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ON ALGEBRAS WITH CONVOLUTION STRUCTURES
FOR LAGUERRE POLYNOMIALS

YUICHI KANJIN

ABSTRACT. In this paper we treat the convolution algebra connected with
Laguerre polynomials which was constructed by Askey and Gasper [1]. For
this algebra, we study the maximal ideal space, Wiener’s general Tauberian
theorem, spectral synthesis and Helson sets. We also study Sidon sets and
idempotent measures for the algebras with dual convolution structures.

1. Introduction and preliminary results. Let o > —1 and let n be a
nonnegative integer. Let L% (z) denote the Laguerre polynomial defined by

ezx_a d " -, n+a
Lzu):T(%) (e,

Laguerre polynomials have the following properties:
n+a
0= ("1

/ L (2)L%(z)e "z dz = T(a + 1) (" : °‘> Smams
0

where (Z) =p(p—-1)---(p—q+1)/q and by, is Kronecker’s symbol. Denote by
RZ(z) the normalized Laguerre polynomial so that

R2(z) = Ly (<)/ L5 (0).

The purpose of this paper is to study some structures of convolution algebras
connected with Laguerre polynomials, e.g., maximal ideal spaces, Helson sets, idem-
potent measures, spectral synthesis of the set of one point, etc.

Askey and Gaspar [1] proved the following:

(A) [1, Theorem 2] If &« > —1/2 and 7 > 2 or if & > ap = (=5 + (17)1/2)/2 and
72> 1, then

(1) e RS (2)RS(z) = Y Dg(m,m;7)RE(z), x>0,
k=0

with Dg(m,n; 1) > 0, where the series ) - o DZ(m, n; 7)RZ(z) converges for every
z2>0.
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784 YUICH KANJIN

They also constructed a convolution algebra as follows. Let [ be the space of
absolutely convergent sequences a = {an}X g, > poglan] < 00 with norm |a| =
oo |an|. For a and b in [, define the convolution a * b by
o0
(2) (@xb)e= Y ambuDg(m,mi7), k=0,1,2,....

m,n=0

Then [|a  b|| < (||| ||b]], since Y32 |Dk(m,n;7)| = 1 by (A). Denote by 1(>7) the
algebra [ with the convolution . Then {(*7) is a commutative Banach algebra.
We define the function d(z) on [0, 00) by

z) = Z a, RS (x)e™™
n=0

for every a = {a5 }3 in I{®7). Since |R%(z)e *| < 1,z > 0 for a > 1/2 [1, (5.9)],
the function a(z) is continuous on [0, 00) and lim,_, &(z) = 0 for every a in [(*7).
We put

AT = {Gq in (@7},

In §2, first we will shw that A(®7) is a Banach algebra which is isomorphic
and isometric to [(®7) if we introduce the product of pointwise multiplication of
functions and the norm ||d|| = |ja|| to A(®7). Next we will determine the maximal
ideal space of A(*™) and have a result analogous to Wiener’s general Tauberian
theorem. In §3, we will study problems of Helson sets and spectral synthesis for
A(>7) which have originally arisen from the algebra A(T) of absolutely convergent
Fourier series (cf. Kahane (8]). By means of our results in §3, we may obtain that
the structure of A(®7) is simpler than that of A(T) and is similar to that of the
algebra of absolutely convergent Jacobi polynomial series or the algebra of Hankel
transforms. See Igari and Uno (7] and Schwartz [11].

We will also consider the algebras with dual convolution structures for Laguerre
polynomials.

Gorlich and Markett [5] introduced the spaces Ly (,), @ > 0, of measurable
functions on [0, 00) which are suitable for defining convolution structures for La-
guerre polynomials L%(z), o > 0. We will deal with the space L%,V( o) and denote it
briefly by Lq;

La={£;f]l = /0 P @)z dr < 00}, a0

For f and ¢ in L, the convolution is defined by
o0
frg(t)= / T (fiz)g(z)e "z%dx, 120,
0

where T2 (f; z) is the Laguerre translation of f given by

(3) T2(f;z)= %/ fz+t+2(zt)/? cos§) exp(—(xt)'/? cos )

Ja—1/2((zt)*/*sinf)
((xt)'/2 sin f)>—1/2
for z,t > 0, T#(f;0) = f(t) for t > 0, T¢(f;2) = f(z) for 2 > 0.

sin®* 0 df
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ALGEBRAS WITH CONVOLUTION STRUCTURES 785

B) {5, Theorem 1(ii)] Let & > 0. Then L, is a commutative Banach algebra;
that is, [|f =gl < [|fl|llg]l for f and g in L.

Let M[0, 00) be the space of all bounded regular Borel measures on [0, c0). Then
the space M0, c0) is a Banach space with total variation norm ||u| = [;° d|u|(z)
for u in M[0, 00).

In §4, we will introduce a convolution structure to M[0,00) so that L, is in-
cluded in M[0,00) as a closed ideal by the mapping f — py of L, into M[0, 00),
where du;(z) = f(z)e~*/2z* dz, and denote by M, the algebra M[0, cc) with this
convolution structure. We will determine the maximal ideal spaces of L, and M,.
In §5, we will study idempotent measures in M,, and Sidon sets for L,. Although
the Laguerre translation is not positive, our results show that the structures of M,
and L, are similar to those of the algebras for ultraspherical polynomials or Jacobi
polynomials with positive convolution structures. See Dunkl 2], Gasper [4], Igari
[6], and also [11].

2. Algebras [(®7) and A(®7). Let C be the space of infinitely differentiable
functions with compact support in [0, 00). First, we prove two lemmas.

LEMMA 1. Let a > —1 and let p be a positive integer. Then there is a constant
C depending only on o and p such that
w|() s

;/ f(2)L(2)e~"2® dz

for f€C® andn > p.
PROOF. We use the identity

< Cnle—p)/2 sup

(4) n! <%> (L (z)e *2P) = (m + n)!Lfn__[Z(z)e"‘zﬂ_m
(Erdélyi et al. [3, 10.12(28)]) and the inequality
(5) |L%(z)|e~*/?2*/2 < Kn®z®*/? (for 0 < z < 1/n)

< Kn®2g= Y4y — x| 4+ 2/3)~1/4
(for 1/m <z < 2v)
< Kn®/2¢~L= (for 2v < z),
where v = 4n + 2a + 2, and K and L are positive constants not depending on n

and z (cf. Muckenhoupt [9, (2.13)]). Put A = [° f(z)Lg(z)e~*z*dz. Then by
(4) and integration by parts, we have

A= (" 2) ( ) (LE*P(2)e*2°"P) da

_ ("l’n—'/o {(%)pf( )}La“’(z) ~zgotp gy

since f has a compact support and

d p—J ot
(I) (LetB(2)e *24P)]pm0 = 0
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786 YUICH KANJIN
for y=1,2,3,...,p. Thus

— |t oo
|A] < (nn—'p) / |L37P(z)|e"2**P dz - sup
: 0 <z

() 1@

We write

oo
/ |LE¥P(2)le 222" du
0

1/(n—p) 2v, oo
= / +/ +/ |L$f§(m)|e"m"‘+p dzr
0 1/(n—p) 2vp

=I5+ 1+ I3,
where v, = 4(n — p) + 2(a + p) + 2. By (5), we have

1/(n—p)
I1<K(n- p)°‘+”/ e~/ 2gotP g,
0

oo

IL<K(n- p)(a+p)/2/ e~ %/2g(atp=1/2)/2 de,
0

I < K(n — p)(atp)/2 /oo e~ (LH+1/ Az (atn)/2 gy
0

and these inequalities complete the proof.

LEMMA 2. Let a > —1/2 and let 7 be a real number.
(i) Let f be in C® and put

an = ﬁ /Ooo f(z)e™ Le(z)e "z dx.

Then the sequence {a,}>2, belongs to I, and
[o o]
f(@) =) anR3(2)e™™
n=0

for every z > 0.
(i) The sequences {an}SLo of all f in CS° are dense in l.

(£) e,

Since p is arbitrary, we have ) .-, |an| < co0. By the equiconvergence theorem for
Laguerre series for z > 0 and the summability theorem for Laguerre series at £ = 0
(cf. Szegd [12, Theorems 9.1.5 and 9.1.7]), we have f(z) =Y .2 anRI(z)e™ ™ for
every z > 0.

To prove (ii), it is enough to show that, for every j = 0,1,2,...,¢(j) is ap-
proximated by sequences {a,}3, of functions in C°, where ¢(j), =0 for n # j
and ¢(j), = 1 for n = 5. Let h(z) be a function of C2° such that h(z) = 1
for 0 <z <1,0<h(z) <lforl<z<2andh(z) =0for2 < z. Put

PROOF. By Lemma 1, we have

n| = B o
|an| < T(a+1)"1Cnle=P)~2gyp
0<z
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ALGEBRAS WITH CONVOLUTION STRUCTURES 787

fi(z) = h(z/k) R (z)e~"* for every k = 1,2,3,.... Then fi belongs to CZ°. Define
the sequence a(®) = {a{¥)}%_; by

1 had TT —X .0
alk) = Tat 1) /0 Je(z)e™ LS (x)e"z* dz.
We will show that a(*) converges to ¢(j) in ! as k tends to infinity. By Lemma 1,
we have _
|al®) — ¢(5)n| = 1 /oo (h (£> - 1) R3(z)LS(z)e "z* dx
" " T a+1) [Jo k J "
1 d\? T
< (e-p)/2 Bl Iy _ o
ST+ " o<n (d:z:) (h(k) 1) B} (=)

for n > p, and thus |a{®) — ¢(5)a| < C'n{®=P)/2 for n > p with a constant C' not
depending on n and k. Since P — ¢(7)r converges to 0 as k tends to infinity and
the series Y n{®~?)/2 converges for large p, we have

o0 o0
Jim Z:a %) — e(j)n] = gk‘ij& a8 — e(j)n] = 0.

This completes the proof.
Let « > —1/2and 7 > 2 or let a > ap = (=5 + (17)1/2)/2 and 7 > 1. By (1)
and (2), we have

4(z)b(z) = Y ambn R (z) RS (z)e 2"

= E {E ambn D (m, n; ‘r)} RR(z)e™ ™
k m,n
= (a*b)kRE(z)e™™ = (a+b) (z)

k

for every z > 0. This shows that A(*7) is an algebra with the product of pointwise
multiplication of functions. Let a be in (") and suppose d(z) = 0 on [0, 00).
Then, for all f in C°, we have

0= /Ooo f(z)a(z)e™ e *z* dx
00 -1
=T+ (":"‘) @nbn,

n=0
where
— _];___ *® a -z, 0
bn, = I‘(a+1)/0 f(z)Lg(x)e *z* dx.

Since the sequence {b,}32 is dense in ! by Lemma 2(ii), we have a,, = 0 for all n.
This enables us to define the norm of & in A(*") by ||d|| = ||a/|. Then we have the
following.
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788 YUICH KANJIN

PROPOSITION 1. Let a > —1/2 and 7 > 2, or let o > ag = (=5 + (17)1/2)/2
and 7 > 1. Then A7) 4s the commutative semisimple Banach algebra with no unit

which 1s isomorphic and isometric to 1(=7) by the transform ~. Moreover, A(®7)
consists of continuous functions on [0,00) vanishing at infinity, and includes CX
as a dense subset.

Let z be in [0, 00) and define the mapping x, of A(®7) into the complex numbers

by

Xo: f = flz), fin A&7
Then x. is a multiplicative linear functional on A{®7). We denote by M(A(*7)
the maximal ideal space of A(*") and define the mapping ¢ of [0, c0) into M(A(®7))
by ¢: — Xz.

THEOREM 1. Let o > —1/2 and 7 > 2 or let @ > ag and 7 > 1. Then the
mazimal ideal space M(A(®7)) is homeomorphic to the interval [0,00), and the
Gelfand transform of f in A7) is given by f itself.

PROOF. Clearly, x # Xy if ¢ # y. Since both spaces [0, c0) and M(A(*7)
are locally compact Hausdorff spaces, it is enough to show that the mapping ¢ is
surjective. Let x be a multiplicative linear functional on A(®7). Suppose that f
belongs to A(®™). Then

f@) =) anR3()e™™, Y |an| < oo.
n=0 n=0

If we define ¢(n), n =0,1,2,..., by ¢(n)x = 0 for k # n and ¢(n)x = 1 for k = n,
then we have

(6) c(n)(z) = R%(z)e™™, |le(n)| =1 for all n.
To complete the proof, it is enough to show that
x(c(n)") = RZ(xo)e™ 7", n=20,1,2,...,

for some zg in [0, 00).
By the recurrence formula

(7) (n+a)Ry(z) = (-z+2n+a—1)R7_(z) - (n — 1)R;_5(2),
n=23,4,..., R§(z) =1and R{(z) =1—z/(a+1) [12, (5.1.10)], we have
(e + 1)e(1) (@)e(n — 1) (z) = (n = L)e(n — 2) (2)c(0) (z)

—2(n = e(n — 1) (z)e(0) (z)

+ (n+ a)e(n) (z)c(0) (z), >0,
and thus
®) (a+ Vx(e())x(e(n = 1)) = (n — x(e(n — 2))x(c(0)")

—2(n — 1)x(e(n = 1))x(c(0)") + (n + a)x(c(n) )x(c(0)).
Now we claim that x(c(0)") # 0. For, since

X(£) = x((£/¢(0))e(0)7) = x(f/e(0) )x(c(0)")
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ALGEBRAS WITH CONVOLUTION STRUCTURES 789

for all f in C%® which is dense in A(®7), we have that  is trivial if x(c(0)") = 0.

Put g, = x(c(0))~1e¢(n)”, n=0,1,2,..., and choose the unique complex number
o so that x(g1) =1 — zo/(a + 1). Then, by (8), we have

(n+a)x(gn) = (=20 + 2n + & — 1)x(gn-1) — (n = 1)x(gn-2),
n=2,3,4,..., x{go) = 1and x(g1) = 1—zo/(a+1). This shows that the sequence

x(gn), n = 0,1,2,..., satisfies the recurrence formula (7) with z = zo. Thus we
have
) X(gn) = R3(20), n=0,1,2,....

Since the norm of a multiplicative linear functional is at most one, it follows that
|R(z0)| < 1for all n by (6). If zo does not belong to [0, 00), then lim,_, o |RZ(z0)|
= 00 by Perron’s formula in the complex domain [12, Theorem 8.22.3]. This shows
that z¢ belongs to [0,00). By (1) and (9), we have

x(c(0)7) = ) _ Dg(0,0;7)x(ge)

0

=
Il

Dg(0,0; 7)RS(zo) = €770,

e

>
Il

0

x(e(n)) = R (zo)e™".

and therefore

This completes the proof.
By the theorem and Lemma 2(ii), we have the following.

COROLLARY 1. The semisimple Banach algebra A7) is regular.

Let E be a compact subset of [0, 0o) and define I(E) = {f € A(®7); f =0 on E}.
Then I(E) is a closed ideal in A(*7). The application of the usual Banach algebra
proof of the Wiener-Lévy theorem to the quotient algebra A(*7)/I(E) yields the
following.

COROLLARY 2. Let f be in Al®7), Suppose that f # 0 on a compact subset E
of [0,00). Then there is a function g in A7) such that f(z)g(x) =1 for z in E.

This corollary and Lemma 2(ii) yield the following result, analogous to Wiener’s
general Tauberian theorem (cf. Rudin [10, 7.2]).

COROLLARY 3. Let f be in A®™) and suppose that f(zx) # 0 for all z in [0, 00).
Then f is contained in no proper closed ideal in Al®7),

PROOF. Let h be in C2° and let E be the support of A. By Corollary 2, we have
a function g in A(®7) such that fg = 1 on E. It follows from hfg = h that an ideal
containing f includes C®°. By Lemma 2(ii), a closed ideal containing f coincides
with A7),

3. Spectral synthesis and Helson sets. Let E be a closed subset of [0, 00),
and let I(E) be the closed ideal of f in A(®7) such that f = 0 on E. Denote by
J(E) the ideal of f in A(®7) such that f = 0 on a neighborhood of E. If J(E)
is dense in I(E), then E is called a set of spectral synthesis for A(®7). By an
argument similar to that used for Schwartz’s example in the Euclidean space of
three dimension (cf. {10, 7.3]), we have the following.
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790 YUICH KANJIN

THEOREM 2. Let7 > 1. Ifa > 1/2 and z¢ ts in the open interval (0,00), then
the singleton {xo} is not a set of spectral synthesis for A7),

PROOF. Let k be the greatest integer not exceeding a + 1/2. It follows from
the identity (d/dz)L%(z) = —L2t](x) [12, (5.1.14)] that there is a positive con-
stant C' and a neighborhood V of z such that |(d/dz)?(R%(z)e~"*)| < Con V
for j = 1,2,3,...,k and all n. This implies that every f in A(®7) is k-times
continuously differentiable on (0,00). Let I; = {f € Al®7; f(zo) = 0} and
I, = {f € A®7); f(z9) = (df /dz)(z9) = 0}. Then I; and I, are distinct closed
ideals for @ > 1/2. The proof is complete.

A closed subset E of [0,00) will be called a Helson set with respect to the
algebra A(®7) if, for every continuous function g on E vanishing at infinity, there
is a function f in A(®7) such that f =g on E.

The following theorem is suggested by the characterization of Helson sets with
respect to the algebra of absolutely convergent Jacobi polynomial series 7, Theorem
2.

THEOREM 3. Let o> —1/2 and 7 > 2, or let « > ap and 7 > 1. Then every
Helson set with respect to Al®7) is finite.

PROOF. Every finite set is a Helson set with respect to A(®7) since A(®7) is
regular.

Conversely, let E be a Helson set with respect to A{®7), Suppose that E is
infinite. Then there are a sequence {z;}32, in E N (0,00), such that z; # z; for
1 # J, and a point zg such that lim;_,o z; = o and 0 < zg < 00. Let Q(E) be
the quotient algebra A(®7)/I(E) with quotient norm || - [lo(k), and let Co(E) be
the Banach algebra of continuous functions on E vanishing at infinity with uniform
norm ||-||c,(k)- Since E is a Helson set with respect to A(*7), it follows that Q(E) is
isomorphic to Co(E) and the norms in Q(E) and in Co(E) are equivalent. Let gx be
a function in Co(E) such that gi(z2;) = 1 and gx(z2;—1) =0 for 7 =1,2,3,...,k,
gr(z;) =0for j =2k+ 1,2k +2,... and ||gk|/co(&) = 1. By the norm equivalence
and the definition of quotient norm, we can choose a function fi in A(®7) for every
k so that fi(z) = gx(z) on E and || fi|| < C with a constant C not depending on
k. Since A(®7) can be regarded as the dual of the space ¢ of sequences vanishing
at infinity, the sequence {fx}?2, has a subsequence, say also {fx}5>,, converging
to a function f in A(®7) in the weak* topology o(A(®*7),¢p). If & > —1/2, then
R2(z) — 0 as n — oo for every z in (0, 00) [12, (7.6.8)]. Thus we have fi(z) — f(z)
as k — oo for every z in (0,00) by the definition of weak* topology o(A(*™), ¢g),
and in particular f(zg;) = 1 and f(z2;—1) = O for all 5. This contradicts the
continuity of f on [0,00) in the case z¢ in {0, 00) and contradicts the vanishing at
infinity of f in the case x¢o = 0o. The proof is complete.

4. Algebras L, and M,. Let a > —1/2. If we put z = = + ¢ + 2(zt)'/2 cos ¥,
0 <6 < in (3), then we have the following for z,t > 0 (cf. [5]):

(xt)/?sinf = {2(zt + 22 + tz) — 2 — t* — 22}1/2)2
= P(I,t, Z)a say.

To(f;2) = / " 12K (1, 2)e 72" dz,

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use




ALGEBRAS WITH CONVOLUTION STRUCTURES 791

(2m)V/2(ztz)e
0,
where the first value is assigned only if 2(zt + tz + 2z) — 2% — t2 — 22 > 0.
The kernel K (z,t,z) satisfies the following.
(C) [5, Lemma 1(ii)] Let & > 0. Then

o0
/ |K (z,t, 2)|e™%/?2% dz < e(&+1)/2
0

L(a+1)22! (z+t+2)/2 a—1/2
K(fE t Z) = { ) ' Ja—l/2(p(2},t’ Z))p(xat1 2) 3

for z,t > 0.
Let M’ be the space {u € M[0,00); |u|({0}) = 0}, and let u and v be in M’
We define the convolution y * v for oo > 0 by

(10) uxv(E) = /Ooo /Ooo {/EK(z,t,z)e_z/2z"‘ dz} e~ @/2 du(x) du(t)

for every Borel set E of (0,00). Then p*v belongs to M’ and ||u*v| < ||u| {|#| by
(C). We denote by M/, the algebra M’ with this convolution. Every u in M[0, co)
has the unique decomposition u = v + p({0})éy, where v is in M), and & is the
measure with the unit mass at the point 0. We extend the convolution to all of
M|0,00) by treating &g as a unit. This algebra is a commutative Banach algebra
with a unit and is denoted by M,. We identify L, with its image by the mapping
f e uy, dus(z) = f(z)e~*/2x*dz. Then L, is a closed subalgebra of M/, since
prxpg=frgand flpgll = |fIl.
The Fourier Laguerre coefficient f(n) of f in L, is defined by

fo) = [ f@R @) a0 ds
for every n = 0,1,2,.... We define the Fourier-Stieltjes Laguerre coefficient (n)

of 4 in M, by
= [ B
for every n. Then we have ji;(n) = f(n), and
(11) (f *9)"(n) = f(m)(n), (kxv)"(n) = (n)o(n)

for f,g in L, and u,v in M, by the identity
T>(Ry;z) = Ry(z)R5(t), a>-1/2 (Watson [13]).
LEMMA 3. Leta>0.

(i) la(n)| < llull for p in M.
(1) If @ measure p 1 M, satisfies that ji(n) =0 for all n, then p =0.

PROOF. The inequality |RS(z)e=%/2| < 1, o > 0 [3, 10.18(14)] implies (i). To
prove (ii), it is enough to show that fo x) du(z) = 0 for every f in C®. By
Lemma 2(i), we have f(z) = Y oo janRS(z)e™%/2 with 320 o |an| < co. Thus
we have [° f(z) du(z) = Y02 anit(n) = 0 by the Lebesgue convergence theorem

since
o0 00 o0
> [ lanRa@e 2 dbl(@) = Y lond sl < oo,
n=00 n=0
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792 YUICH KANJIN

Now we consider the maximal ideal space of L,. For every n = 0,1,2,..., we
define the functional x, by

xn(f)=f(n), finLa.

Then ¥, is a multiplicative linear functional on L, by (11).

PROPOSITION 2. Let a > 0. Then the mazimal ideal space of L, s the space
{xn;n =0,1,2,...} with the discrete topology.

PROOF. Let x be a multiplicative linear functional on L,. We have an integer
ng > 0 such that x(Rg ) # 0. For, if x(Rg) = 0 for all n, then we have x(f) =0
for all f in L, since the Cesaro mean of order é > o+ 1/2 of the Fourier Laguerre
series converges in L, by [5, (3.7)]. It follows from the orthogonality of Laguerre
polynomials that ng is unique, and also f * Ry = f (no)Rg, for f in L. This
implies that x(f)x(Rg,) = f(rm)x(R;’,‘o), and thus x(f) = f(no). Since the Gelfand
topology is clearly discrete, the proof is complete.

We denote by M(M,) and M(M!,) the maximal ideal spaces of M, and M/,
respectively. The algebra M, has the direct sum decomposition M, = M) &
Cébo. Here, Céy is the closed subalgebra of M, generated by &y. It follows from
the definition of the convolution that M/ is a closed ideal in M,. Thus M(M,)
is the one point compactification {xoo} U M(M}) of M(M]), where xoo is the
multiplicative linear functional on M, such that xoo(x) = p({0}) for 1 in M,. The
next two lemmas are essential to the following discussion. See 2] and also [11].

LEMMA 4. Leta>0. If 4 and v are in M), then p*v 1s in L,.

PROOF. Let E be a Borel set in (0,00) such that fE e~ */2z%dz = 0. For all
z,t > 0, the braces { } in the definition (10) of the convolution of 4 and v are
zero since K(z,t, z) are integrable with respect to the measure e~*/22% dz by (C).
Thus we have u * v(E) = 0; that is, p * v is absolutely continuous with respect to
e~%/22% dz. This shows that p* v in L.

LEMMA 5. Let a > 0. If p is in M}, then lim,_,o fi(n) = 0. In particular,
Xoo(t) = limy o0 f1(n) for u in M,.

PROOF. Since pu* uisin L, for p in M/, by Lemma 4, it is enough to show that
limp—o0 f (n) =0 for every f in L,. The usual argument in the Riemann-Lebesgue
theorem implies that lim,_,oo f(n) = 0 by Lemma 3(i) and the convergence of the
Cesaro mean of order § > a +1/2 in L.

We can determine the maximal ideal spaces M(M/,) and M(M,) by using Lemma
4.

THEOREM 4. Let a > 0.

(i) The mazimal ideal space M(M.,) of M, is the space {xn;n =0,1,2,...} with
the discrete topology, where xn{u) = fi(n) for p in M.

(ii) The mazimal ideal space of M(M,) of M, is the space {xn;n =0,1,2,...}U
{xo0} with topology of the one point compactification of {xn;n =0,1,2,...}.

PROOF. Every x, is a multiplicative linear functional on M/ by (11). Con-

versely, let x be a multiplicative linear functional on M. Let v be a measure of
M! such that x(v) # 0. Since v v is in L, by Lemma 4, the restriction of x to L,
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is nontrivial. Thus there is a unique element x, of M(Ly) such that x(f) = xn(f)
for all f in L,. Since y * v in L, for every p in M} by Lemma 4, we have

x(p*v) = xn(p *v) = (u*xv) (n) = f(n)d(n),

and thus x(u) = fi(n). Clearly, the Gelfand topology is discrete. Therefore (i) is
proved. Since M(M,,) is the one point compactification M(M.) U {x oo} of M(M]),
(i) implies (ii). The proof is complete.

5. Idempotent measures and Sidon sets. For pin M, if p* u = u, it is
called an idempotent measure in M. It follows from Lemma 3(ii) that a measure
u in M, is idempotent if and only if i(n) = 0 or 1 for every n. The following
consideration is motivated by characterizations of the idempotent measures related
to ultraspherical polynomials [2] or Jacobi polynomials [6].

Let 4 be an idempotent measure in M,, and decompose u to u = v + u({0})éo,
v in M. By the convolution equation i * u = p, we have

v+ u({0})do = v+ v + 2u({0})v + p({0})?6o.

Thus u({0}) = u({0})?, and so u({0}) = O or 1. If u({0}) = 0, then limy,—, o, f(n) =
lim, o #(n) = 0 by Lemma 5. Since ji(n) takes only values 0 or 1, we have
f(n) = 0 except for a finite number of n’s. Thus we have

ZL"‘(::: —/2g0 gy

where Y is a finite sum. If 4({0}) = 1, then P(n) takes only values 0 or —1. Since
lim,,_,o P(n) = 0, we have

du(x)=~p(%+1)ELZ( )e~2/222 dz + dbo (x),

dule) = F(a+ 1)

where ) is a finite sum. Therefore we have the following.

THEOREM 5. Let a > 0. If pu is an idempotent measure in M, then u has the
form

du(z) = (a gy Z anL%(z)e %22 dz + aoodbp(z),
where an, =1 or —1, aso =0 or 1 and Y, 13 a finite sum.

A subset E of the nonnegative integers will be called a Sidon set with respect
to L if every sequence {ay, }ncg on E vanishing at infinity is the restriction of the
Fourier Laguerre coefficients of a function f in L to E; that is, a, = f (n) for all
n in E. The concept of Sidon sets with respect to L, is dual to that of Helson sets
with respect to A(*7). We have a theorem which is dual to Theorem 3 (cf. [2 and
10, 5.7]).

THEOREM 6. Let o > 0 and let E be a subset of the nonnegative integers. Then
the following are equiuvalent:

(i) E 1s a Sidon set with respect to Ly .

(ii) For every bounded sequence {a, }ncr on E, there is a measure p in M, such
that a,, = i(n) for allm in E.

(iii) E is finite.
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PROOF. By the usual Sidon set argument, we have that (i) implies (ii) (cf. [10,
Proof of 5.7.3]). We will show that (ii) implies (iii). Suppose that E is infinite and
put E = {n;}22,, n1 < nz < n3 < ---. Define the sequence {an}neck by an, =0
for odd 5 and a,; = 1 for even j. If there is a measure p in My, such that i(n) = a,
for all n in E, we have a contradiction since lim;_, ji(n;) exists by Lemma 5. If
E is finite, then

1
f(z)= m E an Ly (z)

nekE
belongs to L,, and thus (iii) imples (i). The proof is complete.
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