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ON ALL KINDS OF HOMOGENEOUS SPACES
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ABSTRACT.   Several open questions on homogeneous spaces are answered.

A few of the results are:

(1) An «-homogeneous metric continuum, which is not the circle, is strongly

«-homogeneous.

(2) A 2-homogeneous metric continuum is locally connected.

(3) If A1 is a homogeneous compact metric space or a homogeneous locally

compact, locally connected separable metric space, then X is a coset space.

(4) If G is a complete separable metric topological group with is «-con-

nected, then G is locally «-connected.

1. Introduction. At the topology conference at the University of Wisconsin

in 1955 Burgess [3] asked the following questions.

(1) Does there exist a continuum different from a simple closed curve which,

for some positive integer n, is «-homogeneous but not strongly «-homogeneous?

(2) Is every 2-homogeneous compact metric continuum locally connected?

(3) Are there continua for which to each pair of their points there exists a

unique homeomorphism carrying one of the points onto the other?

The paper will give almost complete answers to all of these questions in the

metric case (although only (2) mentions the word metric, all of Burgess' work on

homogeneity is on metric spaces). The answer to (1) will be no. The answer to

(2) will be yes.  It will also be shown that a strong type of 1-homogeneity gives

an affirmative answer to (2). It seems like the answer to (3) should be no.  It is

shown that if a space satisfies the condition of (3) then it is an abelian topological

group and applying structure theorems in [9], it is shown that it cannot be finite

dimensional.

The main tool of this paper is Theorem 2.1 of [5]. This theorem gives a

condition for a space to be a coset space of a topological group, and as a direct

result of it, we can prove that compact metric homogeneous spaces and locally

compact locally connected separable metric spaces are cosets spaces of their

group of homeomorphisms with the C — 0 topology.  This answers questions raised

by the work of Ford [6], Mostert [10] and Ungar [12].  As a matter of fact in

these last three references, two types of homogeneity were defined in order to
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394 G. S. UNGAR

guarantee that certain homogeneous spaces were coset spaces and yet none of the

above were able to show, as Wu [16] did, that the pseudo arc is a coset space.

As a consequence of Effros' theorem we will also give a proof of a theorem

which states that a complete separable metric topological group which is «-con-

nected is locally «-connected. This overlaps the work of Rickert [11] for the

case n = 0.

2.  Definitions and notations.

(2.1). Notation. Let X be a topological space.

(a) Fn(X), the nth configuration space of X, will be X" - {(xj, . . . , x„)

G X" \x¡ = Xj for some i j= j}.

(b) H(X) will denote the group of homeomorphisms of X onto itself. If we

refer to H(X) as a topological space we will assume that it has the compact open

topology.

(c) Hx = {hEH(X)\h(x) = x}.

(d) Bk+ x will be the unit k + 1 ball in k + 1 space and Sk will be its

boundary.

(2.2).  Definition.   A space X is n-homogeneous- [strongly n-homogeneous]

if, given any two points (xv ..., x„) and (yx, . . . , yn) of Fn(X), there

exists a homeomorphism ft of X onto itself such that ftQJx,) = \Jy¡ [h(x¡) = y¡].

A space is homogeneous if it is 1-homogeneous.

(2.3).  Definition. A topological transformation group (G, X) is a topo-

logical group G together with a topological space X and a continuous map (g, x)

—+ gx of G x X into X such that Q*ft)x = ¿?(ftx).  A topological transformation

group (G, X) is polonais (polish) if both G and X axe polonais, i.e. they are

separable and metrizable by a complete metric.  If (G, X) is a topological trans-

formation group and x G X, let Gx be the isotropy subgroup of G, i.e.

{g E G\gx = x}. A topological transformation group is transitive if for every

two points x and y of X there exists gEG such that gx = y.

(2.4).   Remarks, (a) LocaUy compact separable metric spaces are

polonais.

(b) H(X) acts on F"(X) as follows:  hx(xx, . . . , xn) —► (ft(x(.).

ft(x„)) and if we refer to H(X) acting on it, this action will be understood.

(c) X is strongly n-homogeneous iff H(X) acts transitively on Fn(X).

(2.5).  Definition. A topology r for H(X) wül be reasonable if

((H(X), r), X) is a topological transformation group and the map <¡>x: H(X)¡HX

—*■ X defined by <¡>x: gHx —*g(x) is a homeomorphism. Note that for H(X) to

have a reasonable topology it is necessary that X be homogeneous.

(2.6).   Definition.   A space X is Cn iff any map /: Sk —* X [k < n}

has an extension from Bk+ x into X.   It is LC" if given any point x G X and any
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neighborhood U of X there exists a neighborhood V of x such that any map /:

Sk —► V, k < n, has an extension from Bk + X into U.

Note ¿C° is the same as locally arcwise connected.

(2.7).   Conventions.   (1) Map = continuous function.

(2) Continuum = compact connected Hausdorff space.

3.  Everything else. We are now in a position to state Theorem 2.1 of [5].

Let (G, X) be a polonais transformation group.  Then the following are

equivalent.

(1) For each x in X the map gGx —► gx of G/Gx onto Gx is a homeomor-

phism.

(2) Each orbit (i.e. Gx) is a Gs in X.

If (G, X) is transitive then the orbits are all of X and hence certainly GB 's

in X. Hence we have

(3.1).   Theorem.    // (G, X) is a transitive polonais transformation group

then for each x in X the map </>x : gGx —► gx of G/Gx onto X is a homeomor-

phism and hence the map Tx: g —>gx of G onto X is an open map.

The above will be clearer if we note that the following diagram commutes

and that the natural map G —► G/Gx is always an open map.

T* X

G—>X

I  /*.
G/G,

Before answering Burgess' questions, we will prove the results mentioned in

the last half of the Introduction.

(3.2).  Theorem.  IfX is a homogeneous compact metric space, then the

C - 0 topology is reasonable for H(X).

Proof.  This follows from (3.1) because H(X) with C — 0 topology has a

complete metric and is a separable topological group acting continuously on X.

(3.3). Theorem. If X is a homogeneous locally compact locally connected

separable metric space, then the C -0 topology is reasonable for H(X).

Proof.  Let X be the one point compactification of X. X is compact

metric, hence H(X) = H is separable complete metric and H(X) is homeomorphic

to Hx [2] which is closed in H. Therefore H(X) with the C - 0 topology is

separable complete metric and hence we could apply (3.1) to get our result.

Before proving the next theorem we need the foUowing "weU-known" lemmas.
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396 G. S. UNGAR

(3.4).   Lemma [15]. A space X is LCn iff (X, x)(I"- s"~^ is LC° for all

x in X.

(3.5).   Lemma [14].  An arcwise connected space X is LC° iff the map F:

X1 -> X x X, defined by F(a) = (a(0), a(l)), is open.

(3.6). Lemma [1]. If G is a topological group and X is locally compact,

then Gx is a topological group with multiplication defined by a • ß(x) = a(x) •

ß(x).

(3.7). Theorem . Let G be a C" connected separable complete metric

group, then G is LC".

Proof.   By (3.5) we need only show that if X = (G, e/7"-5"-1) then the

map F: X1 —► X x X, defined by F(a) = (cv(0), a(l)), is open.  However, by

(3.6), X and X1 axe topological groups which are complete separable metrics and

it is easily seen that Fis a homomorphism.  Hence by [8, Corollary 6, §2] or

by noting that homomorphisms induce group actions and applying (3.1) we get

that F is open as desired.

Now we will give the answers to Burgess' questions.

(3.8). Theorem .   // X is an n-homogeneous compact metric space or locally

compact locally connected separable metric space such that Fn(X) is connected,

then X is strongly n-homogeneous.

Proof.   In both cases H(X) is a complete separable metric topological group.

Let G be the symmetric group on {1, . . . , «}. If G has the discrete topology,

then H(X) x G is a complete separable metric topological group with multiplica-

tion defined by (hx,gx) • (ft2, g2) = («,A2, g2gx)- Define an action of H(X) x

G on F"(X) as follows:

(h,ir)(xx, . . . ,xn)-^(h(xn{x)), . . . ,h(xn,n))).

It is easily seen that this is a continuous action.  If A" is «-homogeneous, then this

action is transitive. Hence, by (3.1), T,Y       Y y H(X) x G —*■ Fn(X) is an

open map for every (xx, . . . ,xn) E Fn(X). If g E G we then have that

T(r       v \W) x g)) is °Pen m F"(X).  For simplicity call this set Ag.   Since

the above action is transitive, \jAg = F"(X). However, Ag is an orbit of the

action of H(X) on Fn(X). That is, Ag = H(X)(xg(x), . . . , xg,n)). However,

orbits are either disjoint or equal and since Fn(X) is connected, all of the orbits

must be equal to Fn(X). Therefore X is strongly «-homogeneous.

(3.9). Lemma. Fn(X) is connected if no set ofn - 1 points separate X.

Proof.  The proof will be by induction. FX(X) = X is connected iff the
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empty set does not separate X.   Assume the theorem is true for n = k.   Consider

the case for n = k + 1.  Let n: Fk + X(X) —*■ Fk(X) be the projection on the first

k coordinates n~x(ax, . . . , ak) = ax x • • • x ak x (X - \J¡L x a¡). If no k

points separate X, then 7r_1(ai > • • • > ak) is connected. The map n is open and

by induction Fk(X) is connected.  An elementary theorem in topology states if

/ is an open map from a space Y onto a connected space Z such that each point

inverse is connected, then Y is connected.  From the above we have that rr satis-

fies the conditions of this theorem and hence Fk + x(X) is connected.

(3.10).   Corollary.   If X is an n-homogeneous compact metric space or

locally compact locally connected separable metric space such that no set of

n - 1 points separates X, then X is strongly n-homogeneous.

(3.11).   Theorem.   If X is an n-homogeneous compact metric continuum,

then X is strongly n-homogeneous or X is the circle.

Proof.   The theorem is obviously true for n = 1. Hence if n > 2 we have

either that no set of n — 1 > 1 points separates X and hence by (3.10), X is

strongly n-homogeneous or some set of n - 1 points separates X.  However,

[4, Theorem 13] states that if a homogeneous compact metric continuum is

separated by some countable set, then it is a circle. Hence the proof is complete.

(3.12). Theorem.   If X is a 2-homogeneous metric continuum then X is

locally connected.

Proof.   By (3.11) we will assume that X is strongly 2-homogeneous. Again

we will set things up so that we could use (3.1).

Since X is compact metric, H(X) is complete metric and Hx is closed in

H(X) for each x in X, therefore Hx is also complete metric.  Since X is strongly

2-homogeneous Hx acts transitively on X - x. We now have the hypothesis of

(3.1) satisfied.  Since (Hx , X - x) is a transitive topological transformation group,

Hx is complete separable metric and X - x is locally compact metric, hence

complete metric. Therefore, we have that, for any y G X - x, the map Tv : HY

—► X - x defined by Tyig) = g(y) is open.

The openness of T at the identity is equivalent to the following condition.

(1) Given any two points x and y of X and any e > 0 there exists 5 > 0

such that if z GN(y, 5) then there exists a homeomorphism h such that h(x) =

x, h(y) - z and d(h, id) < e (d is the sup metric on H(X)).  Note that although

d may not be the complete metric used in (3.1) the hypothesis yields that the d

topology is the same as a topology generated by a complete metric.

We see that (1) is true since Ty(Ne(id)) is open in X - x.

In order to complete the proof let U be open in X and let C be a component
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of U and let y G C.   There exists e > 0 such that N(y, 4e) C U.   Let X be a

point different from y such that x is in the same component of A^x, e) which

contains z. (It is easy to show that such points exist.) Now by condition (1)

there exists 5 > 0 such that, if z GN(y, §), then there exists a homeomorphism

h such that h(x) = x, h(y) = z and d(h, id) < e.  I claim that N(y, 6) C C.

This is easy to see since x and y are in a connected set of diameter less than 2e

and if z GN(y, 5) the homeomorphism given by (1) takes this connected set to

one which contains x and z and no point gets moved more than t. Hence x and

z are in a connected set in N(z, 4e).  Therefore x, y and z are all in the same

component of U as desired.

(3.13).   Definition.   A space X is horneo topically homogeneous if given

any two points x and y of X there exists a homeomorphism h of X onto itself

which takes x to y and which is homeotopic to the identity.

(3.14).   Theorem .  If X is a homeotopic homogeneous metric continuum,

then X is locally connected.

Proof.   By [13, (3.5)], X x X is strongly n-homogeneous for aU n. Hence,

by (3.12), X x X is locally connected, which implies that X is locally connected.

Finally, we come to question (3) of Burgess. A partial answer will follow

from the next theorem which is another application of (3.1).

(3.15).   Theorem. Let X be either a compact metric space or a locally

compact, locally connected, separable metric space such that for every pair of

points in X there is a unique homeomorphism of X onto itself which takes one

point to the other.   Then H(X) is homeomorphic to X.

Proof.   Again H(X) satisfies the hypothesis of (3.1). Hence, for each x,

Tx: H(X) —► X is open.  However, the hypothesis of the theorem also implies

that Tx is one-to-one and onto.   Therefore Tx is a homeomorphism.

(3.16). Theorem. If X satisfies the hypothesis of (3.15) then X is an

abelian topological group and the group of topological automorphisms of X is

trivial (i.e. consists of just the identity).

Proof.  That X has the structure of a topological group follows from

(3.15). If we let Lx : X —*■ X be defined by Lx(y) = xy, then we see that, for

any x and y, L    _, is the unique homeomorphism which takes x to y.  For any
yx

x define Ix: X —*■ X by Ix(y) - x~xyx.   Then Ix is a homeomorphism of X

onto itself and / (e) = e.   Therefore Ix is the identity which is Le. Therefore

x~xyx =y for all x and y and hence Cis abelian. Finally if A is any automor-

phism of X again we have A(e) = e so A must be the identity.
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(3.17).   Theorem.   There are no finite dimensional spaces satisfying the

hypothesis of (3.15).

Proof.   If AT is a locally compact locally connected separable metric finite

dimensional space which satisfies the hypothesis of (3.1) then, by (3.16), X is a

topological group and hence by [9, Theorem 4.10.1], X is a Lie group and one

can then show it has a lot of homeomorphisms.

If X is just compact metric and connected then, by [9, Theorem 4.9.3], X

is locally the product of a compact totally disconnected group and a Euclidean

neighborhood and again one can show it has a lot of homeomorphisms.

Note that (3.17) does not use the fact that X is abelian or that the auto-

morphism group is trivial.  I feel that there must be a theorem somewhere in the

literature that would handle the infinite dimensional case.

(3.18).   Interesting trivia.   (1) A compact group G cannot act 2-

transitively on a space unless F2(X) is compact.  This is hardly ever the case.

Proof.  If G acts 2-transitively on X, then it acts transitively on F2(X).

Hence the orbits which are compact must be F2(X).

(2) If a space is 2-homogeneous and admits a nontrivial involution then it

is strongly 2-homogeneous.

Proof.   Let a be the nontrivial involution and let a(a) = ft so that a(b) =

a. Given xx, x2, xx =£ x2.  By the 2-homogeneity there exists a homeomorphism

ft such that ft(Xj U x2) = (a U ft).  If h(xx) = a and ft(x2) = ft, that is okay; if

not, then ah(xx) = a and ah(x2) = ft.   Hence we have shown given any two

points Xj, x2 there exists a homeomorphism g such that g(xx) = a and g(x2) = ft.

This is sufficient for the strong 2-homogeneity of X.

(3) If X x X is 2-homogeneous, then it is strongly 2-homogeneous.

Proof.  This follows from (2) since X x X admits a nontrivial involution.

(4) If X is 2-homogeneous but not strongly 2-homogeneous, then H(X)

contains no elements of even order.

Proof.  This is just like (2).
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