
On Algorithms for Obtaining a Maximum
Transversal

I. S. DUFF
AERE Harwell, England

A computer program for obtaining a permutation of a general sparse matrix that places a maxunum
number of nonzero elements on its dmgonal is described. The history of this problem and the mare
motivatmn for developing the algorithm are briefly chscussed Comments are made on the use of
cheap heunstms, and the complexity of the algorithm is examined both in terms of its worst case
bound and its performance on typmal examples. Finally, some imtml attempts at implementmg an
algomthm with supermr asymptotic complexity are described.

Key Words and Phrases unsymmetnc permutatmns, maximum transversal, maximum assignment,
block-triangular form, sparse matrices
CR Categories 5.0, 5 1, 5.3, 5.4
The Algunthm. Permutatmns for a Zero-Free Dmgonal, ACM Trans. Math Softw 7, 3 (Sept. 1981),
387-390.

1. INTRODUCTION

There is a long history to the problem of computing permutations to place the
maximum number of nonzeros on the diagonal of a sparse matrix. In this paper
we give only principal references; further references are given in [5, sec. VIII E].
Although we indirectly discuss some of this history in Sections 2 and 6, the
principal objective of this paper is to describe a computer program, Harwell
subroutine MC21A, for computing such a permutation. We examine the complex-
ity of the algorithm both in terms of its worst case bound and its performance on
real and simulated problems and compare it with other approaches.

In Section 2 we give some indication of the wide range of application areas for
such an algorithm and additionally introduce other terms commonly used to
describe this ordering problem. Our main motivation for developing this algorithm
is to obtain fast, reliable techniques for preordering a matrix to block-triangular
form prior to its decomposition using Gaussian elimination [4]. We discuss this in
Section 3.

The algorithm MC21A given in [6] is described in Section 4. Although MC21A
was initially developed independently from Gustavson's ASSIGN ROW [11],
both are related to an algorithm by Hall [12]. We have since incorporated two of

Permmmon to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for dtrect commercial advantage, the ACM copyright notice and the title of the
pubhcatlon and its date appear, and notme]s given that copying is by permission of the Association
for Computing Machinery To copy otherwise, or to republish, requires a fee and/or specific
permission.
Author's address' Computer Science and Systems Dlwslon, Building 8.9, AERE Harwell, Oxon,
England.
© 1981 ACM 0098-3500/81/0900-0315 $00 75

ACM Transactions on Mathematical Software, Vol 7, No 3, September 1981, Pages 315-330

316 I S. Duff

Gustavson's suggestions so tha t our resulting algori thm has similar features to an
efficient implementa t ion of ASSIGN ROW.

In Sect ion 5 comments are made on the complexity of the algorithm. Through-
out this paper we will use n and • to denote the order of the matr ix and its
number of nonzeros, respectively. An example tha t causes the algori thm to exhibit
its worst case bound of O(n~'), is described, al though the behavior on more
realistic examples is seen to be more like O(n) + O(¢). Its speed is seen to
compare favorably with the o ther algorithms with which it is used in our block-
tr iangularization context. In Sect ion 6 we comment on o ther algorithmic ap-
proaches to this problem. In part icular we compare our algori thm with a version
of the Hopcrof t and Karp algori thm [15] tha t has worst case complexi ty only
O (n 1/2¢). Finally, in Sect ion 7 we make some comments on the use of heuristics
to reduce computing time.

2. OTHER FORMULATIONS OF THE PROBLEM

Since the problem of obtaining the permuta t ion described in the introduct ion has
appeared in various guises in many areas, we feel it is useful to devote a whole
section to describing the terms we will use later in this paper, as well as the
different formulat ion and terminologies used in some of these o ther areas. We
stress tha t this section does not a t t empt to be exhaust ive but r a the r is included
to give the reader a flavor of this topic.

Most of our nomencla ture is taken from management science (for example,
Ket t l e r and Weft [16]).

For example, we refer to the set of nonzeros on the diagonal of the pe rmuted
matr ix as a transversal. Thus a t ransversal is character ized as a set of nonzeros,
no two of which lie in the same row or column. We refer to the number of
nonzeros in a transversal as the length of the transversal, and call a set containing
the maximum number of such nonzeros a maximum transversal. When we
include a nonzero in the transversal, we call it an assignment and, if we change
the transversal by also removing nonzeros, we have performed a reassignment.
Ford and Fulkerson [10] refer to a maximum transversal as a maximum assign-
ment. We find it helpful during the remainder of this section to refer to the simple
3 × 3 example shown in Figure 1. In this figure, the circled elements are the (in
this case, unique) maximum transversal.

Transversa l selection has for many years been studied by researchers in
combinatorics. If we have a set of n subsets of some universal set S, say, then a
system of disttnct representatives (SDR) is a subset of n distinct e lements of S,
each of which represents exactly one of the given subsets and belongs to the
subset it represents. In the example of Figure 1, S -- (1, 2, 3} and the n (here
equal to 3) subsets could consist of the column indices of nonzeros in each row
and so might be denoted by {1, 3), {2), {1). Th e S D R (3, 2, 1) then would
correspond to the selected transversal.

P. Hail [13] gave the following necessary and sufficient condition for an S D R
to exist. "An S DR exists if and only if the union of any k subsets (1 _< k _ n)
contains at least k distinct elements." Although M. Hall [12] proposed an
algori thm for obtaining an SDR, he gave little indication of its implementa t ion as
a computer program.

ACM Transactmns on Mathemattcal Software, Vol 7, No 3, September 1981,

On Algor,thms for Obtaining a Maximum Transversal 317

Ix 0] (~) Fig 1.
®

Matrix mdmatmg traversal

F~g 2 Blgraph of matrix of Figure 1

lx _xl

a ~ x a
S T

(0 °
A T

Fig. 3. Matrix representation of undvcected graph obtained
from Figure 2

Fig.-4 Directed graph of matrix of Figure 1

2

Steward [20, 21] calls such an SDR an output set, a term commonly employed
in engineering design or chemical engineering. The term is used because the
chosen output set designates for which variable each equation is solved, the other
variables being termed input variables.

The structure of a sparse matrix can be represented as a graph in several ways
(see, for example, Harary [14]). We show, in Figure 2, the bipartite graph
(btgraph) associated with our example of Figure 1. The vertices of the bigraph
are divided into two sets S and T, those in S representing rows and those in T
columns. An edge exists from vertex s, in S to vertex tj in T if and only if the
nonzero (s,, tj) is present in the matrix. The edges of the bigraph corresponding
to nonzeros in the maximum transversal are indicated by double lines. In such a
context, the maximum transversal is called a maximum orperfect matching. The
problem of finding a maximum matching in a bipartite graph has been studied by
Dulmage and Mendelsohn [8, 9].

If, in Figure 2, we ignore the distinction between sets S and T and renumber
the vertices 1, 2, 3 of T to be 4, 5, and 6, respectively, we obtain the undirected
graph associated with the symmetric matrix (Figure 3), where A is the matrix in
Figure 1.

A general sparse matrix can also be represented by a directed graph, where an
edge exists from vertex i to vertex j if and only if the element (i, j) is nonzero.
The directed graph corresponding to the matrix of Figure 1 is shown in Figure 4.
Finding a maximum transversal is equivalent to finding a factor where a factor of
a directed graph is defined as a set of edges of the graph such that each vertex
has one edge of the set entering it and one leaving it. Although such a factor can
be easily found in the example of Figure 4, the algorithm suggested by Berge [1]

ACM Transacttons on Mathematmal Software, Vol 7, No 3, September 1981.

318 I S. Duff

Fig 5. Graph for the rooks' problem.

1 2

I Fig 6. Lines showing minimum cover

requires the solution of two sets of n Boolean equat ions in r Boolean variables
when the original matr ix is of order n with ¢ nonzeros.

Notice tha t we can similarly define a factor for an undirected graph, in which
case our problem is equivalent to finding a factor of the graph associated with the
matr ix of Figure 3.

Another graphical in terpreta t ion is obta ined from the rooks' problem. The
rooks" problem is a popular puzzle where one is required to place 8 rooks (or
castles) on a chess board such tha t no rook can take any other. The more general
problem allows the chess board to have n squares in each direction and restr icts
the squares on which rooks may be placed. Th i s can be seen to be identical to our
maximum transversal problem. The rooks' pro~alem is often rephrased in the
following way. We form an undirected graph on • vertices (v is the number of
permi t ted locations for the rook) where each edge corresponds to the fact tha t its
endpoints do not lie on the same row or column of the original board. In the
graph thus obta ined (Figure 5), we wish to find a complete subgraph (a subgraph
whose vertices are all pairwise adjacent) with the maximum possible number of
vertices. For our example of Figure 1, the graph on • (=4) vert ices has the form
shown in Figure 5, where the complete subgraph on vertices 2, 3, 4 yields the
maximum transversal. However, since we have rephrased the problem to tha t of
finding a complete subgraph on n vertices f rom a graph on $ vert ices with
½(~2 _ 2Tn + r) edges, any algori thms based on such an approach are clearly
O(T e) + O(nz) at best and will usually be worse.

Finally, a re la ted topic is tha t of obtaining a minimum cover of a matrix. This
min imum number of lines (that is, rows or columns) necessary to include all the
nonzeros of a matr ix has been shown by Konig [17] to be equal to the length of
a maximum transversal. Of course, in the nonsingular case, the min imum cover
can consist trivially of all rows or all columns of the matrix, but we show in Figure
6 a different min imum cover for our given example.

3. TRANSVERSAL SELECTION AND BLOCK TRIANGULARIZATION

Our principal mot ivat ion for developing a t ransversal algori thm has been its
application in the first step of a me thod for permut ing an arb i t rary sparse matr ix
to block-tr iangular form. This form is i l lustrated in Figure 7, where each A,, is
square and cannot itself be pe rmuted to block-triangular form.

I t is evident tha t the solution of a sys tem whose coefficient matr ix can be thus
preordered is greatly simplified. Indeed, if we are using Gaussian elimination to

ACM Transactions on Mathematwal Software, Vol 7, No 3, September 1981

On Algorithms for Obtaining a Maximum Transversal

A 11 AN2A22 ... AN Fig 7 Block-triangular form

319

Ioe o ,ble e , ,em tnx (:

solve such a system, the forward elimination phase can be confined to the blocks
on the diagonal, A,,. Thus the system is solved as a sequence of subsystems with
coefficient matrices A,,, i --- 1, 2 , N.

The approach we adopt for obtaining such a form is to first permute the matrix
so that the diagonal is zero-free and then use symmetric permutations to produce
the desired form. The author [4] has justified this two-stage approach and has
shown that the final form is essentially independent of the first permutation. The
author and Reid [7] have developed code, based on the work of Tarjan [22] and
Gustavson [11], which performs the second phase in O(n) + O(~) time. Wiberg
[23] has suggested combining these two phases and intends to compare his
algorithms with ours in the near future.

A matrix, which may have zeros on its diagonal, is bireducible if there exist
row and column permutations that permute it to block-triangular form, as in
Figure 7, and is reducible if this can be done using symmetric permutations (i.e.,
rows and columns permuted identically). The negation of these terms, bi-ir-
reducible and irreducible, respectively, are defined in the obvious way. The author
[4] has shown the equivalence of these terms when the matrix has a zero-free
diagonal.

If we omit the first stage, then, as the example of Figure 8 illustrates, we will
not be able to order an irreducible, bireducible matrix to block-triangular form.
However, the application of the second phase to a matrix with zeros on the
diagonal may give a partial decomposition in the sense that further unsymmetric
permutations within a block may further decompose it. In other words, the
presence of zeros on the diagonal may give us a more grainy decomposition than
otherwise possible, although the block structure includes the possibility of finer
decomposition.

4. ALGORITHM MC21A

In this section we fncst describe the basic techniques of our algorithm, making use
of some terminology from graph theory. We then present a flowchart of the
algorithm and give some details of our implementation. The FORTRAN code is
given in [6].

This algorithm is usually described in terms of a bipartite graph [15], but we
believe that our presentation is made clearer by using a less common graphical
representation, which we now describe. The transversal is constructed in n major
steps, after the k th of which we have a transversal for a submatrix of order k.

ACM Transactions on Mathematical Software, Vol. 7, No 3, September 1981.

320 I.S. Duff

Fig. 9. R eas s i gnmen t chain.

J3 h 12 J~
.3
h T _x--.~) ~ \ \ \ \ \ \ \ \ - ,

i x × k \ \ \ \ \ \ \ \ ' ~

X
x

I o " = ' - ~ ~ \ \ \ \ \ \ \ ~

After the k t h step, we associate with the matrix an unconventional directed
graph (which usually changes from step to step). Each vertex of the graph
corresponds to a row of the matrix, and there is an edge from vertex i0 to vertex
il if there exists a column of the matrix, j l say, such tha t nonzero (il, j~) is a
current transversal element and element (/0, j l) is nonzero. We say we can reach
vertex il from vertex ~0 and define a pa th to be a sequence of edges of this kind.
I t is helpful to consider a path, f rom/o to/k, say, as a sequence of nonzeros (~0, j~),
(il, j2), . - - , (ik-1, jk) where the present transversal includes the nonzeros (il, j l) ,
(i2,]2) (tk, fi) . Now if there is a nonzero in position (ik, fi+l) and if no nonzero
in row/0 or column fi+~ is currently on the transversal, then the length of the
transversal can be increased by 1 by removing nonzeros (ir,fi), r = 1 k, from
the transversal and adding nonzeros (it, jr+l), r ----- 0, 1 , . . . , k, to it. In Figure 9 we
illustrate this reassignment chain (called an augmenting pa th by Hopcroft and
Karp [15]) on the matrix representation. We simplify our illustration by assuming,
without loss of generality, tha t a column permutat ion has been performed so tha t
the previously assigned rows have their transversal element on the diagonal. We
comment on the shaded regions of this example later in the text.

The reassignment chain is shown by directed lines in Figure 9, the vertical lines
from nonzeros (iN, jr+~) to nonzeros (it, jr), and horizontal ones from (ir, jr) t o
(it, jr+l)- The reassignment corresponds to replacing the three underlined trans-
versal elements by the four circled nonzeros (i.e., k in our earlier discussion is
equal to 3).

There are several different techniques available for finding a reassignment
chain. We use a depth first search with look-ahead technique tha t we now
describe.

In accessing the vertices of a graph in a depth first search (DFS), we search
edges from the current vertex and add to our pa th the first vertex encountered
tha t we have not yet visited. This becomes the current vertex and we proceed
from it as before. If all the vertices tha t can be reached from the current one at
the end of the pa th are already visited, we retrace our steps (or backtrack) to the
vertex added to the pa th immediately before this present one, make tha t the
current vertex, and proceed as before. We illustrate the depth first search
algorithm in Figure 10, where heavy lines denote edges in the pa th and the
vertices are numbered in the order in which they are visited during the DFS.
Clearly, when implementing a DFS we need to keep track of the path (required
for backtracking) and also know which vertices have been visited during the
search.

In the present context we define our edges, as before, to be of the form (il, i2)
where (i~, j2), say, is a nonzero and (/2, j2) a present assignment. We star t from
ACM Transactmns on Mathematmal Software, Vol. 7, No 3, September 1981

On Algonthms for Obtaining a Maxemum Transversal • 321

× 5

Fig. 10
ordering

Directed graph mchcating depth first seaxeh

any unassigned vertex (row)/o (in practice, this will be the next row in the matrix)
and trace a path using a DFS technique until a vertex {row) ik is reached where
the pa th terminates because nonzero (ik, jk+l) exists and f i+l is an unassigned
column. We call vertex ik a free vertex. If we then retrace our pa th f rom/k to /0
using the pa th information used in backtracking, we recover our reassignment
chain (or augmenting path).

In practice, such an algori thm might be very inefficient because the D F S
scheme does not specify which unvisited vertex reached from the present current
vertex should be added to the pa th and such a choice could be quite critical. We
alleviate this problem, at each stage, by checking all unvisited vertices reached
from the current one to see if any are free. If so, our reassignment chain has been
found and we can extend the transversal by one. We say we have found a cheap
assignment and call this par t of the algori thm the look-ahead technique. We
therefore see tha t if DFS with look ahead was used to create the assignment
chain in Figure 9, then the shaded areas must contain all zeros or a shor ter chain
would have been found.

Naturally, this requires a little more work at each stage, but if we implement
this efficiently (see use of array ARP, below), then the total cost of all the look
aheads is only O(~), where r is the number of nonzeros in the matrix. We see in
the next section tha t the shortening of the length of the reassignment more than
compensates for this small amount of extra computat ion.

We summarize this description of our algori thm in the flow diagram in Figure
11. T h e labels on the symbols in the flowchart are used in the complexity
investigations of the next section.

We now discuss some of the details of our implementat ion. The reader may
find it helpful to refer to the code in [6]. On Gustavson's suggestion, we introduce
an auxiliary pointer array for the cheap assignment phase (ACP) as well as for
the dep th first search. This ensures tha t the total number of nonzeros accessed
during cheap-assignment searches is ~. Gustavson [11] indicated tha t the number
of accesses could be much larger when this was not done; for example, on a matr ix
of order 199 with 701 nonzeros, the accesses increased from 661 to 1706. However,
we adopt the same policy as in [7], and use ACP to denote one less than the
number of unsearched nonzeros in a part icular row (the same is done for the
auxiliary array OUT during the depth first search). This facilitates checking for

ACM Transactions on Mathematmal Software, VoL 7, No. 3, September 1981.

322 I.S. Duff

Look at next
row. Place at
head of path

B
G

Make first such I

I nonzero an
y assignment and

perform]
reassignment for
all rows on path

Y

/ column \
J been accessed \ Look at column
(x since step B ~ of next (first)
~ was last / rnoCw nzer° In

execu- /

assignment in
this column
on path

, I

Matrix is
structurally
singular But we
continue to find
maximum
assignment
possible

F

Look at this
previous row
(backtrack)

Fig. 11 Flowchart for MC21A

N

./ e x a m ~

If fewer than N
assignments,
complete perm
to pqt zeros
on diagonal

ACM Transactions on Mathematmal Software, Vol, 7, No 3, September 1981

On Algorithms for Obtaining a Maximum Transversal • 32,3

exhausted rows and reduces by half the number of statements in the inner loop.
ACP need only be set once at the beginning of the subroutine and updated
whenever a cheap assignment is made or a row exhausted. Notice that we only
set OUT when a particular row enters the depth first search and that, as in
Gustavson [11], we indicate previous paths in the present depth first search by
setting CV equal to the number of the assignment being made to avoid the
resetting of this array. On the 199 example, Gustavson [11] shows that this saves
8000 operations. The path in the depth first search is held in the linked list PR;
this never need be reset, is unchanged during backtracking, and is only altered
when a new row is added during the forward scan. The algorithm will work on
structurally singular matrices (including ones with null rows or columns}, in
which case the permutation is completed in a postprocessing phase for which the
number of operations is a small multiple of n.

5. COMPLEXITY OF ALGORITHM MC21A

When studying the complexity of our algorithm, we will refer to the flowchart
given in Figure 11. In this flowchart, we have labeled the symbols that are critical
to an estimation of the complexity of the algorithm by the letters A to H. All
represent simple operations, except G and H, but we have already explained that
the total number of operations in H is a small multiple of n. At the very worst we
must, for each of our n new assignments, reassign all the previous assignments
and the work involved in G may be O(n~). Since the flow of control is like an
electrical circuit, an application of Kirchhoffs second law indicates that we now
need only examine B and C/D to determine the complexity of the algorithm as
a whole.

In the last section, we remarked that our use of the array ACP would limit the
number of executions of B to T. If we could avoid searching an edge of the graph
more than once, then we could restrict the number of times C/D is executed to
T also. However, the example in Figure 12 illustrates that our algorithm may need
to scan the same edge more than once. Here edge (1, 2) is scanned when making
both the fourth and fifth assignment. If each edge were scanned on every
assignment, then step D and hence our algorithm would perform as O (n v). An
example for which MC21A exhibits this behavior is given in Figure 13, where the
blocks are of order n/3.

We show, in the results of Table I, that this behavior is reflected in the
computation times for MC21A when run on matrices of type NCUBE of different
orders. Particularly at higher n, when the low-order counts lose significance, the
O (n r) behavior of the algorithm is evident.

However, we must emphasize that this is a worst case example and we see from
the runs on random matrices in Tables II and III that the behavior is nowhere
near as bad as the matrices NCUBE suggest.

In these tables, we also give times for a straightforward application of a depth
first search algorithm that does not involve a look ahead (DFSA). In Table II, it
is interesting to observe that the time does not increase monotonically with v and
takes its maximum value at T = 300 and the same lowest value for v ~ 100 and

= 500. This is not that surprising since, although we would expect the algorithm
to be very fast on a permutation of the identity matrix, when the number of

ACM Transactmns on Mathematical Software, Vol. 7, No 3, September 1981

3 2 4 • I . S . Duff

Fig. 12 Example requiring two scans of the same edge.

X X

X

x

x

x

x

x

\ \ Fig. 13. Example NCUBE

Table I.

n T

Times for MC21A on NCUBE

Time
(milliseconds

on IBM Time
370/168) x 103/n'r

120 1760 75 0.36
240 6720 440 0,27
360 14880 1327 0,25
480 26240 2914 0,23
600 40800 5503 0.22
660 49280 7206 0.22
720 58560 9232 0.22
780 68640 11624 0,22

nonzeros increases above a certain point (in practice about five nonzeros per row),
it becomes increasingly easy to obtain quick cheap assignments and any further
increase in time is simply due to more nonzeros being scanned during the cheap-
assignment phase. Notice that the DFSA algorithm does increasingly badly
because the extra number of nonzeros does not help in getting cheap assignments
since we do not look ahead for them. Indeed, they cause more paths to be
searched and the time is proportional to ~.

In Table III, we hold the number of nonzeros per row constant because we
have found this to be the other main parameter in the times. Here we see that
the behavior is much better than proportional to n 2, a much more satisfactory
performance than could be expected from the upper bounds. The algorithm
DFSA performs much worse, largely because it is more affected by the increasing
total number of nonzeros.

We will see later that this behavior on random systems is reflected in the
performance on systems arising in practice, thus indicating that the worst case
bound is very unlikely to be realized.
ACM Transactions on Mathematmal Software, Vol 7, No. 3, September 1981

On Algor,thms for Obtam,ng a Max,mum Transversal

Table II. B e h a w o r with R e s p e c t to N u m b e r of Nonzeros"

N u m b e r of nonzeros, • 100 150 200 300 400 500

MC21A 1.3 1.9 2 6 2.8 1.4 1.3
DFSA (no look ahead) 1 8 3.5 7.1 12 9 16.3 21.9

" T i m e s m mil l iseconds on IBM 370/168 (order = 50).

Table I I I Behavior wi th Respect to Order"

Order, 25 50 100 150 200

n

MC21A 0 6 1.9 4.9 8.7 12.4
DFSA 1 4 3 5 14.4 27 6 40.3

• 325

a Tunes in mfllmeconds on an IBM 370/168 (three
nonzeros per row).

Table IV. Complexi ty of MC21A

Number of t imes group of
s t a t emen t s executed

Actua l execut ion

counts
Number Value on n -- 60

Block m F O R T R A N N C U B E
Figure 11 s t a t emen t s s = n / 3 N C U B E R A N D O M
flowchart in block Bound "r = s (s + 4) 1" = 480 "r = 480

A 2 n n 60 60
B 2 "r s 2 + 4 s 480 290

C 2 n 2 ½ s (3 s + 1) 610 6

D 2 n ' f ~ s (s + 1)(2s + 7) 3290 6
E 6 n ~ s (s + 1) 420 6

F 2 n ~ ½ s (s - 1) 190 0
G 5 n 2 ½ s (s + 3) 230 60

H 3 n 0 0 0

In Table IV, we illustrate the complexity of the algorithm, where we again
observe that the O(nT) behavior can only come from the accessing of the edges
during the forward pass of the depth first search. Although O(n 2) counts abound
(and some are realized by NCUBE), we see from the execution counts on a
random matrix of the same order and density that it is only the very particular
structure of NCUBE that causes the bound to be achieved.

When discussing the performance and complexity of our algorithm, it is
important to examine it in the context of the other algorithms with which it will
be used. We are therefore interested in comparing its behavior with that of a
subroutine for block triangularization and of subroutines for the decomposition
of sparse systems by Gaussian elimination. In practice the times of these algo-
rithms are approximately proportional to n + • and " r 2 / n , respectively, so the
O(nr) performance of our algorithm on NCUBE gives us some cause for concern.

ACM Transactions on Mathematmal Software, Vol. 7, No. 3, September 1981

326 I. S. Duff

Table V. Comparative Timmgs of Transversal Selection with Block-
Triangularization and Gaussian Elimination"

Matrix: n 147 199 292 822
2449 701 2208 4841

Transversal selection 4.3 10.4 6.2 154.7
Block triangularization 10.1 7.2 13.1 36.6
Gaussian elimination (using Harwell sub- 1318.2 203.2 761.6 1426.4

routine MA30A)

a Times in milliseconds on an IBM 370/168.

However, we are primarily concerned with the performance of our algorithm on
genuine problems and, when we examine the results in Table V, we observe that
not only is the transversal selection sometimes faster than the asymptotically
superior block-triangularization routines, but the combined steps take very little
time in comparison with that for the decomposition of the matrix.

Because of our remarks in the Introduction, we would expect a coded version
of ASSIGN ROW to perform very similarly to MC21A, but Gustavson [11] gives
no exact implementation details, no code, and no timings for his algorithm.

6. COMMENTS ON OTHER ALGORITHMS

In Section 2 we gave a brief description of several of the areas in which the
problem of transversal selection arises. Naturally, a variety of algorithms have
been suggested by some of the researchers in these areas and, in this section, we
comment on some of these.

In our description of MC21A, we defined a path and the depth first search
technique for searching the vertices and edges of a graph. Another commonly
employed search technique is that of breadth first search. Here, we explore all
the edges leaving the current vertex, adding any unvisited vertices reached from
this vertex onto a stack before processing the next vertex on the stack. We
illustrate this technique by examining its application on the graph in Figure 14.
The graph in Figure 14 is the same as that in Figure 10 and, additionally, the
vertices are in the same position, but they are now numbered in the order
accessed during a breadth first search. Notice that one property of a breadth first
search is that it will always find the shortest path between the starting vertex
and any other. Clearly this will enable us to get short reassignment chains
(augmenting paths), but the total number of edges visited before finding such a
chain may well be greater than in the depth first search method. Observe that
our "look ahead" (Section 4) is really one step of a breadth first search. We
compare our algorithm with one based on a breadth first search technique in
Table VI.

In 1957 Kuhn [19] examined some of the algorithms used up to that time. We
continue his classification and rephrase such comments in the language of this
paper.

The Hungarian algorithm of Kuhn [18] was similar to ours inasmuch as he
used a depth first search technique. However, it differed in so far as he did not
at tempt to do a cheap assignment at each stage. By examining the simple example
in Figure 15, we can see that this "look-ahead" capacity is very important.

ACM Transactions on Mathematical Software, Vol 7, No. 3, September 1981.

On Algori thms for Obtain,ng a Maximum Transversal • 327

/X3;

X 9

Fig. 14.
ordering.

Directed graph mdmating the breadth first search

Table VI A Comparison of MC21A with Hopcroft and Karl) Algorithm ~

S T R U C T U R E D
RANDOM NCUBE

n 100 199 822 300
Matrix:

300 701 4534 10400

MC21A 4.9 10.4 124 9 802
Hopcroft and Karp 32.3 52.8 253.6 127

a Times m milliseconds on an IBM 370/]68.

X X X

X X

X Fig. 15 Indmation of power of "look ahead."

Here the assignment of the fourth transversal element requires access to every
nonzero if no "look ahead" is employed, whereas, by attempting a cheap assign-
ment at every stage, the transversal is completed after accessing only three
nonzeros. This is reinforced by our computational results in Tables II and III.

Kuhn's [19] algorithm employs a breadth first search, but the search is only
undertaken from one unassigned row at a time and can be very inefficient. The
original algorithm of Hall [12] was similar to this.

The algorithm of Ford and Fulkerson [10] again uses a breadth first search,
this time starting simultaneously from all unassigned rows; however, they restart
the breadth first search after each reassignment. Hopcroft and Karp [15] perform
reassignments corresponding to disjoint augmenting paths for each level of the
breadth first search before continuing to the next level. They have shown that
their algorithm, which uses depth first searches for finding the disjoint augment-
ing paths, has an O(n~/2r) bound, the lowest worst case complexity of any
proposed algorithm to date. Now, although we are reassured by the fact that the

ACM Transactions on Mathematical Software, Vol. 7, No. 3, September 1981.

328 • I .S. Duff

O(n~') behavior of MC21A is unlikely to be realized in practice, it is interesting to
compare an implementation of the O(n 1;2v) algorithm with MC21A. The imple-
mentation is ours because no published code for this algorithm is available. We
have written it with care and believe it gives a fair representation of their
algorithm, but our results should be interpreted in this light.

One glance at the results of Table VI is sufficient to convince us that our
implementation of the Hopcroft and Karp algorithm is not competitive with
MC21A on realistic problems, although it is better than MC21A on the worst
case example, NCUBE.

7. CHEAP HEURISTICS

Although we could have first attempted a cheap assignment on all of the rows,
thus guaranteeing that at least half of our transversal would be found immedi-
ately, we have decided against this because our approach makes the algorithm
simpler and does not affect its complexity bound. However, if one could design a
heuristic such that the cheap assignment, guided by this heuristic, obtained
nearly all the transversal, then little work would be left to the depth first search.
Both the author [3] and Gustavson [11] have experimented with such heuristics
without reaching any firm conclusions. We do not use heuristics here because
they will certainly complicate the algorithm and normally require additional work
space for their implementation. Indeed our experience with heuristics has been
that it is impossible to implement them with the same degree of efficiency as
exhibited in MC21A and, additionally, no single heuristic can be guaranteed to
work well on all examples. At one time we thought the heuristic M4 of [3],
namely, first choose singletons in the active matrix (i.e., the matrix left after
eliminating rows and columns already assigned) and, if there are none, choose
the nonzero whose combined number of nonzeros in its row and column is least
(we call this the element count), would nearly always give a complete assignment.
We illustrate below a 6 × 6 matrix on which this heuristic fails (and it can be
shown to be the smallest possible such counterexample). In Figure 16, the number
representing each nonzero is its element count in the original matrix.

Al Erisman {Boeing Computer Services) drew our attention to the fact that
since we can preorder the rows in order of ascending row count in only O(n) time,
it might be an advantage to first do such a preordering before starting the
assignment process. At first glance, this seems attractive since our main algorithm
is O(n.r) + O(n2). However, as we have seen in practice, MC21A performs as
O(n) + O(~), and so the cost of the preordering may be significant. Indeed, the
results in Table VII (the times being the average of ten runs with different
permutations of the original matrix) indicate that the algorithm performs notice-
ably worse if it is preceded by a preordering phase. Additionally, this preprocess-
ing requires extra integer work space of length n. However, the most severe
drawback to such a preordering is that, while the original matrix may have a
zero-free diagonal, a permutation of it with the rows in order of increasing number
of nonzeros may have zeros on the diagonal; hence it may not be possible to
cheaply and quickly assign to all the rows in order. A striking example of this is
seen in the original matrix of order 1176 with 18,552 nonzeros. Here the times for
runs with and without the preordering phase are 383 and 37 milliseconds,

ACM Transact ions on Mathematmal Software, Vol. 7, No. 3, September 1981

5
6 6
5 5
5 5

6 5
6 5

On Algorithms for Obtaining a Maximum Transversal • 3 2 9

Fig. 16 The 6 x 6 example on which M4 fails to give a max-
imum transversal

Table VII. A Comparison of Times with and Without Preordering a

Matrix: n 1176 199 822 300 900 180
18552 701 4790 7275 4970 NCUBE

MC21A 280 12 140 6 15 257
MC21A + PREORDER 459 13 194 9 24 359

"Times m mflhseconds on an IBM 370/168.

respectively. Thus, we do not recommend that one first permutes the matrix so
that the rows are in order of increasing number of nonzeros.

8. CONCLUSION

We have presented a very simple, fast computer program for finding an ordering
for permuting a matrix so that its diagonal has a minimum number of zeros. We
have examined the complexity of this algorithm both in terms of its worst case
bound and its behavior on more realistic examples and have compared it with
some other methods for solving the same problem.

ACKNOWLEDGMENTS

I would like to thank D. Gay, F.G. Gustavson, M.A. Saunders, A.M. Erisman, and
J.K. Reid for their comments on earlier versions of the code, and to thank the
Swedish Science Research Council for its support during the latter stages of this
work. I would also like to thank T. Wiberg, J.K. Reid, and A.R. Curtis for their
comments on earlier drafts of the manuscript.

REFERENCES

(Note References [2, 24] are not cited In the text.)

1 BERGE, C. The Theory of Graphs Methuen, London, 1962.
2 BUNCH, J.R., AND ROSE, D J., Eds In Proc Conf. Sparse Matrix Computations (Argonne

National Laboratory, Sept 9-11, 1975), Academic Press, New York, 1976.
3. DUFF, I.S. Analysis of sparse systems. Ph.D. thesis, Oxford, England, 1972.
4. DUFF, I.S On permutations to block triangular form. J. Inst Math. Appl. 19 (1977), 339-342
5 DUFF, I S. A survey of sparse matrix research. Proc IEEE 65 (1977), 500-535.
6 DUFF, I S Algorithm 575 Permutations for a zero-free diagonal. ACM Trans. Math. Softw 7, 3

(Sept 1981), 387-390
7. DUFF, I.S, AND REID, J K. An nnplementataon of Tarjan's algorithm for the block triangulan-

zatlon of a matrix ACM Trans Math. Softw 4, 2 (June 1978), 137-147.
8. DULMAGE, A L, AND MENDELSOHN, N.S. A structure theory of bipartite graphs of finite exterior

dimension Trans Roy Soc. Can 53, Sec. 3 (1959), 1-13
9. DULMAGE, A L., AND MENDELSOHN, N.S. TWO algorithms for bipartite graphs. J. SIAM 11

(1963), 183-194.

ACM Transactions on Mathematical Software, Vol. 7, No. 3, September 1981

3 3 0 • I . S . Duff

10. FORD, L.R, JR., AND FULKERSON, D.R. Flows in Networks. Princeton University Press, Prince-
ton, N.J., 1962.

11. GUSTAVSON, F.G. Finding the block lower triangular form of a matrix. In Sparse Matrix
Computations, J.R. Bunch and D J. Rose (Eds.), Academic Press, New York, 1976.

12. HALL, M. An algorithm for distinct representatives. Am. Math. Monthly 63 (1956), 716-717.
13. HALL, P. On representatives of subsets. J. London Math. Soc. 10, 37, pt. 1 (1935), 26-30
14. HARARY, F. Graph Theory. Addison-Wesley, Reading, Mass., 1969
15 HOPCROFT, J.E., ASD KARP, R.M. An n ~/2 algorithm for maximum matchings in bipartite graphs

SIAM J. Cornput. 2 (1973), 225-231.
16. KETTLER, P., AND WEIL, R. An algorithm to provide structure for decomposition. In Proc

Syrup on Sparse Matrices and their Apphcatmns, R A. Willoughby (Ed.), IBM Rep. RA (11707),
Yorktown Heights, N Y, 1969.

17 KONIG, D. Theor~e der endhchen und unendhchen Graphen Chelsea, New York, 1950.
18. KUHS, H W. The Hungarian method for solving the assignment problem. Naval Res. LogLst.

Quart. 2 (1955), 83-97.
19. KUHN, H W Variants of the Hungarian method for assignment problems Naval Res Logtst

Quart 3 (1957), 253-258.
20 STEWARD, D.V. On an approach to techniques for the analysis of the structure of large systems

of equations. SIAM Rev. 4 (1962), 321-342
21. STEWARD, D.V Partitioning and tearing systems of equatmns. SIAM J Numer. Anal. 2 (1965),

345-365.
22. TARJAN, R. Depth-fn~t search and linear graph algorithms. S I A M J Comput 1(1972),146-160
23. WIBER6, T. Permutation of an unsymmetric matrix to block triangular form. Ph.D. dissertatmn,

Dep of Information Processing, Univ. Umeh, Ume~, Sweden, March 1977
24. WILLOUGHBY, R.A. Ed., Proc. Syrup. on Sparse Matrices and their Applicatmns, IBM Rep.

IRA 1 (11707), Yorktown Heights, N.Y., 1969.

Received October 1978; revised January 1980; accepted April 1980

ACM Transactions on Mathematmal Software, Vol 7, No. 3, September 1981

