proof: This proposition expresses the markings of all r’s

in PR\SR0 and the associated H (r) in the marking M which

can be any token distribution satisfying M (r) + M (H (r)) =

M0(r), where no trap can be emptied since all traps are

marked at M0.

A general η-S3PR as shown in Fig. 2 is used to prove

this conclusion. There exist three strict minimal siphons,

i.e.,5 = {S1, S2, S3}. There exists a transition sequence σ1 ∈

(TX
2
)∗ such that M0[σ1〉M1 with M1(ra) = a, M1(rη) = 1,

M1(rb) = 1, and M1(Pru ) = 0, where for all r ∈ Prm ,

M1(r) +M1(H (r)) = M0(r), M1(r) ∈ {0, 1, . . . ,M0(r)} and

M1(H (r)) ∈ {0, 1, . . . ,M0(r)}. This kind of markings of X
2-

component is denoted by X 2(M1).

Similarly, there exists a transition sequence σ2 ∈ (TX
1
)∗

such that M1[σ2〉M2 with M2(ra) + M2(p6) = a, M2(rη) =

1, M2(rb) = 1, and M2(Prq ) = 0, where for all r ∈ Prn ,

M2(r) +M2(H (r)) = M0(r), M2(r) ∈ {0, 1, . . . ,M0(r)} and

M2(H (r)) ∈ {0, 1, . . . ,M0(r)}. This kind of markings of X
1-

component is denoted by X 1(M2).

The flow of tokens inX 1-component does not interfere with

the token configuration inX 2-component. For the marking of

the whole net, there exists a transition sequence σ ∈ T ∗ such

that M0[σ 〉M3 where M
X

1

3 ∈ X 1(M2) and M
X

2

3 ∈ X 2(M1).

The resource units in rη and rb can be transmitted into p2
and p4, respectively. The tokens in p6 can flow into p1 and

pa at any time. If {rη, rb} is not emptied by firing t1 and t2,

the system is in LZ. Thus, the last firing of t1 and t2 leads the

system to DZ from LZ where these markings in DZ are in DZf
and the conclusion is true. No matter which one fires finally,

there does not exist trap S∗ = {p1, p5, ra, rη}∪Prm ∪Prn that

is emptied.

Similarly, the result holds when siphon S1 = {p2, p6, ra, rη}

∪ Prm ∪ Prn is emptied. If strict minimal siphon S3 =

{p3, p6, ra, rη, rb} ∪ Prm ∪ Prn ∪ Pru ∪ Prq is emptied,

the markings in MFBM have been analyzed in the case that

S1 or S2 is emptied, i.e., M (S3) = 0, M (p5) = 1 (S1 is

emptied) or M (p2) = 1 (S2 is emptied).

In summary, this subsection discusses MFBM of an

η-S3PRwith a ξ -resource. According to Propositions 1 and 2,
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TABLE 4. DZf of the net in Fig. 6.

we can use Algorithm 1 to compute MFBM in Fig. 2. The

computational complexity of Algorithm 1 depends on the

number of HR-circuits and their initial markings due to the

structure of an η-S3PR. In line 8 of Algorithm 1, we assume

that there exist n resources where the number of initial tokens

in each resource ri is mi, n, mi ∈ N, i ∈ {1, 2, . . . , n}.

The complexity of computing marking vectors restricted to

{ri} ∪ H (ri) is O(m
|H (ri)|
i ). This indicates that the complexity

of computing all r in line 8 is O(6n
i=1m

|H (ri)|
i ), which is

polynomial since |H (ri)| ≤ 2 in an η-S3PR. Line 10 of
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Algorithm 1 Computation of MFBM in an η-S3PR With a

ξ -Resource

Require: A marked η-S3PR (PR ∪ PA,T ,F,M0) with a ξ -

resource rξ .

Ensure: MFBM.

1: MFBM := ∅.

2: Compute strict minimal siphon set5 for (PR∪PA,T ,F).

3: Find a siphon Sξ ∈ 5, such that Sξ ∩ H (rξ ) = ∅.

4: for each S ∈ 5\{Sξ }. do

5: M ′
S = 0. /* M ′

S is a marking vector restricted to S.*/

6: Compute M ′
[S].

7: MM = {M ′
S⊕M

′
[S]}. /* For two vectors x and y, x⊕y =

[x|y].*/

8: for each r ∈ PR\SR do

9: Compute Mr,H (r) according to Proposition 2. /*

Mr,H (r) is a set of marking vectors restricted to

{r} ∪ H (r).*/

10: MM= MM ⊗ Mr,H (r). /* For vector sets X and Y ,

X ⊗ Y = {x ⊕ y|x ∈ X ∧ y ∈ Y }, by convention,

∅ ⊗ Y = {y|y ∈ Y }.*/

11: end for

12: Delete the marking inMM at which there is a trap that

is empty.

13: MFBM = MFBM ∪MM .

14: end for

15: Compute DZ∗
f in accordance with Proposition 1.

16: MFBM = MFBM ∪ DZ∗
f .

17: Output MFBM.

TABLE 5. MFBM of the net in Fig. 6 with M(p14) = 5.

for-loop structure (Lines 8–11) means concatenating marking

vectors of n HR-circuits which directly obtains FBMs. Note

that the number of siphons in a Petri net, even in an S3PR,

is exponential with respect to its structural size. In summary,

Algorithm 1 is of efficiency than traditional state enumeration

methods.

Algorithm 2 Computation of MFBM in an η-S3PR Without

a ξ -Resource

Require: A marked η-S3PR (PR ∪ PA,T ,F,M0) without a

ξ -resource rη.

Ensure: MFBM.

1: MFBM := ∅.

2: Compute strict minimal siphon set5 for (PR∪PA,T ,F).

3: Find a siphon Sη ∈ 5, such that Sη ∩ H (rη) = ∅.

4: for each S ∈ 5\{Sη}. do

5: M ′
S = 0. /* M ′

S is a marking vector restricted to S.*/

6: Compute M ′
[S].

7: MM = {M ′
S⊕M

′
[S]}. /* For two vectors x and y, x⊕y =

[x|y].*/

8: for each r ∈ PR\SR do

9: Compute Mr,H (r) according to Proposition 2. /*

Mr,H (r) is a set of marking vectors restricted to

{r} ∪ H (r).*/

10: MM= MM ⊗ Mr,H (r). /* For vector sets X and Y ,

X ⊗ Y = {x ⊕ y|x ∈ X ∧ y ∈ Y }, by convention,

∅ ⊗ Y = {y|y ∈ Y }.*/

11: end for

12: Delete the marking inMM at which there is a trap that

is empty.

13: MFBM = MFBM ∪MM .

14: end for

15: Compute DZf for S = Sη in accordance with case 2) in

Proposition 3.

16: MFBM = MFBM ∪ DZf .

17: Output MFBM.

B. IDENTIFICATION OF FBMS IN AN η-S3PR WITHOUT

ξ-RESOURCES

Let us assume that M0(p14) = g, g > 1, in the parameter-

ized model as shown in Fig. 6. It is an η-S3PR without a

ξ -resource. There are three strict minimal siphons in Fig. 6,

i.e., S1 = {p5, p8, p14, p15, p16, p17}, S2 = {p3, p10, p11,

p12, p13, p14}, and S3 = {p5, p10, p11, p12, p13, p14, p14, p15,

p16, p17}. According to [36], there are two kinds of reachable

markings: safe ones and deadlocks only. Deadlocks occur if

the entire system or part of it remains indefinitely blocked,

i.e., at least one siphon is emptied.

Actually, there should be three types of markings inMFBM

when these three strict siphons are emptied. A traditional

TABLE 6. DZ∗

f
of the net in Fig. 3.
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TABLE 7. MFBM of the net in Fig. 3.
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TABLE 7. (Continued.) MFBM of the net in Fig. 3.
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TABLE 7. (Continued.) MFBM of the net in Fig. 3.
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TABLE 7. (Continued.) MFBM of the net in Fig. 3.

way is to enumerate the markings in MFBM of the net

in Fig. 6. We find that the markings in MFBM related to

emptied siphons S1 and S2 are similar to those in DZf ,

as explored in the last section. At these markings, the number

of tokens in the η-resource initially makes no difference

to what we have presented in Proposition 2. By setting

g = 5, the markings at which S3 is emptied are shown in

TABLE 5.

It is easy to find the property of the markings in MFBM at

which S3 is emptied, i.e.,M (p3)+M (p8) = M0(p20),M (p3) ∈

{1, 2, . . . , g − 1}, and M (p8) ∈ {1, 2, . . . , g − 1}. Actually,

for the markings with S3 being emptied inMFBM,M (p3) = g

also indicates that S1 is emptied. Similarly,M (p8) = gmeans

that S2 is emptied. Accordingly, we have the following result

and Algorithm 2 based on it. The computational complexity

analysis of Algorithm 2 is similar to Algorithm 1. They have
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the same computational complexity. Slight differences in

these two algorithms come from the existence of a ξ -resource.

Proposition 3: Given an η-S3PR (N, M0) with η-resource

rη and M0(rη) = c, (c > 1), ra and rb being dependent non-

ξ -resources, for all M ∈ MFBM, there exists S0 ∈ 5 such

that M (S0) = 0, we have two cases:

1) if H (rη) ∩ S0 6= ∅, for all r ∈ PR\S0R, M (r) +

M (H (r)) = M0(r) with M (r) ∈ {0, 1, . . . ,M0(r)},

M (H (r)) ∈ {0, 1, . . . ,M0(r)}, where there does not

exist a trap S∗ such that M (S∗) = 0;

2) if H (rη) ∩ S0 = ∅, then M (H (rη) ∩ PX
1
) +

M (H (rη) ∩ PX
2
) = M0(rη), where M (H (rη) ∩

PX
1
) ∈ {1, 2, . . . ,M0(rη) − 1}, M (H (rη) ∩ PX

2
) ∈

{1, 2, . . . ,M0(rη) − 1}.

Proof: Similar to the proof of Proposition 2.

IV. EXAMPLE

We use the net in Fig. 3 as an example. There are three strict

minimal siphons: S1 = {p4, p14, p15, p16, p17, p18, p19, p20},

S2 = {p7, p11, p20, p21, p22, p23, p24, p25}, and S3 =

{p7, p14, p15, p16, p17, p18, p19, p20, p21, p22, p23, p24, p25}.

We set a = 2, b = 1, c = 1, d = 2, e = 1, f = 1, g = 1,

h = 1, i = 1, j = 1, and M (p20) = 5 (indicating that it is

not a ξ -resource). According to Algorithm 2, we have its all

FBMs in Table 7 as shown in APPENDIX, whereMA
1 –M

A
143,

MA
144–M

A
190, and M

A
191–M

A
194 are markings at which siphons

S2, S1, and S3 are emptied, respectively. We reset M20 = 1

(indicating that it is a ξ -resource) where other resources’

capacities remain the same. By Algorithm 1, when S2 (S1)

is emptied, the markings inDZf are the same as the markings

MA
1 –M

A
143 (M

A
144–M

A
190) in Table 7, except that the marking of

p4 (p11) is one in this situation, and DZ
∗
f as shown in Table 6.

V. CONCLUSION

This paper shows that in an S3PR with and without a

ξ -resource, there are some laws to identify FBMs in an alge-

braic way as long as the initial marking is given. With these

rules, some traditional methods of solving FBMs that need

a complete enumeration of reachable states can be circum-

vented. The proposedmethods can identify all FBMs of S3PR

models with described structures by determining whether a

certain marking belongs toMFBM or not. This can be used to

design deadlock controllers to prevent a system from entering

the deadlock-zone.

The limitation of this work is that only a class of

S3PR with an η-resource is analyzed. In the future work,

we will extend the proposed methods to S3PRs with more

η-resources or more complex structures. We will explore

state-tree strucutre to deal with deadlock avoidance problem

in automated manufacturing systems [58], [59]. It is also

interesting to use the subspace separation algorithm in [60]

to find the deadlock zone.

APPENDIX

See Table 7.
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