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0. Introduction. On an z-dimensional differentiable manifold M with
Jocal coordinate systems {x‘}?, a tensor field @;* of type (1, 1) such that

0. 1) o/ p = =38/

is called an almost-complex structure. It is a well known fact® that a mani-
fold M with an almost-complex structure @;* always admits a positive definite
Riemannian metric tensor ¢;; such that

(0. 2) 9rsPi P = Yiue

The pair (@', ¢;) satisfying (0. 1) and (0. 2) is called an almost-Hermitian
structure and the manifold M with the structure (@’ ¢;;) is called an almost-
Hermitian manifold.

Let M be an almost-Hermitian manifold, then a differential form ¢ =
@udx’dx’, where @; = @,¢,;, is associated to the structure. If the form ¢
is closed, the structure is called an almost-Kihlerian structure. In this case,
‘the tensor @;; is harmonic of order two.

On the other hand, A.Frolicher? proved that there exists an almost-
.complex structure on the six dimensional sphere S°. And T. Fukami and S.
Ishihara® proved that the structure on S°is an almost-Hermitian one satisfying

ithe following relation
0. 3) V@i + Vipu = 0,
‘where and throughout this paper vy, denotes the operator of covariant de-
rivative with respect to the Riemannian connection.

The last equation expresses the fact that the tensor ¢;; is a Killing tensor
of order two.®
In my previous paper,” I treated almost-analytic vectors in almost-

1) This paper was prepared in a term when the present author was ordered to study at
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Kihlerian manifolds. By an analogous method we shall discuss about almost-
analytic vectors in almost-Hermitian manifolds in which the equation (0. 3)
is valid. After preliminaries in § 1, we shall introduce in § 2 almost-analytic
vectors in our manifold. In § 3 it will be obtained a necessary condition in
order that a vector v is a contravariant almost-analytic vector. Similarly
§ 4 is devoted to covariant almost-analytic vectors. In § 5 and §6, integrak
formulas will be obtained in the case where our manifold is compact.

1. Preliminaries. In this paper, by M we shall always mean an #-
dimensional differentiable manifold with a fixed almost-Hermitian structure-
(@4, gi) such that
1. 1) V@i + Vipr = 0,
where @;; = @;9,;,. We shall call such a manifold K-space, for con-
venience.

By (0. 1) and (0. 2), @;; is skew symmetric with respect to j and 7. By
(1. 1), i@y is also skew symmetric with respect to all indices.

Transvecting (1. 1) with ¢’%, it follows that
(1- 2) Vr¢rt = 0.

In this section we shall use (1. 2) but shall not use (1.1), so the results:
which will be obtained in this section are true in almost-Hermitian manifolds.
with the relation (1. 2).

Let Riu" be the Riemannian curvature tensor i. e.

Ris" = 0u{l} — o5lwt + l&} {5} — (51 &),
where 9, = 9/9z', and put
Ry = R,s's  Rujn = R’ 9
and

1
1. 3 X = 7¢qupqij¢ki’

where ¢" = @,7g"".
Applying the Ricci’s identity to ¢,", we obtain the identity
ViVi@" — ViV = Ri"@) — R/ @,"
Transvecting the last equation with ¢’* and using (1. 2), we find
VTVJ'¢rh = Rkjrh¢kr + Rjr¢rh-

As " is skew symmetric with respect to k£ and r, we get

r 1 -
V'V = 7¢qupajh + R/ @.",

from which we obtain
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1. 4) V'ViPrn = %¢ZWRMM + R
A vector field v is called a contravariant almost-analytic vector or simply
an analytic vector if its contravariant components satisfy the equations
1. 5) 'f¢.fi =1'v,9;' — ¢,/ v,0' + @,'vv" =0,
where .f is the operator of Lie derivative.

A vector field u is called a covariant almost-analytic vector or simply
a covariant analytic vector if its covariant components satisfy the equations

1. 6) Vi@ u) = u,vip; + @, V.u.
LEMMA 1. 1.8 In a compact almost-Hermitian manifold M in which
the equation (1. 2) is valid, if scalar functions f and g satisfy the equation
vif = ¢17Vrg,
then the functions are both constant over M.
Let v be an analytic vector, # a covariant analytic vector and put
— l —_ l T
g = wv' and f= @, uv,
then by virtue of Lemma 1. 1 and definitions, we get easily the following
THEOREM 1. 2. In a compact almost-Hermitian manifold M in which

the equation (1. 2) is valid, the inner product of an analytic vector and a
covariant analytic vector is constant over the whole M.

From (1. 6) we have

17 (Vs — Vi@ Dur = @' Vitts — @ Vsu,
for a covariant analytic vector ». And again from (1. 6) we have
(1- 8) VJ(¢irur) = Vl(¢jrur) - ¢jTV£ur + ¢jTVru£-

Now we shall define a vector field z by the equation
% = @;'u,
for any vector field #, then it is equivalent to define
= —op'u.
Thus (1. 8) becomes the following form :
1.9 Vi — Vit = @5 (Ve — viu,)”.
The equations (1. 6), (1. 7) and (1. 9) are equivalent to each other.

8) S. Tachibana [5].
9) In (1.9), ¥V may be replaced by a.
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By transvection (1. 6) with ¢’* we get easily
1. 10) v'a, = 0.
By virtue of (1. 9) and (1. 10) we have

THEOREM 1. 3. In an almost-Hermitian manifold M in which the equa-
tion (1. 2) is valid, if a covariant analytic vector u is closed i.e. Vu; = Viu;,

then u is harmonic.

2. Identities. In the following we suppose that the manifold M is al-
ways a K-space, that is, (1. 1) holds good.
From (1. 1) and (1. 4), we get directly

, 1 r
2. 1) V Ve®Pi = — ‘2“ ¢quMM — R,

If we notice the skew symmetry with respect to j and 7 in (2. 1), we see

that
R;'T‘?’ri + Rir¢r]’ =0,

from which we get
(2. 2) R..p/®9’ = Ry
In the next place, from (1. 1) we have
ViPii = ViPrj-
Transvecting the last equation with @* and taking account of (0. 1) and
(0. 2), we find

(Vi) = 0.
If we operate y, to the last equation, then we have easily
(Vi@i)V,9" = — (v, Vip;)e".
By the Ricci’s identity and skew symmetry of @*), after some calculation,
we get
(2 3) (Vt¢kj)Vr¢kj = ;"‘t -2 Rfr + Rrh

where R%; is defined by (1. 3). As the left hand side is symmetric with
respect to ¢ and r, we see that

(2- 4) R?‘r = ti
holds good. Consequently (2. 3) becomes
(2. 5) (Vi@)V,9* = R, — RY,.

Hence we have

THEOREM 2. 1. In a K-space M, the inequality

Rji'vj'vi Z Rj{'{)jvi
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is valid for any vector field v.
As an application of the last theorem, we shall give the following

THEOREM 2. 2.!° If n = 4 and a K-space M is conformally flat, then-
the Ricci’s quadratic form R;v’v' can not be negative definite.

PROOF. From the assumption, the curvature tensor of M has the fol--

lowing form!'"

1
Ryjn = P (9enRs — 9inRii + Rindis — RinJwi)

_ R
-1 (»—2)

(9ir95s — 9n9s)-
Hence we have
R

W=y (PR )

from which it follows that
1 R

(2. 6) R;, — R% = ";:_2_{(” — R, + n—1 9}1]’-
Tf the Ricci’s quadratic form Rj;v'v’* is negative definite, then R < 0. Hence-

(2. 6) contradicts to the Theorem 2. 1.
COROLLARY. If n = 4, there does not exist a K-space of constant cur--
vature with R < 0.
The Nijenhuis’ tensor of an almost-complex structure is defined by
N" = @/(v.p" — vip") — @,/ (vip)" — Vi)V
By virtue of (1. 1), in K-space M, the last ejuation turns to

Nt = —49,'v,p/ .
If we put
2. 7) Njiw = Ny 9rns
then it follows that

Njy = — 4V,2: )P

It is easily seen that Nj;, is skew symmetric with respect to all indices.
Let v be a vector field and define N(v), by the equation

(2- 8) N('U)h = ”ZIL_(Ajvi)thm

10) If the manifold M is compact, the theorem is a direct consequence of Theorem 4.2 in.
p. 80 of K. Yano, and S. Bochner [6].
11) K. Yano [7].



356 S. TACHIBANA

where v'v' = ¢’’v,v'. Then, by virtue of (0. 1), (0. 2), (1. 1) and (2.7), we
have

2.9 N(v), = (v'v") (Vr¢ji)¢hr-
In the next place we shall prepare a lemma which is useful in §6.

From 7; = @,'v;, we have
V'V, = (VV,2)0" + 2V @ )V,0, + 9,V V,v,.

Transvecting 7' = — @,'v' with the last equation and taking account of
(1. 1), (2. 1), (2. 2) and (2. 9), we find

7'V'v,% = o' {V'V,o, + RN — R.v" + 2 N(v),}.
Hence we get the following equation
(2. 10) V'V, — R.@)7' = (V'v,os— R0 )0
+ {2 N(v);, — (R, — R¥)v" | o'
On the other hand, the following theorem is well known.!'?

In a compact orientable Riemannian manifold V,, the integral
formula

[(V'Vius — R )u' + S(u)lde =0
Va
is valid for anmy wvector field u, where S(u) is given by
1 T 8 s 7 T
S(u) = T(V u —vVu ) (Vrus - Vsur) + (V ur)z-

As an almost-Hermitian manifold is an orientable Riemannian one, the
theorem is applicable to our K-space M. If we put v, = u,, then, by virtue
of (2. 10), we get the following

LEMMA 2. 3. In a compact K-space M, the integral formula
(2. 11) f[{var'(}i - R,-"UT + 2 N('o), - (Rﬂ - R’}‘.)vr}v’ +S(5)]d0' =0
M

is valid for any vector field v.

3. Contravariant almost-analytic vectors. Consider an analytic vector
v, then it holds that

(3. 1) L9/ =9'v,9' — @,/'v,v' + @'y =0,
v
which is equivalent to the following equation

(3. 2) V'V, Pn — @5V — @ Vv, = 0.
Operating v’ = ¢"’v, to (3. 2), we have

12) For example, K. Yano [7].
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VO WVepu +U'VV2n — @ V'V — (Ve )Viv. — 9 VY0, = 0.
On taking account of (1. 1), (1. 4) and

1
PV Vo = — —2—¢”“qu¢’%,

we find that the equation
(3- 3) VTVrvi + Rri'vr =0
holds good for an analytic vector v. Hence we have

THEOREM 3. 1. In a compact K-space, if an analytic vector v satisfies

r

Vv, =0, then it is a Killing vector.

In an z-dimensional Riemannian manfold V,, if a vector field v satisfies
3. 4) ffgu = Vv + Viv; = 299y,
where ¢ is a scalar function, then it is called a conformal Killing vector. A
conformal Killing vector v satisfies

(3' 5) VTVrvi + R7“vr + All—;—& ViVTvT = 0,13)

by virtue of the Ricci’s identity and (3. 4).

Now we suppose that » > 2 and M is compact. If a conformal Killing
vector v is at the same time analytic, then we have from (3. 3) and (3. 5)
viv,v" =0,
from which it follows that y,v” = const.. As M is compact, y,»" = 0 by

virtue of the Green’s theorem. Hence, we have the following

THEOREM 3. 2. If an n-dimensional K-space (n > 2) is compact, a
conformal Killing vector which is at the same time analytic is a Killing
vector.

In V,, a vector field v which satisfies the equation
3. 6) f {j’:} = VjVivh + ann‘vr = sjh‘!"i + Sih‘l"j:

where Y, is a certain vector, is called a projective Killing vector. For a
projective Killing vector v, we have

2 ,
1 V(Vrv ’

V'V, + Ruv" = -

from which we can obtain the following

THEOREM 3. 3. In a compact K-space, if a projective Killing wvector

13) Cf. K. Yano [7].
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is at the same time analytic, then it is a Killing vector.
By an analogous method as in almost-Kihlerian manifold, we have
easily the following

THEOREM. 3. 4. In a compact K-space, the integral
[ Rwvyda
M

is positive or zero for any analytic wvector v.

COROLLARY. If a compact K-space is an Einstein space with R <0,
then there does not exist a non-trivial analytic vector.

In a compact almost-Kihlerian manifold, the equation (3. 3) is a suf-
ficient condition in order that v is an analytic vector. But in a K-space,
the equation (3. 3) is not sufficient. In the next place we shall obtain
another equation which must be satisfied by an analytic vector.

If we operate @*/v, to (3. 2) then we get

?“vi(v'v,. 25 — @/ v.vi — @/ vv,) = 0.
The left hand side is the sum of the following six terms a,, ....-. , dg.

a, = (v v, @5 = — (V) (V@)@ = — N(v),

a, = "'y, @5 = 0.
The validity of the last equality owes to (1. 1), the Ricci’s identity and
2. 4).

a; = — ¢kj(vk,¢’jr)Vrvi = O;
a; = — ¢ 'V, v = V' Vv,
— kj T —
a = — @ (Vk¢’i )Vj'Ur = — N(v),
as = — P9, Vivv, = R0

Hence we have
3.7 v'v,v; + Riv" — 2 N(w), =0
for an analytic vector v. From (3. 3) and (3. 7), we get the following
equation
(3. 8) (R, — R?z)vr = — 2 N(v):.

We shall see in §5 that, in a compact K-space, (3. 3) and (3. 8) con-
stitute a set of sufficient conditions in order that v is an analytic vector.

4. Covariant almost-analytic vectors. In §1, a covariant analytic
vector field was defined. In the present section we shall obtain equations
which must be satisfied by such vectors.

14) S. Tachibana [5].
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For covariant analytic vector v, we have
(v,o" — vip, v, = @,/ V,v; — @,/ V,v,.
On account of (1. 1), the last equation is equivalent to
(4. 1) 2 UTV,.¢” - ¢7;V,vi + ¢¢TVJ"U,- = 0.
As an analytic vector v is defined by (3. 2) i. e.
V'@ — @V — @' Vv, =0,
if we notice the similarity of (4. 1) and the last equation, then we shall be
"~ able to avoid some complication in the following calculation.
If ‘we operate Vv’ to (4. 1), it follows that
2V W,pn + 20VV,04 — @,V + (Ve Vv + @V Ve, = 0.
Hence, by virtue of (1. 1) and (1. 4), we obtain
(4. 2) Vrvr'vt + R’:{UT - 2 th'UT + 3 N('U)t == O.
Next we operate @'y, to (4. 1) and obtain the equation
?“vi2 V'V, 9 — @'V, v + @ v;v,) = 0.
The left hand member is the sum of the following six terms a,,...... y Qg
Making use of the notation in § 3, we have

a = 2 a, a; = 2 a,, a; = as,
a; = as, as = — a as = — as.

Therefore we get

(4. 3) v'v,v; — Rrv" — N(v);, = 0.

From (4. 2) and (4. 3), it follows that the equation

(4. 4) (R,; — R7)v" = 2 N(v),;

holds good. Substituting (4. 4) in (4. 2), we obtain

4. 2) V'V,v; — Rv" + N(v), = 0

for a covariant analytic vector wv.

5. The integral formula. In this section we shall oltain a integral
formula concerning a vector field in a compact K-space and prove a theorem
which gives a necessary and sufficient condition for an analytic vector.

Let v be a vector field and introduce a tensor a(v); by

(5. 1) a(v)je = (f P )Pu

= 'UT(VT‘P;‘Z)‘PM - ¢jT(Vr'Ul)¢Lk — ViUk.
For simplicity, we shall denote a;. instead of a(v);: in the following. a; =
0 is equivalent to the fact that the vector v is an analytic vector.

In the first place we shall compute y’a;, which is the sum of the fol-
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lowing six terms A, ...... , A
A, = (V'v") (V,2,)pu = N(v),
A, = 'Ur(VjVﬂ’jl)‘Puc =(RN — RV,
Ay = V(.2 W o = (R — RIV,

A= — ¢jr(V}Vrvl)¢lk = — Rhv",
A5 = - ¢}r(Vrvl)Vj¢lk = N(v)k,
AG = — V"Vjvk.

Then we get
5. 2) Viag = —(V'Vyou + RE0) + 2 N(v)k.
In the next place we shall compute
V(anv®) = v*Vau + apvivt.
If we substitute (5. 1) and (5. 2) in the last equation, we have after some
calculation,
(5. 3) V(anv") = — (V'vue + Riv") + N(v)eo"
+ " (V)0 — (Vi0e) vk
Now if we put a*(v) = a;a’, then
a’(v) = [V (v, Ypn — @/ (Vv )pu — V,vil
X [v(v,9")p" — @"(v,0")p,* — viv*]
is the sum of the following nine terms B, ..., B,.

B, = V' (V.9 )puv" (v, )ps = (R,, — R0,
B, = — v(v,9,Ypup’(v,0" )" = N(v),7,

B, = — v(v,9,)pav’tt = By,

B, = — ¢/(v,v)puv"(v,@")p," = B,

B; = ¢/ (v,v)pup"(v,0')p" = (v,0)v'v,

B; = ¢,(v,v)@uv’v"* = — " P"(V,00)V,v,
B; = — (v;u)0"(V,9" )p,* = B,

B: = vuip”(v,0" )@ = B,

B, = (Vv'v")V,vx = Bs.
Therefore we get
5. 4) a*(v) = (R,, — R¥)v"0" + 4 N(v),v" — 2 9" (v,0:)V,v,
+ 2 (V,vr)V o
Consequently, from (5. 3) and (5. 4), we have

1 )
vi(anv®) + —Z*a’(v) = — (V'vor + R )"
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+ % {2 N + (R — R%)v' 10",

If M is compact, by integration of the last equation, we have the

following

THEOREM 5. 1. In a compact K-space M, the integral formula

L [(V’V;vk + R.v")o* + —;—a"'('o)]da'
(5. 5) 3 o
=5 [2N@: + R — RO o

is valid for any vector field v, where

a*(v) = apa™, ag = (£9)pu,
1
N(v), = 7{ (vaq)ANmu

and Npu, R}, are given by (2. 7) and (1. 3) respectively.
In §3 we have seen that an analytic vector v satisfies the following
equations
(5. 6) V'V + Ryv" =0,
5.7 2 N(v); + (R,; — R¥)v" = 0.
Now consider a vector field v satisfying (5. 6) and (5.7). Then if M is

compact, we have a*(v) =0 i. e. a;x = 0 by virtue of (5.5), so v is analytic.
Thus we have the

THEOREM 5. 2. In a compact K-space M, a necessary and sufficient
condition in order that a vector v be analytic is that equations (5. 6) and
(5. 7) are both satisfied.

6. Another integral formula. Consider a vector field v and put
() = 2Vv,p' — @/v.0' — @,'V,o)pu
= 29 (v,2,)Pn — @/ (V0 )Pu + V0.

b(v);c = 0 is equivalent to the fact that the vector v is covariant analytic.
For simplicity we write by instead of b(v);. Using the notation in § 5, v/b,

is the sum of the following six terms A, ...... , Ag.
A;,=2A1, A;=2A2, A;=2A3,
A; = A4, A; - A5, A(; = — Ae.

Hence we have
Vb = V'V;oe — Ri0™ + 3 N(v)e.
After some calculation we get
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6. 1) V(bpv®) = (V'Vve — REv)v* + N(w)ot
+ "9 (Vv)v,0 + (Vi) viv.
If we put &*(v) = bub’", then it is the sum of the following nine terms B, ,..-

wes By
B = 4B, B.=2B,, B;= — 2B,
B,= 2B, B; = B;, B; = — By,
Bi=—2B;,, Bi= — By, By, = B,.
Hence we have
6. 2) 0 (v) = 4 (R, — Ri)v™V* + 2(Vv)v'o”
+ 2 9" @ (v ,v0)V, v,
Therefore, from (6. 1) and (6. 2), we get
Vibar) = B@) = (V90 — Ryt
+ (N} — (R — R} "
Thus we have the following

LEMMA 6. 1. In a compact K-space M, the integral formula
6.3 [[1v9m— R + Nok — (R — Rl + %«bﬂ(v)Jlda -0
M
is valid for any vector field wv.

On the other hand, in compact M, we have Lemma 2.3. If we subtract
(6. 3) from the twice of (2. 11), it follows the following

THEOREM 6. 2. In a compact K-space M, the integral formula

[(9.00 = Rt” + Nw) + {2 N — (R, — Riw' | ]v'do
M

=[] v - 25(9) do
Jul 2
is valid for any vector field wv.

In §4 we have seen that a covariant analytic vector v satisfies the
following equations

(6- 4) VTVr'Ui - Rrivr + N('U)i = 07
(6. 5) 2 N(v); — (R, — R3)v" = 0.
Now, let v be a covariant analytic vector, then (6. 4), (6. 5) and &*v) =0

hold good. Hence, in compact M, S(v) =0 .y virtue of Theorem 6. 2. Thus,
from the definition of S(7), the vector ¥ is harmonic. As 7 is also a cova-
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riant analytic vector, v is also harmonic by the same argument. Conversely,
let v and ¥ be both harmonic, then their components satisfy (1. 9) trivially,
so v is a covariant analytic vector. Thus we have

THEOREM 6. 3. In a compact K-space M, a mnecessary and sufficient
condition in order that a vector v be covariant analytic is that v and T
are both harmonic.
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