
On Aligning Curves

Thomas B. Sebastian, Philip N. Klein, and
Benjamin B. Kimia

Abstract—We present a novel approach to finding a correspondence (alignment)

between two curves. The correspondence is based on a notion of an alignment

curve which treats both curves symmetrically. We then define a similarity metric

based on the alignment curve using two intrinsic properties of the curve, namely,

length and curvature. The optimal correspondence is found by an efficient

dynamic-programming method both for aligning pairs of curve segments and pairs

of closed curves, and is effective in the presence of a variety of transformations of

the curve. Finally, the correspondence is shown in application to handwritten

character recognition, prototype formation, and object recognition, and is

potentially useful in other applications such as registration and tracking.

Index Terms—Curve alignment, recognition, dynamic programming, prototypes,

correspondence.

æ

1 INTRODUCTION

THIS paper presents a novel method to find the optimal
correspondence or alignment between 2D curves using their
intrinsic properties. This alignment has served as a key element
in many applications such as object recognition based on
silhouettes [1], [2], [3], handwritten character recognition [4], [5],
[6], tracking [7], [8], etc. While existing curve alignment/matching
approaches typically take advantage of constraints pertaining to
their particular domain of application, we approach this problem
generically, keeping in mind that domain-specific constraints can
be added subsequently. First, we review current approaches for
curve alignment, discuss how we extend current techniques, and
present an overview of our approach.

Current curve alignment methods can be classified into two
categories: methods based on rigid transformations [1], [9], [10],
and those based on nonrigid deformations [7], [8], [11], [12].
Methods based on rigid transformations rely on matching feature
points by finding the optimal rotation, translation, and scaling
parameters [1], [10]. Since these methods assume that the outlines
can be aligned by a rigid transformation, they are sensitive to
articulations, deformations of parts, occlusion, and other variations
in the object form. Methods based on nonrigid deformations model
articulation and other deformations by finding the mapping from
one curve to another that minimizes a performance functional
consisting of “stretching” and “bending” energies [7], [8], [11], [12].
The minimization problem in the discrete domain is transformed
into one of matching shape signatures with curvature, bending
angle, or absolute orientation as attributes [5], [2], [3]. These
methods suffer from one or more of the following drawbacks:
asymmetric treatment of the two curves, sensitivity to sampling of
the curves, lack of rotation and scaling invariance, and sensitivity
to occlusion and articulations. We explore an extension of these
approaches that addresses some of these issues.

Our approach to finding the optimal correspondence between
2D curves relies on using the intrinsic properties of the curves in an
energy minimization framework as in [7], [12]. However, a key

problem in this framework is the asymmetric treatment of the curves
being matched. Tagare [8] handles this issue by introducing a
bimorphism and searching in the space of pairs of functions.
Observing a redundancy in this search, we introduce the notion of
an alignment curve which ensures a symmetric treatment by
searching in the space of a single function, Section 2. This naturally
leads to an “edit distance” metric. Efficient algorithms for finding
the optimal alignment using dynamic programming are described
in Section 3 for matching both curve segments and closed curves.
Section 4 illustrates the generic nature of the proposed curve
alignment framework in several applications including hand-
written character recognition, prototype formation, and object
recognition.

2 CURVE ALIGNMENT

This section discusses the mathematical formulation of the

problem of aligning two curves. We first consider the case of

aligning two curve segments and then extend this to align two

closed curves.

2.1 Deformation-Based Approach

Cohen et al. [7] pioneered the deformation-based approach to
curve matching. The basic premise of their approach was to match
high curvature points along the curves, while maintaining a
smooth displacement field. The problem was cast in terms of
minimizing an energy functional penalizing “bending” and
“stretching,” in a physical analogy similar to the one used in
formulating active contours [13]. Younes [12] formalized the
approach. Tagare [8] pointed out the inherent asymmetry in the
treatment of the two curves and proposed a “bimorphism” that
ensures a symmetric formulation. We now give the specifics of the
problem formulation.

Denote the curve segments to be matched by CðsÞ ¼ ðxðsÞ; yðsÞÞ,
s 2 ½0; L�, and CðsÞ ¼ ðxðsÞ; yðsÞÞ, s 2 ½0; ½0; L��, where s is arc
length, x and y are coordinates of each point, L is length of C,
and each is similarly defined for C. A central premise of this
approach is that the “goodness” of the optimal match is the sum of
the “goodness” of the matches between corresponding subseg-
ments. This allows an energy functional to convey the goodness of
a match as a function of the correspondence or alignment of the
two curves as proposed earlier [7], [12]. Let a mapping
g : ½0; L� ! ½0; L�, gðsÞ ¼ s, represent an alignment of the two
curves. Specifically, Cohen et al. [7] compare the displacement
velocities and bending energies in the form of

�½g� ¼
Z
C

�� @
@s
ðCðsÞ ÿ CðsÞÞ

��2dsþ R Z
C

ð�ðsÞ ÿ �ðsÞÞ2ds; ð1Þ

where � and � are the curvatures along the curves C and C,
respectively, R is a parameter, and s ¼ gðsÞ. Younes [12] uses a
similar functional. Note that these methods are not invariant to the
relative rotation of the two curves. Hence, the optimal relative
orientation must also be found. Also, in Cohen’s method, the cost
of the optimal deformation is not invariant to the way the curves
are sampled, due to the curvature comparison term. We now
formulate the problem in an intrinsic manner which addresses
both issues.

2.2 Intrinsic Formulation

Definition 1. Let C j½s1 ;s2 � denote the portion of the curve from s1 to s2,

and let g jð½s1 ;s2 �;½s1 ;s2 �Þ denote the restriction of the mapping g to

½s1; s2�, where si ¼ gðsiÞ, i ¼ 1; 2. Define a measure � on this

alignment function,

�½g� jð½s1 ;s2 �;½s1 ;s2 �Þ : g jð½s1 ;s2 �;½s1 ;s2 �Þ! <þ;

to denote the cost of deforming C j ½s1 ;s2 � to C j ½s1 ;s2 �.

116 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 25, NO. 1, JANUARY 2003

. T.B. Sebastian and B.B. Kimia are with the Division of Engineering, Brown
University, Providence, RI 02912. E-mail: {tbs, kimia}@lems.brown.edu.

. P.N. Klein is with the Department of Computer Science, Brown
University, Providence, RI 02912. E-mail: klein@cs.brown.edu.

Manuscript received 16 Feb. 2001; revised 27 Dec. 2001; accepted 21 Mar.
2002.
Recommended for acceptance by D. Jacobs.
For information on obtaining reprints of this article, please send e-mail to:
tpami@computer.org, and reference IEEECS Log Number 113646.

0162-8828/03/$17.00 ß 2003 IEEE Published by the IEEE Computer Society

We restrict this measure � to one which satisfies an additivity

property

�½g� jð½s1 ;s3 �;½s1 ;s3 �Þ ¼�½g� jð½s1 ;s2 �;½s1 ;s2 �Þ þ�½g� jð½s2 ;s3 �;½s2 ;s3 �Þ;
8s1�s2�s32½0; L�;8s1�s2�s32½0; L�;

ð2Þ

where si¼gðsiÞ, i ¼ 1; 2; 3. This property implies that the match
process can be decomposed into a number of smaller matches, and
can be written as a functional

�½g� jð½0;L�;½0;L�Þ¼
Z L

0

�½g� jð½s;sþds�;½gðsÞ;gðsþdsÞ�Þ ds: ð3Þ

The optimal match is then given by

g� ¼ argmin

g
�½g� jð½0;L�;½0;L�Þ :

Consider two infinitesimal curve segments C j½A;B� and C j½A;B�
of lengths ds, ds, and curvatures �, �, respectively. Since we

compare the intrinsic aspects of these curve segments, we align

their start points A and A and their respective tangents ~TTA and ~TT
A
,

Fig. 1a. The cost of matching the infinitesimal curve segments is the

degree by which the endpoints B and B differ, which can be

formulated as

�½g� jð½s1 ;s2 �ds;½s1 ;s2 �þdsÞ¼ jds� dsj þ Rjd�� d�j; ð4Þ

where R is a constant.1 Then, the resulting functional is given by

�½g� ¼
Z L

0

ds

ds
� 1

����
����þ R

d�ðsÞ
ds

ds

ds
� d�ðsÞ

ds

����
����

� �
ds

¼
Z L

0

g0ðsÞ � 1j j þR �ðgðsÞÞg0ðsÞ � �ðsÞj j½ �ds;
ð5Þ

where the first term penalizes “stretching” and the second term
penalizes “bending.” This is the same as the linear cost model of
Basri et al. [11].2 Observe that, while this formulation is symmetric
in form [11], the explicit dependence on the alignment function g

makes it inherently asymmetric [8]. Specifically, algorithms which

are based on differentiable mapping of one curve to the other are

asymmetric, as the inverse map may not be one-to-one or

differentiable. Tagare [8] instead proposes a “bimorphism,” which

diffeomorphically maps the pair of curves to be matched.

Specifically, he formulates a cost function that minimizes differ-

ences in local length and orientation changes jds� dsj and jd�� d�j
along each differential segment of this curve, and seeks a pair of

functions �1 and �2 (elements of the bimorphism) which optimize

this cost functional.

2.3 Symmetric Formulation: Alignment Curve

We approach this asymmetry issue by observing that the

formulation based on (5) does not allow the mapping of a single

point in the first curve to a segment in the second curve. This is

because the notion of an alignment is captured by a (univalued)

function g. To alleviate this difficulty, we revise the formulation.

We reconsider an alignment between two curves as a pairing of

two particles, one on each curve traversing their respective paths

monotonically, but with finite stops allowed. This alignment can be

specified in terms of two functions h and h relating arc length

along C and C, s and s, respectively, to a newly defined curve

parameter �, i.e., s ¼ hð�Þ and s ¼ hð�Þ. When h is invertible, we

have s ¼ hðh�1ðsÞÞ ¼ h � h�1ðsÞ, which allows for the use of an

alignment function, g ¼ h � h�1, as before. However, when h is not

invertible, i.e., when the first particle stops along the first curve for

some finite time, g is not defined.

While this formulation allows for a symmetric treatment of the

curves, note that a superfluous degree of freedom is introduced, as

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 25, NO. 1, JANUARY 2003 117

Fig. 2. Some characters differ in curvature only at a few points and have small edit
distance. In this figure, “6” and “U” differ in curvature only at the few points that are
highlighted.

1.R is a scale constant depending on the average sample size along the
curve. For all examples in this paper, we set R ¼ 10. We have seen
experimentally that the alignment is relatively insensitive to the choice of R.

2. We refer the reader to Basri et al. [11] for a discussion of different
nonlinear norms which were motivated by the extent certain desirable
constraints were met. These norms can also be used in the curve alignment
framework.

Fig. 1. (a) The cost of deforming an infinitesimal segment AB to segment AB, when the start points and their tangents are aligned (A ¼ A, ~TTA ¼ ~TT
A
), is related to the

distance BB, and is defined by jds� dsj þRjd�� d�j. (b) The formulation using an alignment curve allows for a finite segment from one curve to be aligned with a single

point on one curve, thus allowing for the curve segment deletion or addition.

in [8], because different traversals h and h may give rise to the

same alignment. While Tagare [8] treats this degree of redundancy

by simply searching a larger space of two functions, we remove

this additional degree of redundancy by introducing the notion of

an alignment curve, �, with coordinates h and h

�ð�Þ ¼4 ðhð�Þ; hð�ÞÞ; � 2 ½0; ~LL�;
�ð0Þ ¼ ð0; 0Þ; �ð ~LLÞ ¼ ðL;LÞ;

ð6Þ

where � is arc-length along the alignment curve and ~LL is its length.

The alignment curve can now be specified by a single function,

namely, ð�Þ, � 2 ½0; ~LL�, the angle between the tangent to the curve

and the x-axis. The coordinates h and h can then be obtained by

integration

hð�Þ ¼
R �
0 cosð ð�ÞÞd�;

hð�Þ ¼
R �
0 sinð ð�ÞÞd�;

(
� 2 ½0; ~LL�: ð7Þ

Note that is constrained by monotonicity (h0 � 0 and h
0 � 0) to

lie in ½0; �2�. The alignment between C and C is then fully

represented by a single function . The goodness of the match

between C and C can now be rewritten in terms of . First, if

h0 6¼ 0 and h
0 6¼ 0 for � 2 ½�1; �2�, then g ¼ h � h�1 is well defined.

Using (3) and (4), we get

�½ � j ½�1 ;�2 � ¼
Z �2

�1

����� dhd� � dh

d�

����þR

���� d�ds dsd� � d�

ds

ds

d�

����
�
d�

¼
Z �2

�1

��� cosð Þ � sinð Þ
��

þR
���ðhÞ cosð Þ � �ðhÞ sinð Þ

���d�:
ð8Þ

Second, consider that one of h0 or h
0
is zero at a point, say

h0ð�Þ ¼ 0, implying that hð�Þ maps to a corresponding interval

½hð�Þ; hð� þ d�Þ�. This cost of mapping a point to an interval is

defined by enforcing continuity of the cost with deformations:

consider the cost of mapping the interval ½hð�Þ; hð� þ d�Þ� to the

interval ½hð�Þ; hð� þ d�Þ� as dh ¼ hð� þ d�Þ � hð�Þ ! 0, i.e., as

 ! �
2 , or as cosð Þ ! 0 in (8). Similarly, the case where an

interval in the first curve is mapped to a point in the second

curve, is the limiting case of ! 0, or sinð Þ ! 0 in (8). Since

both limits are well-defined, by using (8) the overall cost of the

alignment �½ � is well defined in all cases, and the optimal

alignment is computed as

 � ¼ argmin

�½ �½0; ~LL�

0 � � �
2 ;
R ~LL
0 cosð Þd� ¼ L; and

R ~LL
0 sinð Þd� ¼ L:

8<
: ð9Þ

2.4 Distance between Curves

In many computer vision applications including object recognition

and handwritten character recognition, finding the similarity

between curves, or equivalently a dissimilarity distance between

them, is a key element. We now use the alignment computed

between two curves to define a distance measure between two

curves, which is naturally defined from the cost of deformations:

Definition 2. The edit distance between two curve segments C and C is

the cost of the optimal alignment of the two curves, dðC;CÞ ¼ �½ ��.
Since the metric property of a shape distance measure3 is

potentially useful in several applications, e.g., in indexing into

large databases, symmetry and triangle inequality have been used

to efficiently organize the database organization [16], [17], [18],

[19], we now show that d is a metric.

Proposition 1. The edit distance is a metric, i.e., d satisfies the following

1. dðC1; C1Þ ¼ 0,
2. dðC1; C2Þ ¼ dðC2; C1Þ, and
3. dðC1; C3 � dðC1; C2Þ þ dðC2; C3Þ.

Proof. 1 and 2 follow directly from the definition of d. To prove 3,

let �
ij, i; j ¼ 1; 2; 3, specify the optimal alignment between Ci

and Cj. Let ½s1; s1 þ ds1� be an arbitrary interval on C1, let

½s2; s2 þ ds2� be the corresponding intervals on C2 under

alignment �
12, and let and ½s3; s3 þ ds3� be the interval

corresponding to ½s2; s2 þ ds2� on C3 under alignment �
13.

Denote the composed correspondence between C1 and C3

which takes ½s1; s1 þ ds1� to ½s3; s3 þ ds3� as ̂ 13 ¼ �
12 � �

23.

Using the inequalities jdf1 � df3j � jdf1 � df2j þ jdf2 � df3j,
where f ¼ s or �, we have

118 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 25, NO. 1, JANUARY 2003

Fig. 3. (a) This figure illustrates the template that is used to find the edit distance of curve segments using dynamic programming. Discrete samples along the curves are

the axes. The entry at ði; jÞ represents dði; jÞ. To update the cost at ði; jÞ (black square), we limit the choices of the k and l in (11) so that only costs at the a limited set of

points (gray dots) are considered. (b) This figure illustrates the grid used by the dynamic-programming method to compute the optimal alignment curve for closed curves.

The first curve C is repeated. If the bold curves are optimal alignment curves from si and sj, then the alignment curve from sk for i < k < j does not cross the bold curves,

so the search can be restricted to the light gray area in the middle (between the bold curves).

3. There may be instances where human shape comparison does not
observe metric properties [14], [15].

jds1 � ds3j þRjd�1 � d�3j � jds1 � ds2j þRjd�1 � d�2j
þ jds2 � ds3j þ Rjd�2 � d�3j;

which, when integrated, leads to �½ ̂ 13� � �½ �
12� þ �½ �

23�. Now,

using the fact that �
13 specifies the optimal alignment of C1 and

C3, we have �½ �
13� � �½ ̂ 13� or �½ �

13� � �½ �
12� þ �½ �

23�, which

together with the definition of d completes the proposition. tu

Definition 3. The edit distance between two closed curves is the

minimum cost of matching the open curve segments starting at any

pair of arbitrary points P and �PP on C and C, respectively, and

terminating there after having traversed each entire curve, i.e.,

dclosedðC;CÞ ¼ min
½s1 ;s1 � dðC½s1 ;s1þL�; C½s1 ;s1þL�Þ, where L and L are the

lengths of the closed curves C and C, respectively.

The computation of edit distance can be sensitive to the choice

of parameters as noted in [2] and also to the manner the curves are

sampled. Moreover, computing the normalized edit distance is a

nontrivial task [20]. The edit distance, however, has the advantage

of working well in the presence of articulation and deformation of

parts, because of the use of intrinsic properties. This is critical for

object recognition. However, for handwritten character recognition

this can also present a drawback, Fig. 2: edit distance penalizes

local differences in lengths and curvatures, and some character

pairs like “6” and “U,” which differ in curvature only at a few

different points, may appear similar. In such cases, global

properties must also be taken into account and, thus, the Euclidean

distance between corresponding points has been used as a distance

measure: The similarity transformation that minimizes the least-

squares distance between the corresponding points is found [21],

and the average distance between corresponding points is used as

the Euclidean distance measure between curves [22], [2]. We will

use either the edit distance or the Euclidean distance as is

appropriate to the underlying application.

3 AN ALGORITHM FOR FINDING THE OPTIMAL

ALIGNMENT CURVE

This section describes a dynamic-programming algorithm for
finding the optimal alignment curve �� for any two curves C and
C. Dynamic programming has been used for curve matching [23],
[24], [3], [2] deformable-template-based segmentation [25], and in
speech recognition [26]. In order to use dynamic programming to
find the optimal alignment, the distance function has to satisfy the
optimal substructure property [27], which we show first.

Proposition 2. The edit distance has optimal substructure, i.e., for any
�1 < �2 < �3, si ¼ h�ð�iÞ, si ¼ h

�ð�iÞ, i ¼ 1; 2; 3, we have

d C j½s1 ;s3 �; C j½s1 ;s3 �
� �

¼ d C j½s1 ;s2 �; C j½s1 ;s2 �
� �

þ d C j½s2 ;s3 �; C j½s2 ;s3 �
� �

:
ð10Þ

The basic idea is that under the optimal alignment, the alignment of
aligned subsegments also has to be optimal. If that is not the case, the
nonoptimal alignments of the subsegments can be replaced by the
optimal one to get an alignment with a lower total cost. The detailed
proof is omitted due to space constraints [28]. We now describe how
the optimal alignment curve �� is found.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 25, NO. 1, JANUARY 2003 119

Fig. 4. Running time on an SGI Indigo II (195 MHz) for matching curve segments

(top) and closed curves (bottom).

Fig. 5. This figure illustrates the effects of differential sampling. (a) and (b) show
the optimal correspondence (dotted lines) for two equal-length line segments
(sampled at black dots). Recall that the number of segments that can be merged
and then matches is limited to three. (a) When sampling rates are roughly the
same, the correspondence and the cost are marginally affected. (b) When the
curves are sampled very differently the optimal correspondence is significantly
affected. (c) We alleviate the effect of sampling in a postprocessing stage. The
points along the optimal alignment curve �l; l ¼ k� 1; k; kþ 1; kþ 2 are denoted
by black squares. In the postprocessing step, these alignment curve points are
allowed to “relax” along horizontal and vertical lines. In this case, �k can become
any one of the gray dots.

The alignment curve of C and C is a curve in the 2D plane

whose axes are specified by the curve segments C and C. We

discretize C and C at samples s1; s2; . . . ; sn and s1; s2; . . . ; sm,

respectively, Fig. 3a. The alignment curve is then represented by a

sequence of N points ð�1; . . . ; �NÞ, where

�k ¼ ðsik ; sjkÞ; ik 2 f1; . . . ; ng; jk 2 f1; . . . ;mg;
k ¼ 1; . . . ; N;

�1 ¼ ðs1; s1Þ;
�N ¼ ðsn; smÞ:

8>><
>>:

That we have constrained the match at each respective endpoints
of the two curve segments is not a restriction since the match also
considers all possible deletions of segments from the beginning
and the end of each curve.

Let dði; jÞ denote the cost of matching the discrete curve

segments C j½s1 ;si � and C j½s1 ;sj � ; let 	ð½k; i�; ½l; j�Þ denote the cost of

matching subsegments C j½sk;si � and C j½sl;sj � . The optimal sub-

structure property of the distance function (10) allows us to write

dði; jÞ ¼ min
k;l

�
dði� k; j� lÞ þ 	ð½i� k; i�; ½j� l; j�Þ

�
; ð11Þ

which gives a recipe for computing the edit distance dðC;CÞ via

dynamic programming. The match cost is found by sequentially

updating the dynamic-programming table, and the optimal

alignment by tracing through the table [27]. We discretize , as a

first approximation, to nine values achieved by using a template,

Fig. 3a. This template limits the choices of k and l, which in turn

limits the number of segments that can be merged and then

matched to three. We have to compute dði; jÞ at every point in the

2D grid. Hence, the complexity of matching curve segments is

Oðn2Þ, where n is the number of samples along the curve segments.

Note that merging does not increase the complexity, as we allow

only a fixed number of segments to merge at each point.
Observe that our proposed approach is analogous to the “edit

distance” approach [29] for matching strings, where three
operations are allowed:

1. relabeling a character,
2. deleting a character, and
3. inserting a character.

In the curve alignment domain, the infinitesimal curve segment

serves the purpose of a “letter;” stretching and bending of

infinitesimal segments correspond to the “relabel edit,” removal

of an infinitesimal segment of C is analogous to the “delete edit,”

and the removal of an infinitesimal segment of C is analogous to

the “insert edit.” The key difference between string edit distance

[29] and our algorithm is that we allow for a merge operation of

multiple curve segments. Our algorithm is also similar to the

attributed string matching of Tsai and Yu [23]. Other curve

matching methods based on dynamic programming [2], [3], [24]

also use a similar update step to compute the cost. The main

difference in our approach is the use of a fixed template which

keeps the complexity at Oðn2Þ.

3.1 Aligning Closed Curves

The main difference between aligning curve segments and closed

curves is that, in the former, the start points of the two curves C and

C correspond, i.e., s1 is mapped to s1, while in the latter, the start

point correspondence is not known. In order tomatch closed curves,

we need to find the optimal start point correspondence aswell. Note

that it is sufficient to fix a start point s1 on curveC, and then find the

optimal alignments for all possible start points on the curve C. It is

straightforward to see why. Let �
1 be the optimal alignment when

we fix s1 as the start point onC. Let s1 be the optimal start point onC

and s2 be the corresponding point of s2 under
�
1. Instead of s1, if we

now choose s2 as the start point on C, one alignment maps s2 to s2,

and s1 to s1. This alignment is same as �
1, and is the optimal

alignment due to Proposition 2. Hence, we fix the start point on

curve C and find optimal alignments for all start points on C.

Thismay appear to increase the computational complexity by the

number of sample points along the closed curve, i.e., to Oðn3Þ, as in
previous approaches [24], [3], [2]. Heuristics have been used to

reduce the need of having to optimize over n2 starting point

correspondences. For example, Gdalyahu andWeinshall [2] use the

distribution of optimal rotation parameters necessary to align the

first few points to select plausible start point correspondences. The

approaches of Ueda and Suzuki [24] and Milios and Petrakis [3] are

not guaranteed to find the optimal alignment for closed curves. As

noted in [3], the approach by Ueda and Suzuki [24] may not find the

optimal correspondence as only the cost of the best path is stored at

each cell in the dynamic-programming table. Milios and Petrakis [3]

alleviate this problem by storing the top � options at each cell, but

the optimal correspondence is not guaranteed.

The need to find the optimal alignment for each start point

correspondence, in order to ensure that the global minimum of the

functional for aligning closed curves is found is rather restrictive,

but can be resolved by observing that the optimal alignment curves

corresponding to different start points si cannot intersect.

Specifically, let ��
i be the optimal alignment curve from ðsi; 0Þ to

ðsi þ L;LÞ, and ��
j from ðsj; 0Þ to ðsj þ L;LÞ. Then, for any

120 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 25, NO. 1, JANUARY 2003

Fig. 6. (a) Sample handwritten characters in our database. (b) Examples of the
optimal correspondence. The alignment is indicated by numbers, and within each
portion by similar shaped icons. Observe that the matches are intuitive.

s 2 ½si; sj�, the optimal alignment curve from ðs; 0Þ to ðsþ L;LÞ has
to lie between ��

i and �
�
j , and this leads to a significant reduction in

the search space, Fig. 3b. This is similar to the technique used by

Maes [30] for the cyclic string-to-string correction problem. To

capture the cyclic nature of the closed curves, the first curve is

duplicated in the dynamic-programming grid, Fig. 3b, and we

compute the optimal alignment curves

��
i ¼ ð�i1; . . . ; �ikÞ; i ¼ 1; . . . ; n;

where �i1 ¼ ðsi; s1Þ, �ik ¼ ðsiþn�1; smÞ, and k is the number of

points in ��
i . When each optimal alignment curve is computed, the

search space is split into two, which in analogy to binary search

adds a function of logðnÞ to the overall complexity, for a total

Oðn2logðnÞÞ for matching closed curves. Fig. 4 plots the computa-

tional time for aligning both curve segments and closed curves.

3.2 Effect of Scale

Note that, due to the strict use of intrinsic properties, the proposed

curve alignment is invariant to relative rotations and translations of

the two curves. However, the dissimilarity measure is not scale-

invariant because the stretching term in the functional is not scale-

invariant. Methods that rely on using locally scale invariant

measures [2] often have difficulty matching curves with the same

but largely unequal sized parts. Thus, the determination of scale

requires a consideration of the entire curve. This can be done by

finding a global optimal scale parameter
 for one curve tomatch the

other and then minimizing over several scales. Since this is

asymmetric, we will instead scale up one curve by
ffiffiffi

p
and scale

down the other curve by the same factor to reach a common curve,

giving rise to the functional

�
½g� ¼
Z �� ffiffiffi

p

ds� 1ffiffiffi

p ds
��þR

��d�� d�
��: ð12Þ

The optimal scaling factor
opt is then computed as argmin

 �
½g�,

which can be computed using gradient descent. Note that only a

small range of
, bounded by the ratios of the largest and smallest

sampling intervals, needs to be examined, since the functional is

strictly increasing beyond this rather limited range.

3.3 Effect of Sampling on Curve Matching

Our approach is robust to the absolute sampling of the curves, i.e.,

when sampling rates are say doubled or tripled on both curves.

However, a differential in the relative sampling rate of aligned
curve segments can affect the optimal correspondence and the

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 25, NO. 1, JANUARY 2003 121

TABLE 1
Top 20 Matches for Two Handwritten Digits

We used 90 handwritten digits ð15xf2; 3; 6; 7; 8; 9gÞ in this experiment. The number next to the matching character is the Euclidean distance to the query.

TABLE 2
Comparison of Several Methods for Handwritten Character Recognition

The top five matching categories for a few sample characters using different distance measures are shown. The number next to each match is the cost of the match in
each case. The left table shows results of using the Euclidean distance measure. The first six rows show examples where the character is correctly recognized, whereas
the last two rows show examples where the top match is incorrect. The table in the middle shows some typical examples where recognition using edit distance, Hungarian
assignment based on shape context [31], ICP [32], and Softassign [33] gives incorrect results. Edit distance underperformed in this task mainly due to the difficulties
discussed in Section 2.4. Shape context [31] uses global features and has problems differentiating between characters like “U” and “V.” Both ICP [32] and softassign [33]
allows partial matches, leading to confusion between characters likes “1” and “L.” The table on the right summarizes the recognition rates for all the methods.

Fig. 7. Original shapes and the computed averages (bold). Observe that in all

cases, the average curves are meaningful, and are recognizable as an instance of

that category.

match cost. Fig. 5 illustrates this effect in two cases. In the first case,
Fig. 5a, the sampling rates are only somewhat different, the
correspondence is good and the cost is affected only slightly. The
correspondence and, hence, the cost can be improved by a
postprocessing step by “fine-tuning” the computed alignment
curve points by allowing them to move along the horizontal and
vertical grid-lines to minimize the match cost, Fig. 5c. In the second
case, when the sampling rate is substantially different along
corresponding curve segments, the alignment and costs are
affected more significantly, Fig. 5b. This effect is best handled by
resorting to larger templates, requiring additional computational
effort. As a practical alternative the curves can be resampled a
priori, to ensure that the sampling rates are not drastically
different.

4 APPLICATIONS OF CURVE ALIGNMENT

In this section, we illustrate that the proposed curve alignment is

fairly generic and useful across many applications.

4.1 Handwritten Character Recognition

Handwritten character data is typically acquired by sampling the

trace of the writer’s pen and is represented by a pair of coordinates

ðx; yÞ, resulting in a curve segment, Fig. 6a. Handwritten character

data is thus inherently one-dimensional in nature, rendering curve

alignment as a natural choice to measure character similarity.

Fig. 6b shows a few examples of the alignment found between two

characters using our framework. We use a database of six different

digits with 15 samples of each for a total of 90 items. Matching is

done between each pair of digits in the database. The top 20

matches of a few sample digits are shown in Table 1. Note that in

most cases the top matches are other samples of the same digit (one

error only). This is a typical result.
Working with a large database necessitates the use of character

prototypes [6], [5] to reduce the number of matches required. The
prototype can either be a representative sample [5] or an average
curve [6].Weusean“average”character as theprototype, Section4.2.
The cost of matching each “unknown” character to all the average
characters is computed and the nearest neighbor is chosen as the
correct match. We used a database of 327 digits and alphabets (34
categories) written by one subject. The top five matching prototypes
for a few sample characters are shown in Table 2. We consider the
character to be correctly recognized if the top matching prototype is
correct, i.e.,we say a “2” is recognized correctly if the topprototype is
“2.” Out of 327 characters, 323 were correctly recognized using the
Euclideanmeasure, leading to a recognition rate of 98.8 percent. The
performance of other methods was significantly lower, see Table 2.

4.2 Curve Averaging and Morphing

The ability to find the average of a set of curves has several
applications in computer vision including prototype formation,
shape morphing, and computational atlases. We now show that
using the curve alignment framework, the average curve can be
computed by averaging the intrinsic properties of the corresponding

122 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 25, NO. 1, JANUARY 2003

Fig. 8. Two examples of deforming a shape outline to another. The original shapes are shown in bold. Observe that the intermediate shapes are meaningful.

Fig. 9. This figure illustrates the performance of curve alignment in the presence of affine transformation (left column), viewpoint variation (middle column), and

articulation and deformation of parts (right column). Curve matching gives the intuitive correspondence in all cases, i.e., salient parts correspond.

curve subsegments. Fig. 7 shows the average curve for fish outlines
and handwritten digits. Observe that in each case the average curve
maintains the general shape as well as the local features and their
relationships, and is recognizable as an instance of that category.
Note that the average handwritten characters were used as
prototypes in the handwritten character recognition experiments
of Section 4.1 with excellent results.

The proposed curve alignment framework can also be used to
generate a morphing sequence to “interpolate” between two
shapes that are not very dissimilar. The main idea is to first find
the optimal correspondence between the two shapes, and then
deform each curve segment to its corresponding segment, using a
weighted average of their intrinsic properties. Fig. 8 shows
examples of morphing one type of fish to another, and a cat to a
kangaroo. Observe that all the intermediate shapes are meaningful
in these examples, although in some examples self intersections
can occur. This approach is only appropriate for somewhat similar
shapes, and the general case requires a notion of the interior, e.g.,
as provided by the medial axis.

4.3 Object Recognition

We now examine the effectiveness of curve alignment for matching
shapes which are represented by their outlines. For curve
alignment to be effective in object recognition, it has to perform
well under a variety of visual transformations. Fig. 9 shows that
the curve matching algorithm works well in the presence of some
of the commonly occurring visual transformations like affine
transformations, modest amounts of viewpoint variation, articula-
tion, stretching, and bending of parts. Fig. 10 examines the effects
of partial occlusion. Curve matching gives the intuitive correspon-
dence in the presence of occlusion, when the spatial arrangement
of parts is not significantly affected by the occlusion, Fig. 10 (top

row). On the other hand, it may fail when occlusion affects the
overall part structure of the shape, Fig. 10 (bottom row).

We examine the effectiveness of the proposed edit distance
between shape outlines on the database of shapes created for
testing the compression rates for MPEG7 [34]. The database
consists of 70 categories with 20 shapes in each category for a
total of 1,400 shapes. The performance is measured by counting the
number of correct matches in the top 40 matches [34]. Because our
approach is not invariant to the “flip” transformation, for each pair
of shapes, we compute the optimal alignments for the shapes
before and after flipping one of the shapes, and take the minimum
of the two as the match cost. The retrieval rate for our approach is
78.17 percent. The currently published best performing approaches
use curvature scale space [35], correspondence of visual parts [34],
and matching shape contexts [36], with retrieval rates of 75.44
percent, 76.45 percent, and 76.51 percent, respectively, see Table 3.

Finally, we have applied our curve alignment method to the
GESTURE data set created by Milios and Petrakis [3], who also
provided us with their results and human similarity judgements
data. In their paper, they evaluated four methods, namely, Fourier
descriptors [37], sequential moments [38], geometric moments [39],
and their method based on dynamic programming [3]. Human
similarity judgements on the top 50 matches were used to judge
whether a match is correct and evaluated using a precision-recall
diagram.4 We augmented these results by applying shape contexts
using the Hungarian method [31] and curve alignment to this data
set. The results for all methods are plotted using the precision-
recall diagram, Fig. 11. Observe that the proposed method
significantly outperforms all the competing methods.

A key advantage of the proposed curve alignment for
recognition tasks is that it can be used in practical applications
due to its high efficiency and excellent recognition rates, even
under a moderate range of visual transformations. The main
drawback of using this approach when applied to recognition of
shapes is that the curve-based representation does not explicitly
capture the regional aspect of a shape and is sensitive to the
presence and spatial arrangement of parts, Fig. 10. Nevertheless,
this framework is useful for a variety of applications involving
indexing into and organizing a database of shapes.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 25, NO. 1, JANUARY 2003 123

Fig. 10. This figure illustrates the performance of curve alignment in the presence of partial occlusion. Top row shows two examples where curve matching gives the

intuitive correspondence. Observe that the effects of occlusion is limited to the affected parts. Bottom row illustrates that curve alignment may give the unintuitive

correspondence in presence of occlusion that affects the overall part structure. Bottom left: The correspondence between the fishes is intuitive, with the tails, heads, and

the fins correctly matched. Bottom right: Observe the effect of occluding part of the tail of the fish on the right. The occlusion, though small, affects the part structure of the

shape, and gives the wrong correspondence, with the head of the fish on the left matched to a fin on the fish on the right.

TABLE 3
The Retrieval Rates for MPEG7 Shape Database

4. Precision is the percentage of similar shapes retrieved with respect to
total number of retrieved shapes. Recall is the percentage of similar shapes
retrieved with respect to total number of similar shapes in the database.

5 CONCLUSION

We have presented a novel method for finding the optimal
correspondence between two curves based on the concept of an
alignment curve. The optimal alignment is then used to define a
metric of dissimilarity between two shapes. We have developed a
fast dynamic-programming algorithm for finding the optimal
alignment between pairs of curve segments and also pairs of closed
curves. The exclusive use of intrinsic properties in our formulation
leads to invariance under rigid transformation. Our experiments
show that curve alignment is robust under a variety of visual
transformations.We have illustrated the usefulness of the alignment
curve approach for a variety of computer vision applications
including handwritten character recognition, prototype formation,
shape morphing, and object recognition.

ACKNOWLEDGMENTS

B. Kimia acknowledges the support of the US National Science
Foundation (NSF) grants IRI-0083231 and BCS-9980091. P. Klein
acknowledges the support of NSF Grant CCR-9700146. The authors
are grateful to Farzin Mokhtarian for providing the fish outlines
and Jayashree Subrohmania at IBM Pen Technologies group for
providing the handwritten character data.

REFERENCES

[1] N.J. Ayache and O.D. Faugeras, “HYPER: A New Approach for the
Recognition and Positioning of Two-Dimensional Objects,” IEEE Trans.
Pattern Analysis and Machine Intelligence, vol. 8, no. 1, pp. 44-54, 1986.

[2] Y. Gdalyahu and D. Weinshall, “Flexible Syntactic Matching of Curves and
its Application to Automatic Hierarchical Classification of Silhouettes,”
IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 21, no. 12, pp. 1312-
1328, 1999.

[3] E. Milios and E.G.M. Petrakis, “Shape Retrieval Based on Dynamic
Programming,” IEEE Trans. Image Processing, vol. 9, no. 1, pp. 141-146, 2000.

[4] C.C. Tappert, “Cursive Script Recognition by Elastic Matching,” IBM
J. Research Development, vol. 26, no. 6, pp. 765-771, 1982.

[5] S. Connell and A.K. Jain, “Learning Prototypes for On-Line Handwritten
Digits,” Proc. Int’l Conf. Pattern Recognition, pp. 182-184, 1998.

[6] B. Wirtz, “Average Prototypes for Stroke-Based Signature Verification,”
Proc. Int’l Conf. Document Analysis and Recognition, pp. 268-272, 1997.

[7] I. Cohen, N. Ayache, and P. Sulger, “Tracking Points on Deformable
Objects Using Curvature Information,” Proc. European Conf. Computer
Vision, pp. 458-466, 1992.

[8] H.D. Tagare, “Shape-Based Nonrigid Correspondence with Application to
Heart Motion Analysis,” IEEE Trans. Medical Imaging, vol. 18, no. 7, pp. 570-
578, 1999.

[9] J.T. Schwartz and M. Sharir, “Identification of Partially Obscured Objects in
Two and Three Dimensions by Matching Noisy Characteristic Curves,”
Int’l J. Robotics Research, vol. 6, no. 2, pp. 29-44, 1987.

[10] S. Umeyama, “Parameterized Point Pattern Matching and its Application to
Recognition of Object Families,” IEEE Trans. Pattern Analysis and Machine
Intelligence, vol. 15, no. 2, pp. 136-144, 1993.

[11] R. Basri, L. Costa, D. Geiger, and D. Jacobs, “Determining the Similarity of
Deformable Shapes,” Vision Research, vol. 38, pp. 2365-2385, 1998.

[12] L. Younes, “Computable Elastic Distance between Shapes,” SIAM J. Applied
Math., vol. 58, pp. 565-586, 1998.

[13] M. Kass, A. Witkin, and D. Terzopoulos, “Snakes: Active Contour Models,”
Int’l J. Computer Vision, vol. 1, no. 4, pp. 321-331, 1988.

[14] D.W. Jacobs, D. Weinshall, and Y. Gdalyahu, “Classification with
Nonmetric Distances: Image Retrieval and Class Representation,” IEEE
Trans. Pattern Analysis and Machine Intelligence, vol. 22, no. 6, pp. 583-600,
2000.

[15] A. Tversky, “Features of Similarity,” Psychological Rev., vol. 84, no. 4,
pp. 327-352, 1977.

[16] T.B. Sebastian, P.N. Klein, and B.B. Kimia, “Shock-Based Indexing into
Large Shape Databases,” Proc. Seventh European Conf. Computer Vision, May
2002.

[17] S. Brin, “Near Neighbor Search in Large Metric Spaces,” Proc. Int’l. Conf.
Very Large Databases (VLDB), pp. 574-584, 1995.

[18] J. Uhlmann, “Satisfying General Proximity/Similarity Queries with Metric
Trees,” Information Processing Letters, vol. 40, pp. 175-179, 1991.

[19] P. Yianilos, “Data Structures and Algorithms for Nearest Neighbor Search
in General Metric Spaces,” ACM-SIAM Symp. Discrete Algorithms, pp. 311-
321, 1993.

[20] A. Marzal and E. Vidal, “Computation of Normalized Edit Distances and
Applications,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 15,
pp. 926-932, 1993.

[21] K.S. Arun, T.S. Huang, and S.D. Blostein, “Least-Squares Fitting of Two 3-D
Point Sets,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 9, no. 5,
pp. 698-700, 1987.

[22] H.C. Liu and M.D. Srinath, “Partial Shape Classification Using Contour
Matching in Distance Transformation,” IEEE Trans. Pattern Analysis and
Machine Intelligence, vol. 12, no. 11, pp. 1072-1079, 1990.

[23] W.H. Tsai and S.S. Yu, “Attributed String Matching with Merging for Shape
Recognition,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 7,
no. 4, pp. 453-462, 1985.

[24] N. Ueda and S. Suzuki, “Learning Visual Models from Shape Contours
Using Multiscale Convex/Concave Structure Matching,” IEEE Trans.
Pattern Analysis and Machine Intelligence, vol. 15, no. 4, pp. 337-352, 1993.

[25] H.D. Tagare, “Deformable 2-D Template Matching Using Orthogonal
Curves,” IEEE Trans. Medical Imaging, vol. 16, no. 1, pp. 108-117, 1997.

[26] H. Sakoe and S. Chiba, “Dynamic Programming Algorithm Optimization
for Spoken Word Recognition,” IEEE Trans. Acoustics, Speech, and Signal
Processing, vol. 26, no. 1 pp. 43-49, 1978.

[27] R.E. Bellman and S.E. Dreyfus, Applied Dynamic Programming. Princeton
Univ. Press, 1962.

[28] T. Sebastian, P. Klein, and B. Kimia, “Curve Matching Using Alignment
Curve,” Technical Report LEMS 184, LEMS, Brown Univ., 2000.

[29] R.A. Wagner and M.J. Fischer, “The String-to-String Correction Problem,”
J. ACM, vol. 21, pp. 168-173, 1974.

124 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 25, NO. 1, JANUARY 2003

Fig. 11. Left: The result of matching some representative gestures. Observe that the correspondences is intuitive in all cases. Right: Precision-recall diagram for the
GESTURE data set. The results of Fourier descriptors, sequential moments, geometric moments, and nonoptimal dynamic programming approaches are from the
original paper. We have added two additional results, shape contexts and our technique to this data set. Observe that the proposed approach outperforms all the
competing methods.

