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1. INTRODUCTION 

There is a long history to the problem of computing permutations to place the 
maximum number of nonzeros on the diagonal of a sparse matrix. In this paper 
we give only principal references; further references are given in [5, sec. VIII E]. 
Although we indirectly discuss some of this history in Sections 2 and 6, the 
principal objective of this paper is to describe a computer program, Harwell 
subroutine MC21A, for computing such a permutation. We examine the complex- 
ity of the algorithm both in terms of its worst case bound and its performance on 
real and simulated problems and compare it with other approaches. 

In Section 2 we give some indication of the wide range of application areas for 
such an algorithm and additionally introduce other terms commonly used to 
describe this ordering problem. Our main motivation for developing this algorithm 
is to obtain fast, reliable techniques for preordering a matrix to block-triangular 
form prior to its decomposition using Gaussian elimination [4]. We discuss this in 
Section 3. 

The algorithm MC21A given in [6] is described in Section 4. Although MC21A 
was initially developed independently from Gustavson's ASSIGN ROW [11], 
both are related to an algorithm by Hall [12]. We have since incorporated two of 
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Gustavson's  suggestions so tha t  our  resulting algori thm has similar features to an 
efficient implementa t ion of ASSIGN ROW. 

In Sect ion 5 comments  are made  on the  complexity of  the algorithm. Through-  
out  this paper  we will use n and • to denote  the order  of the matr ix  and its 
number  of nonzeros, respectively. An example tha t  causes the algori thm to exhibit  
its worst  case bound of O(n~'), is described, al though the behavior  on more  
realistic examples is seen to be more  like O(n) + O(¢). Its speed is seen to 
compare  favorably with the o ther  algorithms with which it is used in our  block- 
tr iangularization context.  In Sect ion 6 we comment  on o ther  algorithmic ap- 
proaches to this problem. In part icular  we compare  our  algori thm with a version 
of the Hopcrof t  and Karp  algori thm [15] tha t  has worst  case complexi ty only 
O (n 1/2¢). Finally, in Sect ion 7 we make some comments  on the use of heuristics 
to reduce computing time. 

2. OTHER FORMULATIONS OF THE PROBLEM 

Since the problem of obtaining the permuta t ion  described in the introduct ion has 
appeared in various guises in many  areas, we feel it is useful to devote  a whole 
section to describing the terms we will use later  in this paper, as well as the 
different formulat ion and terminologies used in some of these o ther  areas. We 
stress tha t  this section does not  a t t empt  to be exhaust ive but  r a the r  is included 
to give the reader  a flavor of this topic. 

Most  of our  nomencla ture  is taken from management  science (for example, 
Ket t l e r  and Weft [16]). 

For  example, we refer to the set of nonzeros on the diagonal of the pe rmuted  
matr ix  as a transversal. Thus  a t ransversal  is character ized as a set of nonzeros, 
no two of which lie in the same row or column. We refer  to the number  of 
nonzeros in a transversal  as the length of the transversal, and call a set containing 
the maximum number  of such nonzeros a maximum transversal. When  we 
include a nonzero in the transversal,  we call it an assignment and, if we change 
the transversal  by also removing nonzeros, we have performed a reassignment. 
Ford and Fulkerson [10] refer to a maximum transversal  as a maximum assign- 
ment. We find it helpful during the remainder  of this section to refer  to the simple 
3 × 3 example shown in Figure 1. In this figure, the circled elements  are the (in 
this case, unique) maximum transversal. 

Transversa l  selection has for many  years  been studied by researchers  in 
combinatorics.  If  we have a set of  n subsets of some universal  set S, say, then  a 
system of disttnct representatives (SDR) is a subset  of n distinct e lements  of S, 
each of which represents  exactly one of the given subsets and belongs to the 
subset it represents.  In the example of Figure 1, S -- (1, 2, 3} and the n (here 
equal to 3) subsets could consist of the column indices of nonzeros in each row 
and so might  be denoted by {1, 3), {2), {1). Th e  S D R  (3, 2, 1) then  would 
correspond to the selected transversal.  

P. Hail  [13] gave the following necessary and sufficient condition for an S D R  
to exist. "An S DR exists if and only if the union of any k subsets (1 _< k _ n) 
contains at  least k distinct elements."  Although M. Hall [12] proposed an 
algori thm for obtaining an SDR,  he gave little indication of its implementa t ion  as 
a computer  program. 
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Steward [20, 21] calls such an SDR an output set, a term commonly employed 
in engineering design or chemical engineering. The term is used because the 
chosen output set designates for which variable each equation is solved, the other 
variables being termed input variables. 

The structure of a sparse matrix can be represented as a graph in several ways 
(see, for example, Harary [14]). We show, in Figure 2, the bipartite graph 
(btgraph) associated with our example of Figure 1. The vertices of the bigraph 
are divided into two sets S and T, those in S representing rows and those in T 
columns. An edge exists from vertex s, in S to vertex tj in T if and only if the 
nonzero (s,, tj) is present in the matrix. The edges of the bigraph corresponding 
to nonzeros in the maximum transversal are indicated by double lines. In such a 
context, the maximum transversal is called a maximum orperfect matching. The 
problem of finding a maximum matching in a bipartite graph has been studied by 
Dulmage and Mendelsohn [8, 9]. 

If, in Figure 2, we ignore the distinction between sets S and T and renumber 
the vertices 1, 2, 3 of T to be 4, 5, and 6, respectively, we obtain the undirected 
graph associated with the symmetric matrix (Figure 3), where A is the matrix in 
Figure 1. 

A general sparse matrix can also be represented by a directed graph, where an 
edge exists from vertex i to vertex j if and only if the element (i, j )  is nonzero. 
The directed graph corresponding to the matrix of Figure 1 is shown in Figure 4. 
Finding a maximum transversal is equivalent to finding a factor where a factor of  
a directed graph is defined as a set of edges of the graph such that  each vertex 
has one edge of the set entering it and one leaving it. Although such a factor can 
be easily found in the example of Figure 4, the algorithm suggested by Berge [1] 
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Fig 5. Graph for the rooks' problem. 

1 2 

I Fig 6. Lines showing minimum cover 

requires the solution of two sets of n Boolean equat ions in r Boolean variables 
when the original matr ix  is of order  n with ¢ nonzeros. 

Notice tha t  we can similarly define a factor for an undirected graph, in which 
case our  problem is equivalent  to finding a factor of  the graph associated with the 
matr ix  of Figure 3. 

Another  graphical in terpreta t ion is obta ined from the rooks'  problem. The  
rooks" problem is a popular  puzzle where one is required to place 8 rooks (or 
castles) on a chess board such tha t  no rook can take any other.  The  more general 
problem allows the chess board to have n squares in each direction and restr icts  
the squares on which rooks may  be placed. Th i s  can be seen to be identical to our  
maximum transversal  problem. The  rooks'  pro~alem is often rephrased  in the 
following way. We form an undirected graph on • vertices (v is the number  of 
permi t ted  locations for the rook) where each edge corresponds to the fact tha t  its 
endpoints  do not  lie on the same row or column of the original board. In the 
graph thus obta ined (Figure 5), we wish to find a complete  subgraph (a subgraph 
whose vertices are all pairwise adjacent)  with the maximum possible number  of 
vertices. For  our example of Figure 1, the graph on • (=4) vert ices has the form 
shown in Figure 5, where the complete  subgraph on vertices 2, 3, 4 yields the 
maximum transversal.  However,  since we have rephrased  the problem to tha t  of 
finding a complete  subgraph on n vertices f rom a graph on $ vert ices with 
½(~2 _ 2Tn + r) edges, any algori thms based on such an approach are clearly 
O(T e) + O(nz)  at  best  and will usually be worse. 

Finally, a re la ted topic is tha t  of obtaining a minimum cover of a matrix. This  
min imum number  of lines ( that  is, rows or columns) necessary to include all the 
nonzeros of a matr ix  has been shown by Konig [17] to be equal to the length of 
a maximum transversal.  Of course, in the nonsingular case, the min imum cover 
can consist trivially of  all rows or all columns of the matrix, but  we show in Figure 
6 a different min imum cover for our  given example. 

3. TRANSVERSAL SELECTION AND BLOCK TRIANGULARIZATION 

Our principal mot ivat ion for developing a t ransversal  algori thm has been its 
application in the first step of a me thod  for permut ing  an arb i t rary  sparse matr ix  
to block-tr iangular  form. This  form is i l lustrated in Figure 7, where each A,, is 
square and cannot  itself be pe rmuted  to block-triangular form. 

I t  is evident  tha t  the solution of a sys tem whose coefficient matr ix  can be thus 
preordered  is greatly simplified. Indeed, if we are using Gaussian elimination to 
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solve such a system, the forward elimination phase can be confined to the blocks 
on the diagonal, A,,. Thus the system is solved as a sequence of subsystems with 
coefficient matrices A,,, i --- 1, 2 . . . .  , N. 

The approach we adopt for obtaining such a form is to first permute the matrix 
so that  the diagonal is zero-free and then use symmetric permutations to produce 
the desired form. The author [4] has justified this two-stage approach and has 
shown that the final form is essentially independent of the first permutation. The 
author and Reid [7] have developed code, based on the work of Tarjan [22] and 
Gustavson [11], which performs the second phase in O(n) + O(~) time. Wiberg 
[23] has suggested combining these two phases and intends to compare his 
algorithms with ours in the near future. 

A matrix, which may have zeros on its diagonal, is bireducible if there exist 
row and column permutations that  permute it to block-triangular form, as in 
Figure 7, and is reducible if this can be done using symmetric permutations (i.e., 
rows and columns permuted identically). The negation of these terms, bi-ir- 
reducible and irreducible, respectively, are defined in the obvious way. The author 
[4] has shown the equivalence of these terms when the matrix has a zero-free 
diagonal. 

If we omit the first stage, then, as the example of Figure 8 illustrates, we will 
not be able to order an irreducible, bireducible matrix to block-triangular form. 
However, the application of the second phase to a matrix with zeros on the 
diagonal may give a partial decomposition in the sense that  further unsymmetric 
permutations within a block may further decompose it. In other words, the 
presence of zeros on the diagonal may give us a more grainy decomposition than 
otherwise possible, although the block structure includes the possibility of finer 
decomposition. 

4. ALGORITHM MC21A 

In this section we fncst describe the basic techniques of our algorithm, making use 
of some terminology from graph theory. We then present a flowchart of the 
algorithm and give some details of our implementation. The FORTRAN code is 
given in [6]. 

This algorithm is usually described in terms of a bipartite graph [15], but we 
believe that our presentation is made clearer by using a less common graphical 
representation, which we now describe. The transversal is constructed in n major 
steps, after the k th  of which we have a transversal for a submatrix of order k. 
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Fig. 9. R eas s i gnmen t  chain.  
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After the k t h  step, we associate with the matrix an unconventional directed 
graph (which usually changes from step to step). Each vertex of the graph 
corresponds to a row of the matrix, and there is an edge from vertex i0 to vertex 
il if there exists a column of the matrix, j l  say, such tha t  nonzero (il, j~) is a 
current transversal element and element (/0, j l)  is nonzero. We say we can reach 
vertex il from vertex ~0 and define a pa th  to be a sequence of edges of this kind. 
I t  is helpful to consider a path, f rom/o to/k, say, as a sequence of nonzeros (~0, j~), 
(il, j2),  . - - ,  (ik-1, jk) where the present transversal includes the nonzeros (il, j l ) ,  
(i2, ]2) . . . . .  (tk, fi) .  Now if there is a nonzero in position (ik, fi+l) and if no nonzero 
in row/0 or column fi+~ is currently on the transversal, then the length of the 
transversal can be increased by 1 by removing nonzeros (ir,fi), r = 1 . . . . .  k, from 
the transversal and adding nonzeros (it, jr+l), r ----- 0, 1 , . . . ,  k, to it. In Figure 9 we 
illustrate this reassignment chain (called an augmenting pa th  by Hopcroft  and 
Karp [15]) on the matrix representation. We simplify our illustration by assuming, 
without  loss of generality, tha t  a column permutat ion has been performed so tha t  
the previously assigned rows have their  transversal element on the diagonal. We 
comment  on the shaded regions of this example later in the text. 

The  reassignment chain is shown by directed lines in Figure 9, the vertical lines 
from nonzeros (iN, jr+~) to nonzeros (it, jr), and horizontal ones from (ir, jr) t o  
(it, jr+l)- The  reassignment corresponds to replacing the three underlined trans- 
versal elements by the four circled nonzeros (i.e., k in our earlier discussion is 
equal to 3). 

There  are several different techniques available for finding a reassignment 
chain. We use a depth first search with look-ahead technique tha t  we now 
describe. 

In accessing the vertices of a graph in a depth first search (DFS), we search 
edges from the current vertex and add to our pa th  the first vertex encountered 
tha t  we have not  yet  visited. This becomes the current vertex and we proceed 
from it as before. If  all the vertices tha t  can be reached from the current one at  
the end of the pa th  are already visited, we retrace our steps (or backtrack) to the 
vertex added to the pa th  immediately before this present one, make tha t  the 
current vertex, and proceed as before. We illustrate the depth first search 
algorithm in Figure 10, where heavy lines denote edges in the pa th  and the 
vertices are numbered in the order in which they  are visited during the DFS. 
Clearly, when implementing a DFS we need to keep track of the path  (required 
for backtracking) and also know which vertices have been visited during the 
search. 

In the present context we define our edges, as before, to be of the form (il, i2) 
where (i~, j2), say, is a nonzero and (/2, j2) a present assignment. We star t  from 
ACM Transactmns on Mathematmal Software, Vol. 7, No 3, September 1981 
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any unassigned vertex (row)/o (in practice, this will be the next  row in the matrix) 
and trace a path  using a DFS  technique until  a vertex {row) ik is reached where 
the pa th  terminates  because nonzero (ik, jk+l) exists and f i+l  is an unassigned 
column. We call vertex ik a free vertex. If we then  retrace our  pa th  f rom/k  to /0  
using the pa th  information used in backtracking, we recover our  reassignment  
chain (or augmenting path). 

In practice, such an algori thm might  be very inefficient because the  D F S  
scheme does not  specify which unvisited vertex reached from the present  current  
vertex should be added to the pa th  and such a choice could be quite critical. We 
alleviate this problem, at each stage, by checking all unvisited vertices reached 
from the current  one to see if any are free. If  so, our reassignment chain has been 
found and we can extend the transversal  by one. We say we have found a cheap 
assignment and call this par t  of the algori thm the look-ahead technique. We 
therefore  see tha t  if DFS with look ahead was used to create  the  assignment 
chain in Figure 9, then  the shaded areas must  contain all zeros or a shor ter  chain 
would have been found. 

Naturally,  this requires a little more  work at each stage, but  if we implement  
this efficiently (see use of array ARP,  below), then  the total  cost of all the  look 
aheads is only O(~), where r is the number  of nonzeros in the matrix. We see in 
the next  section tha t  the shortening of the length of the reassignment more  than  
compensates  for this small amount  of extra computat ion.  

We summarize this description of our algori thm in the flow diagram in Figure 
11. T h e  labels on the symbols in the flowchart are used in the complexity 
investigations of the next  section. 

We now discuss some of the details of our implementat ion.  The  reader  may  
find it helpful to refer to the code in [6]. On Gustavson's  suggestion, we introduce 
an auxiliary pointer  array for the cheap assignment phase (ACP) as well as for 
the dep th  first search. This  ensures tha t  the total  number  of  nonzeros accessed 
during cheap-assignment searches is ~. Gustavson [11] indicated tha t  the  number  
of accesses could be much  larger when this was not  done; for example, on a matr ix  
of order  199 with 701 nonzeros, the accesses increased from 661 to 1706. However,  
we adopt  the same policy as in [7], and use ACP to denote  one less than  the 
number  of unsearched nonzeros in a part icular  row (the same is done for the 
auxiliary array OUT during the depth  first search). This  facilitates checking for 
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exhausted rows and reduces by half the number of statements in the inner loop. 
ACP need only be set once at the beginning of the subroutine and updated 
whenever a cheap assignment is made or a row exhausted. Notice that  we only 
set OUT when a particular row enters the depth first search and that, as in 
Gustavson [11], we indicate previous paths in the present depth first search by 
setting CV equal to the number of the assignment being made to avoid the 
resetting of this array. On the 199 example, Gustavson [11] shows that this saves 
8000 operations. The path in the depth first search is held in the linked list PR; 
this never need be reset, is unchanged during backtracking, and is only altered 
when a new row is added during the forward scan. The algorithm will work on 
structurally singular matrices (including ones with null rows or columns}, in 
which case the permutation is completed in a postprocessing phase for which the 
number of operations is a small multiple of n. 

5. COMPLEXITY OF ALGORITHM MC21A  

When studying the complexity of our algorithm, we will refer to the flowchart 
given in Figure 11. In this flowchart, we have labeled the symbols that  are critical 
to an estimation of the complexity of the algorithm by the letters A to H. All 
represent simple operations, except G and H, but we have already explained that  
the total number of operations in H is a small multiple of n. At the very worst we 
must, for each of our n new assignments, reassign all the previous assignments 
and the work involved in G may be O(n~). Since the flow of control is like an 
electrical circuit, an application of Kirchhoffs second law indicates that  we now 
need only examine B and C/D to determine the complexity of the algorithm as 
a whole. 

In the last section, we remarked that  our use of the array ACP would limit the 
number of executions of B to T. If we could avoid searching an edge of the graph 
more than once, then we could restrict the number of times C/D is executed to 
T also. However, the example in Figure 12 illustrates that  our algorithm may need 
to scan the same edge more than once. Here edge (1, 2) is scanned when making 
both the fourth and fifth assignment. If each edge were scanned on every 
assignment, then step D and hence our algorithm would perform as O (n v). An 
example for which MC21A exhibits this behavior is given in Figure 13, where the 
blocks are of order n/3. 

We show, in the results of Table I, that  this behavior is reflected in the 
computation times for MC21A when run on matrices of type NCUBE of different 
orders. Particularly at higher n, when the low-order counts lose significance, the 
O (n r) behavior of the algorithm is evident. 

However, we must emphasize that this is a worst case example and we see from 
the runs on random matrices in Tables II and III that the behavior is nowhere 
near as bad as the matrices NCUBE suggest. 

In these tables, we also give times for a straightforward application of a depth 
first search algorithm that does not involve a look ahead (DFSA). In Table II, it 
is interesting to observe that  the time does not increase monotonically with v and 
takes its maximum value at T = 300 and the same lowest value for v ~ 100 and 

= 500. This is not that  surprising since, although we would expect the algorithm 
to be very fast on a permutation of the identity matrix, when the number of 
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Fig. 12 Example requiring two scans of the same edge. 
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Table I. 

n T 

Times for MC21A on NCUBE 

Time 
(milliseconds 

on IBM Time 
370/168) x 103/n'r 

120 1760 75 0.36 
240 6720 440 0,27 
360 14880 1327 0,25 
480 26240 2914 0,23 
600 40800 5503 0.22 
660 49280 7206 0.22 
720 58560 9232 0.22 
780 68640 11624 0,22 

nonzeros increases above a certain point (in practice about five nonzeros per row), 
it becomes increasingly easy to obtain quick cheap assignments and any further 
increase in time is simply due to more nonzeros being scanned during the cheap- 
assignment phase. Notice that  the DFSA algorithm does increasingly badly 
because the extra number of nonzeros does not help in getting cheap assignments 
since we do not look ahead for them. Indeed, they cause more paths to be 
searched and the time is proportional to ~. 

In Table III, we hold the number of nonzeros per row constant because we 
have found this to be the other main parameter in the times. Here we see that  
the behavior is much better than proportional to n 2, a much more satisfactory 
performance than could be expected from the upper bounds. The algorithm 
DFSA performs much worse, largely because it is more affected by the increasing 
total number of nonzeros. 

We will see later that  this behavior on random systems is reflected in the 
performance on systems arising in practice, thus indicating that  the worst case 
bound is very unlikely to be realized. 
ACM Transactions on Mathematmal Software, Vol 7, No. 3, September 1981 
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Table  II. B e h a w o r  with R e s p e c t  to N u m b e r  of Nonzeros" 

N u m b e r  of nonzeros, • 100 150 200 300 400 500 

MC21A 1.3 1.9 2 6 2.8 1.4 1.3 
DFSA (no look ahead)  1 8 3.5 7.1 12 9 16.3 21.9 

" T i m e s  m mil l iseconds on IBM 370/168 (order = 50). 

Table  I I I  Behavior  wi th  Respect  to Order" 

Order, 25 50 100 150 200 

n 

MC21A 0 6 1.9 4.9 8.7 12.4 
DFSA 1 4 3 5 14.4 27 6 40.3 

• 325 

a Tunes  in mfllmeconds on an IBM 370/168 ( three 
nonzeros per row). 

Table  IV. Complexi ty  of MC21A 

Number  of t imes  group of 
s t a t emen t s  executed 

Actua l  execut ion 

counts  
Number  Value on n -- 60 

Block m F O R T R A N  N C U B E  
Figure 11 s t a t emen t s  s = n / 3  N C U B E  R A N D O M  
flowchart  in block Bound  "r = s ( s  + 4) 1" = 480 "r = 480 

A 2 n n 60 60 
B 2 "r s 2 + 4 s  480 290 

C 2 n 2 ½ s ( 3 s  + 1) 610 6 

D 2 n ' f  ~ s ( s  + 1)(2s + 7) 3290 6 
E 6 n ~ s ( s  + 1) 420 6 

F 2 n ~ ½ s ( s -  1) 190 0 
G 5 n 2 ½ s ( s  + 3) 230 60 

H 3 n 0 0 0 

In Table IV, we illustrate the complexity of the algorithm, where we again 
observe that the O(nT) behavior can only come from the accessing of the edges 
during the forward pass of the depth first search. Although O(n 2) counts abound 
(and some are realized by NCUBE), we see from the execution counts on a 
random matrix of the same order and density that it is only the very particular 
structure of NCUBE that  causes the bound to be achieved. 

When discussing the performance and complexity of our algorithm, it is 
important to examine it in the context of the other algorithms with which it will 
be used. We are therefore interested in comparing its behavior with that  of a 
subroutine for block triangularization and of subroutines for the decomposition 
of sparse systems by Gaussian elimination. In practice the times of these algo- 
rithms are approximately proportional to n + • and " r 2 / n ,  respectively, so the 
O(nr) performance of our algorithm on NCUBE gives us some cause for concern. 
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Table V. Comparative Timmgs of Transversal Selection with Block- 
Triangularization and Gaussian Elimination" 

Matrix: n 147 199 292 822 
2449 701 2208 4841 

Transversal selection 4.3 10.4 6.2 154.7 
Block triangularization 10.1 7.2 13.1 36.6 
Gaussian elimination (using Harwell sub- 1318.2 203.2 761.6 1426.4 

routine MA30A) 

a Times in milliseconds on an IBM 370/168. 

However, we are primarily concerned with the performance of our algorithm on 
genuine problems and, when we examine the results in Table V, we observe that  
not only is the transversal selection sometimes faster than the asymptotically 
superior block-triangularization routines, but the combined steps take very little 
time in comparison with that  for the decomposition of the matrix. 

Because of our remarks in the Introduction, we would expect a coded version 
of ASSIGN ROW to perform very similarly to MC21A, but Gustavson [11] gives 
no exact implementation details, no code, and no timings for his algorithm. 

6. COMMENTS ON OTHER ALGORITHMS 

In Section 2 we gave a brief description of several of the areas in which the 
problem of transversal selection arises. Naturally, a variety of algorithms have 
been suggested by some of the researchers in these areas and, in this section, we 
comment on some of these. 

In our description of MC21A, we defined a path and the depth first search 
technique for searching the vertices and edges of a graph. Another commonly 
employed search technique is that  of breadth first search. Here, we explore all 
the edges leaving the current vertex, adding any unvisited vertices reached from 
this vertex onto a stack before processing the next vertex on the stack. We 
illustrate this technique by examining its application on the graph in Figure 14. 
The graph in Figure 14 is the same as that  in Figure 10 and, additionally, the 
vertices are in the same position, but they are now numbered in the order 
accessed during a breadth first search. Notice that  one property of a breadth first 
search is that  it will always find the shortest path between the starting vertex 
and any other. Clearly this will enable us to get short reassignment chains 
(augmenting paths), but the total number of edges visited before finding such a 
chain may well be greater than in the depth first search method. Observe that 
our "look ahead" (Section 4) is really one step of a breadth first search. We 
compare our algorithm with one based on a breadth first search technique in 
Table VI. 

In 1957 Kuhn [19] examined some of the algorithms used up to that  time. We 
continue his classification and rephrase such comments in the language of this 
paper. 

The Hungarian algorithm of Kuhn [18] was similar to ours inasmuch as he 
used a depth first search technique. However, it differed in so far as he did not 
at tempt to do a cheap assignment at each stage. By examining the simple example 
in Figure 15, we can see that  this "look-ahead" capacity is very important. 
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/X3; 

X 9  

Fig. 14. 
ordering. 

Directed graph mdmating the breadth first search 

Table VI A Comparison of MC21A with Hopcroft  and Karl) Algorithm ~ 

S T R U C T U R E D  
RANDOM NCUBE 

n 100 199 822 300 
Matrix: 

300 701 4534 10400 

MC21A 4.9 10.4 124 9 802 
Hopcroft  and Karp 32.3 52.8 253.6 127 

a Times m milliseconds on an IBM 370/]68. 

X X X 

X X 

X Fig. 15 Indmation of power of "look ahead." 

Here the assignment of the fourth transversal element requires access to every 
nonzero if no "look ahead" is employed, whereas, by attempting a cheap assign- 
ment at every stage, the transversal is completed after accessing only three 
nonzeros. This is reinforced by our computational results in Tables II and III. 

Kuhn's [19] algorithm employs a breadth first search, but  the search is only 
undertaken from one unassigned row at a time and can be very inefficient. The 
original algorithm of Hall [12] was similar to this. 

The algorithm of Ford and Fulkerson [10] again uses a breadth first search, 
this time starting simultaneously from all unassigned rows; however, they restart 
the breadth first search after each reassignment. Hopcroft and Karp [15] perform 
reassignments corresponding to disjoint augmenting paths for each level of the 
breadth first search before continuing to the next level. They have shown that 
their algorithm, which uses depth first searches for finding the disjoint augment- 
ing paths, has an O(n~/2r) bound, the lowest worst case complexity of any 
proposed algorithm to date. Now, although we are reassured by the fact that the 
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O(n~') behavior of MC21A is unlikely to be realized in practice, it is interesting to 
compare an implementation of the O(n 1;2v) algorithm with MC21A. The imple- 
mentation is ours because no published code for this algorithm is available. We 
have written it with care and believe it gives a fair representation of their 
algorithm, but our results should be interpreted in this light. 

One glance at the results of Table VI is sufficient to convince us that  our 
implementation of the Hopcroft and Karp algorithm is not competitive with 
MC21A on realistic problems, although it is better than MC21A on the worst 
case example, NCUBE. 

7. CHEAP HEURISTICS 

Although we could have first attempted a cheap assignment on all of the rows, 
thus guaranteeing that  at least half of our transversal would be found immedi- 
ately, we have decided against this because our approach makes the algorithm 
simpler and does not affect its complexity bound. However, if one could design a 
heuristic such that  the cheap assignment, guided by this heuristic, obtained 
nearly all the transversal, then little work would be left to the depth first search. 
Both the author [3] and Gustavson [11] have experimented with such heuristics 
without reaching any firm conclusions. We do not use heuristics here because 
they will certainly complicate the algorithm and normally require additional work 
space for their implementation. Indeed our experience with heuristics has been 
that  it is impossible to implement them with the same degree of efficiency as 
exhibited in MC21A and, additionally, no single heuristic can be guaranteed to 
work well on all examples. At one time we thought the heuristic M4 of [3], 
namely, first choose singletons in the active matrix (i.e., the matrix left after 
eliminating rows and columns already assigned) and, if there are none, choose 
the nonzero whose combined number of nonzeros in its row and column is least 
(we call this the element count), would nearly always give a complete assignment. 
We illustrate below a 6 × 6 matrix on which this heuristic fails (and it can be 
shown to be the smallest possible such counterexample). In Figure 16, the number 
representing each nonzero is its element count in the original matrix. 

Al Erisman {Boeing Computer Services) drew our attention to the fact that  
since we can preorder the rows in order of ascending row count in only O(n) time, 
it might be an advantage to first do such a preordering before starting the 
assignment process. At first glance, this seems attractive since our main algorithm 
is O(n.r) + O(n2). However, as we have seen in practice, MC21A performs as 
O(n) + O(~), and so the cost of the preordering may be significant. Indeed, the 
results in Table VII (the times being the average of ten runs with different 
permutations of the original matrix) indicate that  the algorithm performs notice- 
ably worse if it is preceded by a preordering phase. Additionally, this preprocess- 
ing requires extra integer work space of length n. However, the most severe 
drawback to such a preordering is that, while the original matrix may have a 
zero-free diagonal, a permutation of it with the rows in order of increasing number 
of nonzeros may have zeros on the diagonal; hence it may not be possible to 
cheaply and quickly assign to all the rows in order. A striking example of this is 
seen in the original matrix of order 1176 with 18,552 nonzeros. Here the times for 
runs with and without the preordering phase are 383 and 37 milliseconds, 
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Fig. 16 The 6 x 6 example on which M4 fails to give a max- 
imum transversal 

Table VII. A Comparison of Times with and Without Preordering a 

Matrix: n 1176 199 822 300 900 180 
18552 701 4790 7275 4970 NCUBE 

MC21A 280 12 140 6 15 257 
MC21A + PREORDER 459 13 194 9 24 359 

"Times m mflhseconds on an IBM 370/168. 

respectively. Thus, we do not recommend that  one first permutes the matrix so 
that  the rows are in order of increasing number of nonzeros. 

8.  CONCLUSION 

We have presented a very simple, fast computer program for finding an ordering 
for permuting a matrix so that  its diagonal has a minimum number of zeros. We 
have examined the complexity of this algorithm both in terms of its worst case 
bound and its behavior on more realistic examples and have compared it with 
some other methods for solving the same problem. 
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