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ON ALGEBRAS WITH CONVOLUTION STRUCTURES
FOR LAGUERRE POLYNOMIALS

YÛICHI KANJIN

ABSTRACT. In this paper we treat the convolution algebra connected with
Laguerre polynomials which was constructed by Askey and Gasper [1]. For
this algebra, we study the maximal ideal space, Wiener's general Tauberian
theorem, spectral synthesis and Helson sets. We also study Sidon sets and
idempotent measures for the algebras with dual convolution structures.

1.   Introduction and preliminary results.   Let a > -1 and let n be a
nonnegative integer. Let L" (x) denote the Laguerre polynomial defined by

„xT-a   /  A \ ™

L"M = ̂ rU) <e~'*"+">-
Laguerre polynomials have the following properties:

'n + aNLan(Q)
n

ÍJo
Ln\(x)L^(x)e-xxa dx = Y(a + l)(n + ") Smn,

'o V   n   /
where (p) = p(p - 1) ■ ■ ■ (p - q + l)/g! and 8mn is Kronecker's symbol. Denote by
Rn(x) the normalized Laguerre polynomial so that

R%(x) = L%(x)/L%(0).

The purpose of this paper is to study some structures of convolution algebras
connected with Laguerre polynomials, e.g., maximal ideal spaces, Helson sets, idem-
potent measures, spectral synthesis of the set of one point, etc.

Askey and Gaspar [1] proved the following:
(A) [1, Theorem 2] If a > -1/2 and r > 2 or if a > a0 = (-5 + (17)1/2)/2 and

t > 1, then
oo

(1) e~TXR^(x)R^(x) = YJDk(.m,n;r)Rt(x),        x > 0,
fc=0

with D%(m, n; r) > 0, where the series Yl'kLo P*k (m'n! T)P-k(x) converges for every
x >0.
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784 YUICH KANJIN

They also constructed a convolution algebra as follows. Let I be the space of
absolutely convergent sequences a = {a„}£L0, YZn°=a la"l < °° wrth norm ||a|| =
Yln°=o Ia« I- For a an(i bin I, define the convolution a * b by

oo

(2) (a*b)k=   \     ambnD%(m,n;T),        k = 0,1,2,..,
m,n=0

Then ||a*o|| < ||a|| ||6||, since Y2T=o\Dk{m,n;T)[ = 1 by (A). Denote by l^a'^ the
algebra / with the convolution *. Then /(a'T) is a commutative Banach algebra.

We define the function â(x) on [0, oo) by
oo

â(x) = J2anRn(x)e-TX
n=0

for every a = {an}£°=0 in l^T\ Since \R^(x)e~x\ < 1, x > 0 for a > 1/2 [1, (5.9)],
the function â(x) is continuous on [0, oo) and limx^oo â(x) = 0 for every a in l^a,T\
We put

A^ = {Ô;.a in/<a'T>}.

In §2, first we will shw that A^a^ is a Banach algebra which is isomorphic
and isometric to /(a'T) if we introduce the product of pointwise multiplication of
functions and the norm ||ô|| = ||a|| to A(a'T). Next we will determine the maximal
ideal space of A'"'1") and have a result analogous to Wiener's general Tauberian
theorem. In §3, we will study problems of Helson sets and spectral synthesis for
A(a,T) which have originally arisen from the algebra A(T) of absolutely convergent
Fourier series (cf. Kahane [8]). By means of our results in §3, we may obtain that
the structure of A(a'T^ is simpler than that of A(T) and is similar to that of the
algebra of absolutely convergent Jacobi polynomial series or the algebra of Hankel
transforms. See Igari and Uno [7] and Schwartz [11].

We will also consider the algebras with dual convolution structures for Laguerre
polynomials.

Görlich and Markett [5] introduced the spaces L^,,, a > 0, of measurable
functions on [0, oo) which are suitable for defining convolution structures for La-
guerre polynomials L%(x), a > 0. We will deal with the space L^,,, and denote it
briefly by La;

/»oo

La = {/; 11/11 = /     |/(x)|e-*/Vdx < oo},        a > 0.
Jo

For / and g in La, the convolution is defined by
/■oo

/ * git) = /     T?(f; x)g(x)e-xxa dx,        t > 0,
Jo

where Tf(f;x) is the Laguerre translation of / given by

(3)    T?(f; x) = V{<^y]T [ f(x + t + 2(xi)1/2 cosö) exp(-(xt)V2 cosö)

sin2Q
■iq-l/2((st.)1/2sinfl)    .   2c
((xty/2 sine)"-1'2

for x, t > 0, Tta(f; 0) = f(t) for t > 0, T§ (/; x) = f(x) for x > 0.
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ALGEBRAS WITH CONVOLUTION STRUCTURES 785

(B) [5, Theorem l(ii)] Let a > 0. Then La is a commutative Banach algebra;
that is, ||/ * g[[ < ||/|| ||o|| for / and g in La.

Let M[0, oo) be the space of all bounded regular Borel measures on [0, oo). Then
the space M[0, oo) is a Banach space with total variation norm ||p|| = J0°° d|p|(x)
for p in M[0, oo).

In §4, we will introduce a convolution structure to M[0, oo) so that La is in-
cluded in M[0, oo) as a closed ideal by the mapping / t-t pf of La into M[0, oo),
where dp¡(x) = f(x)e~x/2xa dx, and denote by Ma the algebra M[0, oo) with this
convolution structure. We will determine the maximal ideal spaces of La and Ma.
In §5, we will study idempotent measures in Ma and Sidon sets for La. Although
the Laguerre translation is not positive, our results show that the structures of Ma
and La axe similar to those of the algebras for ultraspherical polynomials or Jacobi
polynomials with positive convolution structures. See Dunkl [2], Gasper [4], Igari
[6], and also [11].

2. Algebras /(a'T) and A^a,T^>. Let G£° be the space of infinitely differentiable
functions with compact support in [0, oo). First, we prove two lemmas.

LEMMA 1. Let a > —1 and let p be a positive integer. Then there is a constant
C depending only on a and p such that

\       f(x)L«(x)e-x
lio

for f E Gc°° and n>p.

PROOF. We use the identity

<CV"-p)/2sup
0<x ¿)>

(4) n! {£f {L"{x)e~Xxß) = (rn + n)\Lßm-+mn(x)e-xxe-m

(Erdélyi et al. [3, 10.12(28)]) and the inequality

(5) \L«(x)\e-x'2xa/2<Knaxal2    (for 0 < x < 1/n)

^Kn^x-^Wv -x[ + v1'3)-1lA
(for 1/n < x < 2v)

< Knal2e~Lx    (for 2v < x),

where v = An + 2a + 2, and K and L are positive constants not depending on n
and x (cf. Muckenhoupt [9, (2.13)]). Put A = J™ f(x)L^(x)e~xxadx. Then by
(4) and integration by parts, we have

A= (n-p)\
n-     fo°°f(*)(i)P(K+-PP(x)e-xx"+p)dx

since / has a compact support and

d N P"J
[dx) (L°yp(x)e-xxa+p)\x=o=0
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786 YUICH KANJIN

for¿ = 1,2,3,...,p. Thus

\A\ < {^-^ ■ H \Lan+_l(x)\e-xx^p dx ■ sup
n-       Jo o<x dx fix)

We write

fJo

L"^(x)|e-xxQ+Pdxn—p\

\L^pp(x)\e-xxa+pdx
'o

(/•l/(n-p) /-21/p /-ex

/ +/ +/JO Jl/(n-p)      J2vif

= h+I2 + i3,

where vv = 4(n - p) + 2(a + p) + 2. By (5), we have

/•l/(n-p)
h < K(n - p)a+p / e~x'2xa+p dx,

Jo
roo

h < K(n - p)(«+P)/2  /      e-x/22.(a+P-l/2)/2 dl)
yo

/*oo
h < K(n - p)(«+p)/2 /    e-(L+i/2)xx(a+p)/2 dx

Jo
and these inequalities complete the proof.

LEMMA 2.  Let a > —1/2 and let t be a real number,
(i) Let f be in C%° and put

an = f(aTT) r KxyxL^e~Xxa dx-

Then the sequence {an}£L0 belongs to I, and
oo

f(x) = J2anRr](x)e-TX
n=0

for every x > 0.
(ii) The sequences {an}^?=0 of all f in C^° are dense in I.

PROOF. By Lemma 1, we have

|o„| ^rtoj + l^Gn^-P^sup
0<x

(¿)'»w<3
Since p is arbitrary, we have X^o Ia« I < °°- ^v ^ne equiconvergence theorem for
Laguerre series for x > 0 and the summability theorem for Laguerre series at x = 0
(cf. Szegö [12, Theorems 9.1.5 and 9.1.7]), we have f(x) = Y^n=oanK(x)e~TX for
every x > 0.

To prove (ii), it is enough to show that, for every j = 0,1,2,... ,c(j) is ap-
proximated by sequences {an}£L0 of functions in Gc°°, where c(j)n = 0 for n ^ j
and c(j)n = 1 for n = j. Let /i(x) be a function of G£° such that h(x) = 1
for 0 < x < 1, 0 < /i(x) < 1 for 1 < x < 2 and /i(x) = 0 for 2 < x.   Put

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



ALGEBRAS WITH CONVOLUTION STRUCTURES 787

fk(x) = h(x/k)Rf(x)e~TX for every k - 1,2,3,.... Then fk belongs to G~. Define
the sequence a^ = {an  }n°=o by

-^— [°° fk(x)eTXLZ(x)e-xxadx.
a + 1) Jo

a(k) --n     r(

We will show that a^ converges to c(j) in / as k tends to infinity. By Lemma 1,
we have

ank)-c(j)n\

<

^irwf)-iKwL°wrt°'fa

for n > p, and thus |an — c(j)n| < C'n^a p^2 for n > p with a constant C not
depending on n and fc. Since an ' - c(j)n converges to 0 as k tends to infinity and
the series Y2 n(a~pW2 converges for large p, we have

oo oo

lim V \ank) - c(j)n\ = V] lim [a^ - c(j)n\ = 0.
k—»OO

71 = 0 n=0
fc—»OO

This completes the proof.
Let a > -1/2 and r > 2 or let a > a0 = (-5 + (17)1/2)/2 and r > 1. By (1)

and (2), we have

Ô(x)6(x) = Y,ambnRm{x)K(x)e -2ti

= J2 \ ^2ambnDa(m,n;T) l R^(x)e~TX
Ic     (m,n )

= ¿2(a*b)kR%(x)e-TX = (a*br(x)
k

for every x > 0. This shows that A(Q'T' is an algebra with the product of pointwise
multiplication of functions. Let a be in Z(Q,T) and suppose â(x) = 0 on [0, oo).
Then, for all / in G£°, we have

eTXe~xxadx

where

roo

0= f(x)â(x)t
Jo

=T(a+i)f:(n+nay1anbn,
n=0 ^ '

bn = T(a~rT) r f^Ln(^~Xxa dx.
Since the sequence {6„}^0 is dense in / by Lemma 2(ii), we have an = 0 for all n.
This enables us to define the norm of â in A(a'T) by ||â|| = ||a||. Then we have the
following.
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788 YÛICH KANJIN

PROPOSITION 1. Let a > -1/2 and t > 2, or let a > a0 = (-5 + (17)1/2)/2
and r > 1. Then A^a'T' is the commutative semisimple Banach algebra with no unit
which is isomorphic and isometric to /(a>T) by the transform "! Moreover, A(Q,T)
consists of continuous functions on [0, oo) vanishing at infinity, and includes C£°
as a dense subset.

Let x be in [0, oo) and define the mapping Xx of A^a'T"> into the complex numbers
by

Xx-.f»f(x),    finA^y
Then Xx is a multiplicative linear functional on A(a'T'.  We denote by M(A^a'T^)
the maximal ideal space of A(Q,r) and define the mapping i of [0, oo) into M(A^a'T^)
by f.x^Xx-

THEOREM 1. Let a > -1/2 andr > 2 or let a > a0 and r > 1. TTien the
maximal ideal space M(A^-a,T^) is homeomorphic to the interval [0, oo), and the
Gelfand transform of f in A^a,T' is given by f itself.

PROOF. Clearly, Xx t¿ Xy if x / y. Since both spaces [0,oo) and M(A<-a'T^)
axe locally compact Hausdorff spaces, it is enough to show that the mapping ¿ is
surjective. Let x be a multiplicative linear functional on A^a,T\ Suppose that /
belongs to A(Q'r). Then

OO OO

f(x) = ^2 anRn(x)e~TX,     ^ |a„| < oo.
n=0 n=0

If we define c(n), n = 0,1,2,..., by c(n)k = 0 for k ^ n and c(n)k = 1 for k = n,
then we have

(6) c(nf(x) = R^(x)e-TX,    \\c(n)\\ = 1 for all n.
To complete the proof, it is enough to show that

X(c(nf) = R%(x0)e~TX°,        n = 0,1,2,...,

for some xn. in [0, oo).
By the recurrence formula

(7) (n + a)R%(x) = (-x + 2n + a- l)R^_i(x) - (n - l)R^2(x),

n = 2,3,4,..., Rg(x) = l andÄf(x) = l-x/(a + l) [12, (5.1.10)], we have

(a + l)c(lHx)c(n - lHx) = (n - l)c(n - 2)^(x)c(0)7-r)

- 2(n - l)c(n - ir(x)c(0)~(x)
+ (n + a)c(n)"(x)c(0)^(x),        x > 0,

and thus

(8) (a + l)X(c(lf)x(c(n - if) = (n - l)X(c(n - 2Dx(c(0D
-2(n - l)X(c(n - lf)x{c(0D + (n + a)X(c(nT)x(c(tif).

Now we claim that x(c(0)~) ^ 0. For, since

x(f) = x((/Mo)>(on = X(f/c(0)~)x(c(0)l
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ALGEBRAS WITH CONVOLUTION STRUCTURES 789

for all / in Cf which is dense in A^a,T\ we have that X is trivial if x(c(0)~) = 0.
Put gn = x(c(0)~)-1c(n)~, n = 0,1,2,..., and choose the unique complex number
xo so that x(Çi) = 1 _ xo/(a + 1). Then, by (8), we have

(n + a)x(gn) = (-xo + 2n + a- l)x(gn-i) - (n - l)x(gn-2),
n = 2,3,4,..., x(Ço) = 1 and x(ffi) = 1~ xo/(ot + !)• This shows that the sequence
XÍ9n), n = 0,1,2,..., satisfies the recurrence formula (7) with x = xo- Thus we
have

(9) x(9n) = K(x0),        n = 0,1,2,....
Since the norm of a multiplicative linear functional is at most one, it follows that
l-Rn^o)! < 1 for all n by (6). If xo does not belong to [0, oo), then lim^^oo |i2"(xrj)|
= oo by Perron's formula in the complex domain [12, Theorem 8.22.3]. This shows
that xo belongs to [0, oo). By (1) and (9), we have

oo

X(c(0r) = 5>£(0,0;r)x(afc)
fc=0

CO

= ^D^(0,0;r)ü;«(xo) = e-^,
fc=0

and therefore
x(c(nr) = iE(*o)e-™ °.

This completes the proof.
By the theorem and Lemma 2(ii), we have the following.

COROLLARY 1.   The semisimple Banach algebra A^a^ is regular.

Let E be a compact subset of [0, oo) and define J(E) = {/ E A*"'7"); / = 0 on E}.
Then 1(E) is a closed ideal in A^a'T\ The application of the usual Banach algebra
proof of the Wiener-Levy theorem to the quotient algebra A'a'T'/1(E) yields the
following.

COROLLARY 2. Let f be in A^a'T\ Suppose that f ^0 on a compact subset E
of [0, oo). Then there is a function g in A^a,T^ such that f(x)g(x) = 1 for x in E.

This corollary and Lemma 2(ii) yield the following result, analogous to Wiener's
general Tauberian theorem (cf. Rudin [10, 7.2]).

COROLLARY 3. Let f be in A^01^ and suppose that f(x) ^ 0 for all x in [0, oo).
Then f is contained in no proper closed ideal in A^a'T\

PROOF. Let h be in G£° and let E be the support of h. By Corollary 2, we have
a function g in A^-a,T^ such that fg = 1 on E. It follows from hfg — h that an ideal
containing / includes C%°. By Lemma 2(ii), a closed ideal containing / coincides
with A(Q'T).

3. Spectral synthesis and Helson sets. Let E be a closed subset of [0, oo),
and let 1(E) be the closed ideal of / in A^a^ such that / = 0 on E. Denote by
J(E) the ideal of / in A<a'r) such that / = 0 on a neighborhood of E. If J(E)
is dense in 1(E), then E is called a set of spectral synthesis for A'a'T). By an
argument similar to that used for Schwartz's example in the Euclidean space of
three dimension (cf. [10, 7.3]), we have the following.
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790 YÛICH KANJIN

THEOREM 2. Let r > 1. If a> 1/2 and xq is in the open interval (0, oo), then
the singleton {xn} is not a set of spectral synthesis for A(Q'T).

PROOF. Let k be the greatest integer not exceeding a + 1/2. It follows from
the identity (d/dx)L%(x) = -L^y\(x) [12, (5.1.14)] that there is a positive con-
stant G and a neighborhood V of xo such that \(d/dx):>(R^(x)e~TX)[ < G on V
for j = 1,2,3,... ,k and all n. This implies that every / in A^a^ is fc-times
continuously differentiable on (0,oo). Let Ii = {f E A^a'T^; /(xo) = 0} and
i2 = {/ e A(a'T);/(x0) = (df/dx)(x0) = 0}. Then h and i2 are distinct closed
ideals for a > 1/2. The proof is complete.

A closed subset E of [0, oo) will be called a Helson set with respect to the
algebra A^a'T^ if, for every continuous function g on E vanishing at infinity, there
is a function / in A^Q'T' such that f = g on E.

The following theorem is suggested by the characterization of Helson sets with
respect to the algebra of absolutely convergent Jacobi polynomial series [7, Theorem
2]-

THEOREM 3. Let a > -1/2 and r > 2, or let a > a0 and r > 1. Then every
Helson set with respect to A^a'T^ is finite.

PROOF. Every finite set is a Helson set with respect to A(Q'T) since A(a,r) is
regular.

Conversely, let E be a Helson set with respect to A^a'T\ Suppose that E is
infinite. Then there are a sequence {xj}j^x in E f) (0, oo), such that x¿ ^ Xj for
i ^ j, and a point xo such that lim^oo xy = xo and 0 < xn < oo. Let Q(E) be
the quotient algebra A^01'^ /1(E) with quotient norm || • ||q(e), and let Co(E) be
the Banach algebra of continuous functions on E vanishing at infinity with uniform
norm || • ||c0(£) • Since E is a Helson set with respect to A(Q'T), it follows that Q(E) is
isomorphic to Cq(E) and the norms in Q(E) and in Co(E) are equivalent. Let gk be
a function in Co(E) such that gk(x2j) = 1 and gk(x2j-X) = 0 for j = 1,2,3,..., k,
9k(xj) = 0 for j = 2k + 1,2k + 2,... and ||afc||c0(£) — !• By the norm equivalence
and the definition of quotient norm, we can choose a function fk in A^a'T^ for every
k so that fk(x) = Ofc(x) on E and ||/fc|| < C with a constant C not depending on
k. Since A^a'T>> can be regarded as the dual of the space Co of sequences vanishing
at infinity, the sequence {fk}^! has a subsequence, say also {/aJ^Ld converging
to a function / in A(a'T' in the weak* topology o(A^a'T\co). If a > -1/2, then
R%(x) -> 0 as n -► oo for every x in (0, oo) [12, (7.6.8)]. Thus we have fk(x) -+ f(x)
as k —> oo for every x in (0, oo) by the definition of weak* topology <t(A("'t),co),
and in particular f(x2j) — 1 and f(x2j-i) = 0 for all j. This contradicts the
continuity of / on [0, oo) in the case xn in [0, oo) and contradicts the vanishing at
infinity of / in the case xn = oo. The proof is complete.

4. Algebras La and Ma. Let a > -1/2. If we put z = x + t + 2(xt)1¡2 cost?,
0 < 0 < 7T in (3), then we have the following for x, t > 0 (cf. [5]):

(xt)1'2 sine? = {2(xí + xz + tz) - x2 - t2 - z2}1'2¡2

= p(x,t,z),    say.
/•oo

Tta(f;x)=        f(z)K(x,t,z)e~zzadz,
Jo
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ALGEBRAS WITH CONVOLUTION STRUCTURES 791

(r(a + 1)2°-     {x+t+z)/2    j i   /     ,     \\   I     t z)a-l/2
(2-KYl2(xtzY Ja-i/2(p(X,t,Z))p(X,t,Z)
o,

where the first value is assigned only if 2(xi + tz + zx) — x2 — t2 - z2 > 0.
The kernel K(x, t, z) satisfies the following.
(C) [5, Lemma l(ii)j Let a > 0. Then

/»OO

/     [K(x,t,z)[e-zl2zadz<e^x+t^2
Jo

for x, t > 0.
Let M' be the space {p E M[0,oo); |p|({0}) = 0}, and let p and v be in M'.

We define the convolution p * v for a > 0 by

(10) p * v(E) = f°° f°° ( / K(x, t, z)e~z/2za dz\ e~{x+t)/2 dp(x) dv(t)
Jo   Jo    (Je J

for every Borel set E of (0, oo). Then p * v belongs to M' and ||p * v\ < ||p|| \v\ by
(C). We denote by M'a the algebra M' with this convolution. Every p in M[0, oo)
has the unique decomposition p = v + p({0})8o, where u is in M'a and ¿o is the
measure with the unit mass at the point 0. We extend the convolution to all of
M[0, oo) by treating So as a unit. This algebra is a commutative Banach algebra
with a unit and is denoted by Ma. We identify La with its image by the mapping
/ h-> pf, dpf(x) = f(x)e~~xl2xcx dx. Then La is a closed subalgebra of M'a since
ßf*ßg = f*9 and \\pf|| = II/]].

The Fourier Laguerre coefficient f(n) of / in La is defined by
roo

f(n)= f(x)R^(x)e-xxa dx
Jo

for every n = 0,1,2,_ We define the Fourier-Stieltjes Laguerre coefficient p(n)
of p in Ma by

roo

p(n)=        Rn-(x)e-x'2 dp(x)
Jo

for every n. Then we have p/(n) = f(n), and

(11) (f*gT(n) = f(n)g(n),    (p*tsf(n) = p(n)i>(n)
for /, g in La and p, v in Ma by the identity

Tta(RZ;x)=R%(x)R%(t),        a > -1/2    (Watson [13]).
LEMMA 3.   Leta>0.
(i) \ß(n)[ < \\p[\ for p in Ma.
(ii) If a measure p in Ma satisfies that p(n) = 0 for all n, then p = 0.

PROOF. The inequality \R%(x)e-xl2\ < 1, a > 0 [3, 10.18(14)] implies (i). To
prove (ii), it is enough to show that /0°° f(x) dp(x) = 0 for every / in G£°. By
Lemma 2(i), we have f(x) = Ylñ=oanK{x)e-x'2 with £rT=olanl < oo. Thus
we have /0°° f(x) dp(x) = ^^10 anp(n) = 0 by the Lebesgue convergence theorem
since

£ /     |ani¡£(x)e-*/2|d|p|(x) = £ K| llpll <
n=0J° n=0

CO.
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Now we consider the maximal ideal space of La. For every n = 0,1,2,..., we
define the functional Xn by

Xn(f) = f(n),    f'mLa.

Then Xn is a multiplicative linear functional on La by (11).

PROPOSITION 2. Let a > 0. Then the maximal ideal space of La is the space
{Xn\ n = 0,1,2,...} with the discrete topology.

PROOF. Let x be a multiplicative linear functional on La. We have an integer
n0 > 0 such that x(Rn0) Ï 0- For, if x(K) = ° for a11 n> then we have x(f) = 0
for all / in La since the Cesàro mean of order 8 > a + 1/2 of the Fourier Laguerre
series converges in La by [5, (3.7)]. It follows from the orthogonality of Laguerre
polynomials that no is unique, and also / * i?"0 = f(no)R%0 for / in La.   This
implies that x(/)x(#£0) = /(no)x(-R£0), and thus x(/) = f(no)- Since the Gelfand
topology is clearly discrete, the proof is complete.

We denote by M(Ma) and M(M'a) the maximal ideal spaces of Ma and M'a,
respectively. The algebra Ma has the direct sum decomposition Ma — M'a ©
C8o- Here, CSq is the closed subalgebra of Ma generated by 8o- It follows from
the definition of the convolution that M'a is a closed ideal in Ma. Thus M(Ma)
is the one point compactification {xoc} U M(M'a) of M(M'a), where Xoo is the
multiplicative linear functional on Ma such that Xoo(p) = p({0}) for p in Ma. The
next two lemmas are essential to the following discussion. See [2] and also [11].

LEMMA 4.   Let a > 0. If p and v are in M'a, then p*u is in La.

PROOF. Let E be a Borel set in (0, co) such that ¡Ee~x/2xadx = 0. For all
x,t > 0, the braces { } in the definition (10) of the convolution of p and v are
zero since K(x, t, z) are integrable with respect to the measure e~zl2za dz by (C).
Thus we have p * v(E) = 0; that is, p * u is absolutely continuous with respect to
e-z/2za ^z  rphjg snows that ß * u m £Q-

LEMMA 5. Let a > 0. If p is in M'a, then limn^oo p(n) = 0. In particular,
Xoo(p) = linin^oo p(n) for p in Ma.

PROOF. Since p * p is in La for p in M'a by Lemma 4, it is enough to show that
linin-Kx, f(n) = 0 for every / in La. The usual argument in the Riemann-Lebesgue
theorem implies that lim„^oo f(n) = 0 by Lemma 3(i) and the convergence of the
Cesàro mean of order S > a + 1/2 in La.

We can determine the maximal ideal spaces M(M^) and M(Ma) by using Lemma
4.

Theorem 4. Leta>0.
(i) The maximal ideal space fA(M'a) of M'a is the space {Xn; n = 0,1,2,...} with

the discrete topology, where Xn(p) = ß(n) for p in M'a.
(ii) The maximal ideal space of M(Ma) of Ma is the space {x«; n = 0,1,2,...}U

{Xoo} with topology of the one point compactification of {Xn, « = 0,1,2,...}.

PROOF. Every Xn is a multiplicative linear functional on M'a by (11). Con-
versely, let x be a multiplicative linear functional on M'a. Let v be a measure of
M'a such that x(v) r^ 0- Since v * v is in La by Lemma 4, the restriction of x to La

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



ALGEBRAS WITH CONVOLUTION STRUCTURES 793

is nontrivial. Thus there is a unique element Xn of M(La) such that x(/) = Xn(f)
for all / in La. Since p * v in La for every p in M'a by Lemma 4, we have

X(p * u) = XAH *u) = (p* v)~(n) = p(n)ù(n),

and thus x(p) = ß(n). Clearly, the Gelfand topology is discrete. Therefore (i) is
proved. Since M(Ma) is the one point compactification jM.(M'a) U {xoo} of jA(M'a),
(i) implies (ii). The proof is complete.

5. Idempotent measures and Sidon sets. For p in Ma, if p * p = p, it is
called an idempotent measure in Ma. It follows from Lemma 3(ii) that a measure
p in Ma is idempotent if and only if p(n) = 0 or 1 for every n. The following
consideration is motivated by characterizations of the idempotent measures related
to ultraspherical polynomials [2] or Jacobi polynomials [6].

Let p be an idempotent measure in Ma and decompose p to p = v + p({0})8o,
v in M'a. By the convolution equation p * p = p, we have

v + p({0})8o = u*u + 2p({0})u + p({0})2<50.

Thus p({0}) = p({0})2, and so p({0}) = 0 or 1. If p({0}) = 0, then lim«-.«, p(n) =
linLj^oo v(n) = 0 by Lemma 5. Since p(n) takes only values 0 or 1, we have
p(n) = 0 except for a finite number of n's. Thus we have

dß(x) = ^^—^ £ L«n(x)e-Xl2x« dx,

where Yl is a finite sum. If p({0}) = 1, then û(n) takes only values 0 or — 1. Since
limn_00 v(n) = 0, we have

dp(x) = -p^TJ ELn(x)e~x/2xa dx + dSo(x),

where ^ is a finite sum. Therefore we have the following.

THEOREM 5. Let a > 0. If p is an idempotent measure in Ma, then p has the
form

dp(x) = ———p- Va„i^(x)e_x/2xQ dx + a^dSoix),
1 [a + 1) i-~i

where an = 1 or —1, aoo = 0 or 1 and Y^, îS a finite sum.

A subset E of the nonnegative integers will be called a Sidon set with respect
to La if every sequence {an}neE on E vanishing at infinity is the restriction of the
Fourier Laguerre coefficients of a function / in La to E; that is, an = f(n) for all
n in E. The concept of Sidon sets with respect to La is dual to that of Helson sets
with respect to A(Q'T). We have a theorem which is dual to Theorem 3 (cf. [2 and
10, 5.7]).

THEOREM 6. Let a > 0 and let E be a subset of the nonnegative integers. Then
the following are equiuvalent:

(i) E is a Sidon set with respect to La.
(ii) For every bounded sequence {an}neE on E, there is a measure p in Ma such

that an = p(n) for all n in E.
(iii) E is finite.
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PROOF. By the usual Sidon set argument, we have that (i) implies (ii) (cf. [10,
Proof of 5.7.3]). We will show that (ii) implies (iii). Suppose that E is infinite and
put E = {rij}^!, ni < n2 < n$ < ■ ■ ■. Define the sequence {an}nejs by anj = 0
for odd j and anj = 1 for even j. If there is a measure p in Ma such that p(n) = an
for all n in E, we have a contradiction since lim7_00 p(uj) exists by Lemma 5. If
E is finite, then

f{x) = WcT+T) E °*m*)
K ' neE

belongs to La, and thus (iii) imples (i). The proof is complete.
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