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The purpose of this paper is at first to characterize a 4n-dimensional affi-

nely connected manifold (with or without torsion) whose restricted homogeneous

holonomy group is the real representation of the complex symplectic group Sp

(n, C) or one of its subgroups. And conversely, we discuss to introduce in a

4n-dimensional manifold an affine connection (with or without torsion) whose

restricted homogeneous holonomy group is the real representation of Sp(n, C)

or one of its subgroups.

The almost complex symplectic manifold is equivalent to an almost qua-

ternion manifold (83), but the natural afine connection (84) in an almost

complex symplectic manifold is different from the natural afine connection

((q, u)-connection by Obata's terminology, [5]) in an almost quaternion mani-

fold2). They coincide if and only if the affine connection is a metric connection

(with or without torsion) with respect to a related Riemannian metric (83,

Definition).

1. Preliminary remarks. Let C2n be a complex 2n-dimensional linear

space. Complex symplectic group Sp(n,C) in C2n is the subgroup of GL(2n,C)

leaving invariant a bilinear form zS<ws+n=zs, s+n-zs+nws 3) where (za)

and (wa) (a=1,......,2n) are vectors in C2n. Therefore if Men is a complex

(2n, 2n)-matrix giving a transformation of Sp(n,C), then M2J2ntM2n=J2n,
where 1M2,z denotes the transpose of M2it and J2, is a matrix such as J=

-E
n0)4). Conversely if Men satisfies the above relation, then it is a matrix

giving a transformation of Sp(n, C).

Next, we consider the real representation of Sp(n, C) in a real 4n-dimen-

sional real linear space R4n.

Put R=(M2710), where Men denotes the complex conjugate of M2n,

1) We shall show that this manifold must he necessarily an "almost complex symplectic

manifold" (3).
2) Cf. Ehresmann C1J: Lihermann {3}, {4}; Ohata {5}.
3) S runs from 1 to n. In this paper we adopt the summation convention.
4) In this paper, EN denctes a unit matrix of degree N.
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then 931 satisfies

(1.1) R-(E2n0)R=(-E2n0), (i2=-1)
and

(1.2) R(J2n0)tR=(T2n0)
If we perform a complex transformation to the matrix R by a complex

regular matrix of the form T=(0 C)then we obtain R=T-1 RT=

M-0) 
and the matrix (0J2n) is transformed into an anti-symmetric

regular complex matrix of the form (J02n 2n)(ta-2=-cr2n). And R' satisfies

tR'(J2nOr)R=(J2n0)
(1.3)

Conversely, we can normalize this matrix R' to a complex matrix R=

0 M2n satisfying (1.2) by a suitable complex transformation.

Therefore, with respect to complex bases, a transformation R' belonging

to the real representation of GL (2n, C) gives a transformation of the real

representation of Sp (n, C) if and only if it satisfies (1.3) where J2n is an anti-
symmetric regular complex matrix.

Suppose a complex matrix

I=1(E2n E2n)1-1=E2n iE2n4n=1/2-ZE 2nZE2.n14=1/2(E2n-ZE2n))'

then we have

M=IanR1(H2=H2r-K21),

where M2n=H2n+iK2n, Hen and Ken being real matrices of degree 2n and

M gives a transformation of the real representation of Sp (n, C) with respect

to real bases. We also have real matrices F and F:

(1.4) F=Ion(iE2n0)I-14n=(0Een),

(1.5) F=Ion(J2n00J2n)=pn-J2n
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These F and F satisfy

1.6) F2=E4n, tF=-F, t(FF)=-(FF)

and on account of (1.1), (1.2), we see that

(1.7) M-1FM=F, tMFM=F.

Conversely, if a transformation M in a real 4 n-dimensional linear space

R4n transforms F, F of (1.4), (1.5) by (1.7), then we can introduce complex

bases in R4n in which M takes the form J1 since M leaves invariant the F,

and we can easily see that the transformation M belongs to the real represen-

tation of Sp (n, C).

2. Characterizations. Let A4n be an affinely connected manifold (with

or without torsion) of class C2 whose restricted homogeneous holonomy group

h0 is the real representation of Sp(n, C) or one of its subgroups. At first,

assume that A4n be simply connected.

If we attach a suitable frame [R9] at a point O of A4n, then the restr-

icted homogeneous holonomy group h0(O) at O transforms the two matrices

F, F with components (1.4), (1.5) according to (1.7). And we attach to each

point P of A4n a frame obtained from [R0] by a parallel translation along
an arbitrary but fixed curve joining O to P. Then we have frames of ref e-

rence on A4n and we see that there exist tensor fields F, F whose components

are given by (1.4), (1.5) respectively with respect to the frames of reference

under consideration. We remark that F is of type (1, 1) and F is of type (0, 2),

that is,

F=(Fih), F=(F1h)5.

These two tensor fields are of maximal rank 4n and of null covariant

derivative by virtue of (1.7).

With respect to general frames of reference, especially with respect to

natural frames of reference, we see that there exist two tensor fields F=

F=(F1h) satisfying

(2.1) F1a Fa'L=-/L, F1h=-Fht, F1aFah=- FhaFai,

Fih being of maximal rank 4n and

5) Throughout this paper, if otherwise stated, the latin indices h, i, 1, k, a, b, c,....run
from 1 to 4n.
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(2.2) vFih=0, VjFih=0,

where v2 denotes the covariant differentiation with respect to the affine con-

nection F,/ of A4n

If A4n is not simply connected, consider the universal covering manifold

A4n of A4n in which there are introduced an affine connection naturally from

that of A4n. Then the conclusion for A4n induces the same conclusion for

A4n.

Assume conversely that there exist two tensor fields F=(Ft), F*=(F11,)

satisfying (2.1) and (2.2). Let h0(O) be the restricted homogeneous holonomy

group at O. Then h0(O) leaves invariant two matrices Fo = (Fh)0, F*0=

(Fih)0 satisfying

(2.3) F0=-E4n, tF*0=-F*0, F0F0*=-t(F0F0*),

where F0, F0* denote the values of F, F0* at O. We can choose a frame [R0]

at O such that the components of Fo=(Fhi)o are given by the form (0Eon-E 2n0)

and further, by a complex transformation of the frame, F0 changes into

00=I-14nF0I4n=(-iE2nO0iZE2n)

Ion being given in 81. With respect to this complex frames, let J*o=(Jih)0

be the matrix corresponding to F' and put

f2
 f3 f4

whene f1,f2,f3 and f4 are complex matrices of degree 2n. Since J0=(Jih)o is

anti-symmetric in i and h, we have

tf1=-f1, tf
4=-f4, tf2=-f3

and further since Jo*=(Z-iZ2) is also anti-symmetric by virtue of

(2.3) we have tf2=f3, and hence f2=f3=0. That is, J0* is of the form

=(f10). Since

Fo=I4nF*0tI4n=1/2(f1+f4 i(f1-f4)-i(f1-f4) f1+f4)



ALMOST COMPLEX SYMPLECTIC MANIFOLDS AND AFFINE CONNECTIONS 179

must be real, we see that f4=f, and hence takes the form

(2)J*0=(f10 0f1)

Consequently we can normalize this into the form (J 0) by a suitable

complex transformation given by a matrix of the form (C 0) under which the

form of J0 is unchanged. And hence h0(O) is the real representation of

Sp(n,C) or one of its subgroups taking account of the preliminaries of 81.

Thus we have

THEOREM 2.1. The necessary and sufficient condition that the restri-

cted homogeneous holonomy group of a 4n-dimensional afinely connected

manifold A4n (with or without torsion) be the real representation of Sp(n,

C) or one of its subgroups is that there exist two tensor fields Fhi, Fih

satisfying

(I) Fia Fah=-Shi, Fih=-Fhi, Fia Fah=-Fha Fad,

Fih being of maximal rank 4n and

(II) V2FIh=0, OF=0.

ih gives an almost complex structure and Fih gives an almost (real)

symplectic structure6). If we put Fia Fah=Fih then Fdh is anti-symmetric and

of maximal rank 4n. It is also of null covariant derivative by virtue of (II).

Hence we have

COROLLARY 2. 1. Let the assumption for A4i be the same as in the

Theorem. Then there exist in A45 three tensor fields satisfying

(I') Fia Fah=-Vjj, Fih=-Fhi, Fih=-Fhi,
Fia Fah=-Fha Fat=Fth, Fia Fala=-Fha Fat=-Fth,

F1h, F1h being of maximal rank and

(II') VjFch=0, VjF1h=0. V1Fih=0.

6) With respect to (real) symplectic structure, see Ehresmann [2] and Libermann C3,
especially Chap. IV.
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3. Almost complex sympectic structure. Let X4n be a real 4n-dirne-

nsional manifold of class C2 admitting two tensor fields Fih, FIh satisfying (I)

where Fih is of maximal rank, or necessarily admitting three tensor fields

satisfying (I') where Fjh, Fth are of maximal rank. We call such a manifold

X4n an almost complex symplectic manifold (or briefly almost CS-manifold)

and further we call the set of two tensor fields (Fih, Fih (hence necessarily

three tensor fields Fih Fih Fih) an almost complex symplectic structure (or

briefly almost CS-structure).

As is known, an almost quaternion structure in a real 4n-dimensional

manif old X42 is defined by a set of two tensor fields of (1,1)-type (Fih, Fhi)

satisfying Fia Fah=-6hi, Fia Fah=-6hi, Fia Fah=-Fia Fah.7) And the exis-

tence of such two tensor fields of (1, 1)-type implies necessarily the existence

of the third tensor field Ftih of (1,1)-type which is an almost complex structure

and in quaternic relations with Fih and Fih:

FiaFah=-FiaFah=Fih, FiaFah=-FiaFah=Fth, FiaFah=-FLaFah=Fih.

THEOREM 3.1. In a differentiable 4n-dimensional manifold X4rt, a

given almost quaternion structure induces an almost complex symplectic
structure and conversely from a given almost complex symplectic structure

we can find an almost quaternion structure. That is, the two structures are

equivalent.

PROOF. Suppose at first that a differentiable X4,1 admits an almost quater-

nion structure (F=(Fih), F=(F/L)) which satisfy

FiaFah=-6hi, Fia Fah=-6hi, FiaFah=-FtaFah.

Or, in matrix forms

F2=-E, F2=-E, FF=-FF,

where we denote for brevity the unit matrix of degree 4n by E instead of

E4n.

If we put F=FF=-FF, then we get the following relations:

F2=-E, FF=-FF=F, FF=-FF=F,

7) Ehresmann (1); Libermann (3), [4]; Ohata [5].
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by virtue of the given conditions for F, F. Since in our X4n there exists

always a positive definite Riemannian metric G=(gji), we put

G*=(gij)=1-(G+FGtF+FG1F+FG1F).8)

Then G* is also positive definite and it is simultaneously hermitian with

respect to F, F, F, i. e.

FG*tF=G*, FG*tF=G*, FG*tF=G*,

or in tensor forms

g*abFjaFib=g*ji, gam. FjaFib=gji*, gabFiaFib=g*ji.

Hence, if we put

FGA=F* (Fiag*ah=Fth)

then we can see that Fx=(Fih) are anti-symmetric and of maximal rank. And

we have

FF*=FFG*=-FFG=-FG*tF-1=-t(FF*)

or in tensor forms

Fia Fah=-Fha Fat

That is, the tensor fields F=(Fih), F*=(Fih) gives an almost complex

symplectic structure.

We will prove the converse. Let F=(Fih), F*= Fih) be an almost

complex symplectic structure:

(3.1) F2=-E, tF*=-F*, FF*=-t(FF*)

1*=(Fth) being of maximal rank. We remark that the third condition of

(3.1) can also be written as FF*=F*tF.

Consider an arbitrary Riemannian metric G=(g,1) in X41, then it is well

known

(gji)=1/2=(G+FGt1F)

8) Cf. Ohata [5], Section 14; Wakakuwa [7], Lemma 1.3.
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is a positive definite Riemannian metric hermitian with respect to F:

(3.2) FGtF=G.

Further, if we put

G=(gji)=-FAG-1F(gji=FajFbi),

then G is also positive definite, and consider the characteristic equation

G-PG=0.9)

Since G are and G both positive definite, the v different characteristic roots

pu (u=1,......,v) are all positive and the elementary divisors are all simple

because the matrix (G-pG) is of (0, 2)-type. Let Ru (u=1,.......,v) be the

characteristic root spaces corresponding to the different characteristic roots pu.

Put F*G-1=F=(Fih) and let x=(xh) be an arbitrary vector in Ru,

i.e.,

xG=puxG or -xF*G-1F*=puxG,

then the vectors xF=(Fahxa), xF=(Fahxa) a'are also in Ru. For, using (3. 1)

and (3. 2), we can see that

(xF)G=-xFFG-1F*=-x'FG-1F*

=-xF*G-1t-1F*=-xF*G-1F*tF-1

=xGtF-1=PuxGtF-1

Pu (xF) G,

and this shows that the vector xF=(Fahxa) is also in REL. Similarly we can

see that xF lies in Ru, too.

Hence if we choose the frames of reference [e] such that [eju] span the

root space Ru, then G=(gjL), F=(F/t), F=(F1't) decomposes into v blocks

simultaneously, i. e , (g.)=(g1)+(gj2;2)+........+(gjviv), etc.,

Thus with respect to the frames of reference now introduced

G*=(g*ji)=(P1gj1j1)+(P2gj2j2)+.......+(P7gjviv)

defines a positive definite Riemannian metric such that

9) Cf. Iwamoto [8]; Lichnerowicz [9].
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FGxtF=G*, -F*G*-1F*=G*.

Therefore, if we put

F*G*-1=F,

then we can verify that

F2=-E, F2=-E, FF=-FF

by virtue of (3.1), or in tensor forms

FiaFah=-6hi, FiaFah=-6hi, FiaFah=-FiaFah.

Consequently, we can find an almost quaternion structure F=(Fih), F

=(F1') derived from the almost CS-structure. And hereby we have completed

the proof of Theorem 3.1.

On account of the proof of the above Theorem, we see that there exists

a positive definite Riemannian metric g*ji, combining the almost quaternion

structure (Fih, Fih) and the almost CS-structure (Fih, Fih), such that

g*abFjaFib=J*ij, Fa9*ah=Fih,

hence necessarily

Fiagah=Fih.

DEFINITION. We call such an almost quaternion structure and an almost

CS-structure to be naturally related and call gij, he related Riemannian

metric.

4. Natural afline connections in almost complex symplectic manif-

old.

Let X4n be an almost CS-manifold with almost CS-structure Fth, Fth:

(4.1) FtaFah=-Fth=-Fht, FtaFah=-FhaFai.

It is noted that in X44 there exists the third tensor field of (0, 2)-type

Fth satisfying

(4.2) Fih=-Fih, FiaFaz=-Fha Fai=Fih, FiaFah=-FhaFat=-Fih

Fih being of maxiaml rank.
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There exists a related Riemannian metric gji (83 Definition) such that

gibFjaFib=g*ji, Fzag=Fih, Fiag=Fih

where (Fih, Fih, Fih) gives an almost quaternion structure. If we put

Fih=g*iaFah, Fih=g*iaFah,

then Fih, Fih are also anti-symmetric in i, h and we have

(4.3) IiaFah=-6ih, FiaFah=-6hi,

FiaFah=-FiaFah=Fih.

We remark that although the related Riemannian metric g1i is not

unique, but the Fih and Fih are both unique for Fih, Fih since FiaFah=-Shi,

and Fia Fah=-6hi. Hence with no use of g*ij we can define Fih such that

Fia(-Fah)=SQL, since such a Fih is a tensor field. It is similar for Fhi.

If the covariant differentiation pj with respect to an affine connection

satisfies

pjFih=0, vjFih=0 and hence necessarily v2Fih=0,

then the restricted homogeneous holonomy group of the affine connection is

the real representation of Sp(n, C) or one of its subgroups. We call such an

affine connection a natral affine connection or briefly natural connection of

the almost complex symplectic manifold X41.

We can easily verify that a natural afine connection in an almost CS-

manifold coincides with a natural mine connection in an almost quaternion

manifold ((q, J')-connection by Obata's terminology, Obata [5]) if and only

if the connection is a metric connection (with or without torsion) with

respect to the related Riemannian metric.

In the similar way as those of Schouten and Yano [10] and Obata [5],

we introduce the following operations making use of Fih.

Let Pjih be an arbitrary tensor field in X45 and we definer

Pjih=1/2(Pjih-FibPaFh)

10) These are the same as Obaba *O'dcdc of Schouten and Yano [1C] or Bbl, 42, 43, 44 of

Obata [5].
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Pjih=1/2(Pjih-FibPjbFha)

*Pjih=1/2(Pjih+FibP
jbFah)

=1/2(pjih-FjaFibP abh)

j*Pjih=(Pjih+FjaFjbPabh).

And we also introduce anew by using Fih, Fih and Fih, Fih the following

operations

SPjih=1/2(Pjih-pjbaFaiFbh)

Pjih=1/2(Pjih+PjbaFaiFbh)

Pjih=1/2(Pjih-PjbaFaiFbh)

Zpjih=1/2(Pjih+PjbaFaiFbh).

And we define operations J, J, J for an arbitrary affine connection Tjih

as follows.

7ih=Fji-1/2(vjFa)Tah

JTjih=Tjih-1/2(▽jFFi)Fah

JTjih=Tjih-1/2(▽jFia)Fah

Then, we see that the operations (u=1, 2, 3) are linear for an afne

connection and a tensor Pjih:

(Tjhi+Pjih)=Tjih+JPjih (u=1, 2, 3).

These are shown by a direct calculation. For example, consider.

Denoting by pj the covaraint differentiation with respect to p1h+Pjih, we

see that

2(Tjih+Pjih)=(Tjih+Pjih)-(vjFia)Fah
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=Pjih+Pjih-1/2(viFia)Fah+(PjicF ca+PjacFic)Fah

=Pjih-(VjFza)Fah+1/2(Pjih-PjbaFaiFbh)

1jih+JPjih,

The others are proved similarly.

LEMMA 4.1. For an afine connection or for a tensor,

?3=J (u=1,2,3).

PROOF. For J, the property is alraedy known (for exp. [5]). We will

prove for J. It is analoguous for.

Put JTjih=Tjih and denoting by Vj the covaraint differentiation with

respect to Pjih then we see that

3(JTjir)=JTjih=Pjih-(VjFia)Fa.

(pjih-1/2 (FiaFah)-1/2(VjFia)-1/4

[((ViFtc)Fcb)Fba+((VjFac)Fcb)Fib]Fah

=Fjih-(VjFia)Fah+1/4(VjaFia)Fah+(VjFia)Fah

=Tjih-1/2(VjFia)Fah=JTjin.

We can also verify for a tensor Pijh. Q.E.D.

The following Lemma is immediate from the definition of J (u=1, 2, 3).

LEMMA 4.2. Let Pjih be an afzne connection in X4n and let Vj be the

covariant differentiation with respect to Pjih. Then, in order that p

=0, VjFWh=0 or VjFih=0 is that Fjih=0, Jjih=0 or JTjih=0

respectively.

This Lemma is already known for Fih, (for exp. [5]).

LEMMA 4.3. The operations, j, for an arbitrary acne connection
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satisfy

-Tjih-1/4(Vi)F ah-1/4(vjFia)Fah-1*4(vFjb)Fah

(u=v; u,v=1,2,3).

And the operations J, J, J for an arbitrary tensor field Pflh satisfy

=1/4(Pjih-FibPjbaF ah-PjbaFaiFbh-PjbaFaiFbh)

(u=v; u, v=1, 2, 3).

PROOF. If we put

Ijih=Tjih-1/
2(VJFia)Fah,

and denote by Of the covariant differentiation with respect to then we

see that

(ITth)=Tjih=Tjih-1/2(vjFta)Fah

=Tjih-1/2[▽jFia-1/2((▽jF
bc)Fca)Fib+1/2((jVFic)Fcb)Fba]Fah

=(Tjih-1/2(▽jFt
a)Fah)-1/2(▽jFia)Fah-1/4×

(▽jFbc)FchFib+1/4▽(jFia)Fah

=Tjih-1/2(▽jFia)Fah-1/4(▽jFia)Fah-1/4×

(▽jFah)Fia+1/4(▽jFah)Fia

=Tjih-1/4(▽jFia)F
ah-1/4(▽jFia)Fah-1/4(▽jFia)Fah.

We can verify that the other Fjih, Jjih, etc. are all equal to this

quantity. The latter part of the Lemma is proved similarly.

From Lemma 4.1, 4.2, 4.3, we have the following Theorem

THEOREM 4.1. Let Ijih be an arbitrary afine connection11) in an almost

11) An affine connection always exists in our X4.
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complex symplectic manifold X4n with almost complex symplectic structure

(Fih, Foj, Fih) and let pf denote the covariant differentiation with respect
to Tjih. Then the of ne connection

rjih=-(VJFa)Fah-1/4(VjFa)Fah-1/4(VjFia)Fah

is a natural afine connection of X4n, that is, its restricted homogeneous

holonomy group is the real representation of Sp(n,C) or one of its subgroups.

THEOREM 4.2. The necessary and sufficient condition that an afine

connection Tjih of X4n be a natural mine connection is that ff Fji=Tfih

(u=v; u, v=1, 2, 3), that is,

(VjFia)Fah+(VjFia)Fah+(VjFia)Fah=0,

where pf denotes the covariant differentiation with respect to

The following Theorem is immediate from

(Ijih+Pjih)=J'Tjtih+JJPjih (u=v; u, v=1, 2, 3)

and from Lemma 4.3, Theorem 4.2.

THEOREM 4.3. Let hfh be a natural afine connection of an almost

complex symplectic manifold X47. and let Pfih be a tensor field over X4n.

Then the necessary and sufficient condition that the afine connection Ijih

+Pfih be again a natural of ne connection is that Pji satisfy Pfih=Pjih

(u=v; u, v=1, 2, 3), that is,

3Pjih+F/PjbaFhh+PfbaFaiFbh+PfbaFatF=0.

This condition is equivalent to the following two conditions:

Pjih+FgbPfbaFah=0, Pjih+PfbaFaiFbh=0,

which is verified by contracting FkFhi and FhkFLI to the equation indicated in

the Theorem.

The following Theorem is also immediate from Lemma 4.1, 4.3 and

Theorem 4.3.

THEOREM 4.4. Let Ijih be a natural afine connection in an almost

complex symplectic manifold X4n and let Q1ih be an arbitrary tensor field

over X4n. Then
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Fjih+JJQjdh=Fj1+(Q1ah-F(bQlbaFala-Q1baFaiFbh-Q1baFaIFbh)

(u+v; u,v=1,2,3)

is also a natural affine connection.

5. NiJ'enhuis tensor of FI't and tensors F 11h, Ffl F114. We introduce the

Nijenhuis tensor Njih of the almost complex structure Fijh:

NJih=1/2(FjaanFihFjiFah)

and if F11h is an arbitrary affine connection in X4n, we can write

(5.1) Njih=1/2(F[jvaFh-FjaVjFah

+Sji-2FbSibaFah-FjaFibbsabh,

where pa denotes the covariant differentiation with respect to Fji and Sjih is

the torsion tensor of Fijh.

As to F,h and F1h, we put

Fijh=a[JFih]=(ajFih+aiFhj+a4F11),

F11h=a(fFch]=1/3(ajFjh+aiFhj+a4Fji).

Then, Fjih and Fjih are both tensor fields in X4n and for an arbitrary affine

connection Fjih in X4n, we can write

(5.2) Fjih=v[1Ffh]+(SjiaFah+SihaFaj+ShjaFat),

(5.3) Fjih=V1F14+2/3(S1faFah+SthaFaf+SJaFai).

From these equations, we easily have

F1taFah=V[IFia]Fah-2/3(Sjih+SjbaFaiFbh-SibaFajFbh)

FjiaFah=vjFiaFah-2/3(Sjih+SjbaFbh-SibaFajF44).
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If S 4 is the torsion tensor of a natural connection, then we get

(5.4) Njih=1(S1ih-2FJbSiFah-FfaFab5abh),

(5.5) FjiaFah=-2/3(Sjih+SjoaFaiFbh-SibaFajTbla)

(5.6) FidaFah=-2/3(Sjih+SjbaFaiFbh-SibaFajFbh).

For a tensor Pf 1, we have

*Jpjih=(Pjih -FjbPibF ah+FibPjbFah-FjaFibPab),

and we obtain the foil owing theorem.

THEOREM 5.1. The Ni jenhuis tensor Njih can be represented by means

of the tensors Ffih, FJth as follows:

Njih=-3/2J*J'(FjiaFah+FjiaFah)

-3/8(Pjih-FjbPibaF ah+FibPjbaFah-FfaFibpabt),

where Pjih=FjiaFah+FjiaFah.

PROOF. Let Tjih be an arbitrary natural connection with torsion tensor

SJih and at first we calculate J*J'(FjiaFah) taking account of (5.4), (5.5)

and (5.6).

*J'(F
jtaFah)

[(Sjih+SjbFaiF-ScbFaiFbh)

Ffb(Siba+c CFcbFda-SbdCFciFda)Fah

+Fib(Skba+SjdCFcbFda-SbdCFciFda)Fah

-FjaFb(S bla+SadFcbFdh-SbdcFcaFdh)

-1/6[(Sjih+Sj
bFatFbh-SibaFajfFbh)]

-(FjbSi
baFah-ScdcFcjFdh+FjbSbdCFciFdh)
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+(FtbSjbaFah-SjdcFctFdh+FtbSbdcFcJFdh)

(FtFibSabh+FjaSadcFcjFc-FtbSbdcFcJFdh)J

1/6 [(Sjih-Fjb
baFh+FjbSaFh-FaF+

+(Sjih+SjbaFaiFbh-SibaFajFbh)

(Sfth+SjbaFatFbj-SibaFajFbh)

-F
jaFib(Sabh+SadcFcbFdh-SbdcFcaFdh)

+FjaFib(Sabh+SadcFdbFdh-SbdcFcaFh)]

-1/6[2Njih-3/2FjiaFah+3/2FjiaFah]

+3/2FjaFib(FabcFch)-3/2FjaFib(FabcFch)

-1/3Njih+1[FjtaFah-FjaFib(FabcFch)]

[FjtaFah-FjaFib(FabcFch)].

Analoguously we get

*J'(Fju
aFah)=-1/3Njih-1/4[FjiaFah-FjaFib(FabcFch)]

+1/4[FjiaFah-FjaFib(FabcFch)

Consequently we have

Njih=-3/2J*J'(FjiaFah+FjiaFah). Q.E.D.

THEOREM 5.2. The tensors F;t4 and F1can be represented as follows:

Fjih=2P(NftaFa4)-3/2P(FhaFaji)-1/2FjaFtbFhcFabc,

Fjih=2P(NjtaFah)+P(FhFaji)+FjaFibFhcFabc,

where
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P(Tjih)=1/3(Tjih+Tihj+Thji)

for a tensor Tjth.

PROOF. Let Fjih be an arbitrary natural connection with torsion tensor

Sjth. Then by virtue of Theorem 4.4,

riih=Ttih-2 (Sjih-FtbSjbaFah-SjbaFaiFbh-SjbaFaiFbh)

is also a natural connection and taking account of (5.4). (5.5), (5.6), the

torsion tensor Sjih of rich is calculated as follows:

Sjih=1/5[(Sjih-FjbSibFah+FibSjbFa)

+(Sjt+SjbaFaiF-SibaFajFb)

+(S3+SjbaFaiFbh-StbaFajFbh)]

(2Njih+FjaFibSabh-3/2FjiaFah-3/2FjiaFah),

from which we get

SjiaFah=(2NjiaFah+F,aFtbSabCFch+F,th-F,taFha)

and hence

P(S;taFah)=F(N,taF)+P(F,UFtbSiai I ICFCh)

+Ffth-P(FflaPha).

Since S I' is the torsion tensor of a natural connection, we have from (5.2)

P(S;iaFah)=(S1iaFah+SihaFat+S;haFat)

and further from (5.3) we get

P(FjaFtbSablCFch=)1/3(FFSabcFcab+FtaFItbSaCFc,+F/aaFJbSabCFci)

-1/2FjaFibFhF
abc.

Consequently, we obtain
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Ftla, 2- P(NaFitih)-1 FaFbFhCFabc

or+Ffth P(F,t IalF,ha)

F=2 P N aF)-3 P(F1 F iaji)-1-F,aFibFhcFabc

The representation of F,h is also obtained by a quite similar way.

Q. E. D.

COROLLARY. If we put

Each=F1,, -3P(FjdFgeFidi ieih), E1,=F,ch-3P(F,dFeFia, ieih),
then

Eh=F'jaFjbFh Eabc,=-- F, F F,L,I6-

PROOF. From the second equation of Theorem 5.2, we have

FJaFitFhCFabc=-- 2p(F,dFieNdi elaFlalh)

P(FidFieFlf,lzle)-- Ftih,

hence subtracting this equation from the first equation of the Theorem, we

get

F,h-FtaFbFhcFabc=2 P((Nc+FJdFieN(dllelc)Flch)

-P(FheF,)-F,aFbFhcl abc

- - - P(F,dF e Fed 116Th)+F9h

But since

Njtie+FfdFeNdeC=0

hlods true (Cf. [5]; p. 55, Corollary 1), we obtain

Ffih-P(FjdFIds)=FjFiFh Fabc P'(Fih Fielji)

or

F111, -3P(FsdF1eFIelh)=F,aFibFhC[Fabc-3P(FadFbeF Idl lelc)]Q.E.D.

From Theorem 5. 1 and 5. 2, we have
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THEOREM 5.3. If any two of Njih, Fjih vanish, then the remaining

one also vanishes.

THEOREM 5.4. There exists in X4n a natural connection Tjih whose

torsion tensor S is given by

SQLn=1/3Njih5/16(FjiaFah+FjiaFah)-1/16FjaFib(FabcFch+F abcFch).

PROOF. Let Fjih be an arbitrary natural affine connection in X4,, then by

virtue of Theorem 4.4,

Fjih=FjiL+1/4(Qjih-F1bFa-QibFaiFb-QjbFaiFb)

is also a natural affine connection, where Qjih is an arbitrary tensor field. If

we take

Qjih=-1/3(5Sjith+FiaFibSabh),

where Sjih is the torsion tensor of Fjih then we can calculate

(Qjih-FibQibFah-QjbFaiFbh-QjbaFaiFbh)

-1/12[(5Sjih+FjFibS abh)-Fib(5Sfda+FjcFbdScda)Fah

5(Sjib+FjcFbdScda)FaiFbh-(5Sjb9+FfcFbgScaa)FaiFbh]

-1/12[5Sjih+FjaFibSabh-5FibSjbaF ah+FjCSCiaFah

-5Sj
baFaiFbh+FjcScdaFaiFdh-5SjbaFbh-FjcSchaFaiFdh]

-1/12[12Sjih-(2Sjih-FjbS biFa+5FtSibFa-2FjaFibSab)

5 (1/2Sjih+SjjbaFaiFbh)-5(1/2Sjih+SjbaFaiFbh)

FjaFib(1/2Sabh+SadcFcbFdh)-FjaFib(1/2Sabh+SadcFcbFdh)]

Hence we get

Fih=Fjih-Sjih+1/
12[(2Sh+FbSiaFh+5FbSjaFh-2FjaFbSabh)



ALMOST COMPLEX SYMPLECTIC MANIFOLDS AND AFFINE CONNECTIONS 195

+5(1/2Sjih+SjbaFaiFbh+5(1/2Sjih+SibaFatFbh)

+FjaFib(1/2Sabh+SadcFcbFdh)+FjaFib(1/2Sabh+SadcFcbFdh)].

Let Sjih be the torsion tensor of Tjih then from (5. 4), (5. 5), (5.6) we see

thatSjih=1/12

4Njih -Fji
aFah-15/4FjiaFah

-3/4FjaFib(F
abcFch)-3/4FjaFib(FabcFch)].

Thus Tjih is a natural affine connection with torsion tensor Sof the

required form. Q. E. D.

COROLLARY. In order that we can introduce in X4n a natural acne

connection without torsion is that the Ni jenhuis tensor Njih of F 4 and the

tenrors Fjih, Fjih all vanish.

PROOF. The necessity is evident from (5.4), (5.5), (5.6). We can also prove

the sufficiency by virtue of the Theorem.

6. Complex frames and complex analytic cases with respect to Fih.

In general, let A2m be a 2m-dimensional almost complex manifold with

natural affine connection12), then the restricted homogeneous holonomy group is

the real representration of GL (m, C) or one of its subgroups.

If we choose complex frames of ref erf nce [ea, ea]13) in A2m, the connection

of A2m can be given by

(6.1) dP=irea+7raea, dep=ire; conj.

where ea=ea, T=T. And if we put

ea=1/2(ea-Zea), ea=1/2(ea+iea),

7r=1/2(wa+Zwa)=71a,

7r=0ab-iwab=wab+iwab=7r

12) The natural affine connection means the connection with respect to which the almost
complex structure is of null covariant derivative.

13) The ranges of Greek indices are as follows.

a,b,r,...,A,u,v,...=1,...urn; a,R,y,..., A a, v,...=a+m, b+m,...., X+m, u+m....
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then the real Pf affians o, wx, toy (=(=-op) give the connection of

A2m with respect to real frames of reference [ea, e'a] ei=a(x) a; i, a=
axe

1,...., 2m).

If m=2n and if the restricted homogeneous holonomy group h0 of

A2m=A4n is the real representation of Sp(n; C), then with respect to the

connection (6. 1), an anti-symmetric tensor field19) of the form

(6.2) (gur00fur)(fur=fur; detfuA=0)15)

is of null covariant derivative (Cf.+1). And according to+1, we see that:

Let A4,. be an almost complex manifold with natural of ne connection and

consider complex frames of reference such as (6. 1). Then the necessary and

sufficient condition that the restricted homogeneous holonomy group h0 of

A4,, be contained in the real representation of Sp(n, C) is that there exists

an anti-symmetric tensor field15) with null covariant derivative whose com-

ponents are given by (6. 2), with respect to the complex frames of 7 eference
under consideration.

We can normalize the tensor (6.2) by a suitable complex change of

frames of reference.

Now, let X4. be an almost CS-manifold with almost CS-structure (Feih,

F1fz) and consider the case where X4,. is complex analytic, Fih giving the com-

plex analytic structure of X4,2. The Nijenhuis tensor Njih of Fih necessarily

vanishes.

We call such an X4,. a complex almost symplectic manifold and in this

case we call the structure (F111, Fth) a complex almost symplectic structure.

And further, if Fj1h=0 in complex almost symplectic X4m, then we call

such an X4n a complex symplectic manifold with complex symplectic struc-

ture (Fih, Fih). In this case, we have necessarily Fjih=0 by virtue of The-

orem 5.3.

In a complex almost symplectic manifold X4n, if we introduce a complex

analytic coordinate system (za, za), (za=za,) then the tensor field Feh takes

14) The components are complex, the real and imaginary parts being functions of the
initial real coordinate system.

15) In case of m=2n, the Greek indices run as follows:

a, b, y,..., X, u, v,...=1,...2n; a, b,..., A, u,...=a+2n, b+2n,..., A2n, u+2n,....
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the numerical components of the form 2E2 0 and we denote this tensor field

anew by I=(I/i). With respect to the complex coordinate system under consi-

deration, put F=(Fih) where A, B, C, D are complex matrices of

degree 2n. Then since (Fih) is anti-symmetric, we have 

to=-A, tD=-D, tB=-C, 

and further since IF=(a b) is also anti-symmetric from the definition

of the almost CS-structure, we have

tB=C

and hence B=C=0.

Therefore, if we denote the tensor (Fih) with respect to the complex coordinate

system by f=(f), we see that

f=(fh)=(fuA0),

where fuA=fuA (z, z) and fuA=(z, z) are anti-symmetric in X, and X,

respectively. Since (fih) must have real representations it is self-adjoint:

(6.3) f=(fih)=(fuA fuA), (fuA=fuA; fuA=-fAu).

Hence in a complex almost symplectic case, we denote the complex almost

symplectic structure with respect to a complex coordinate system by (Iih, fih),

(f) being of the form (6. 3).
Hereafter we confine ourselves to such complex analytic coordinate systems

if otherwise stated.

If we put

a=fh6,

then of course this fih is no other than the Fjih in general real coordinate

system. f,, is also self-adjoint, and

=1/36vfA; cond.

taking account of (6.3).

A tensor field whose mixed components vanish is called pure. And we
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can easily see that : The necessary and sufficient condition that fuA(f) do

not contain z'(z) is that the tensor f fzh be pure. Hence if the manifold is

complex symplectic, i.e., if fjih=0, then fuA=fuA(z), f=fuA(z).

If we put

J=(fih)=(Iifah)=(-ifx 0)=(zfh),

then fih corresponds to the Fjh in the real case and

fih=6jfih

corresponds to the Fjih. We see that

-ifvua; conj.

f-vuA=1/3avfuA=-i/36fuA=-ifvuA; conj.

Hence we have

PROPOSITION 6.1. In an X4 with complex almost symplectic structure

(Iih, fih, fih), we have

JvuA=-ifvuA, fvuA=-ifvuA; conj.

This corresponds to Theorem 5.2 or to its Corollary.

In general, in a complex analytic manifold with complex coordinate system

(za, za), the natural afEine connection is given by (Fe, TfuA), the other is
being all zero. And we remark that (Fvu, Fvur) give also components of
a natural of ine connection and (Fvur, Fvur) are components of a mixed tensor.

PROPOSITION 6.2. Let A4n be a complex analytic manifold with com-

plex coordinate system (za, za) and with natural affrne connection (FJMA, Fjur).
Then the necessary and sufficient condition that the restricted homogeneous

holonomy group h0 is contained in the real representation of Sp(n, C) is

that there exist an anti-symmetric self-adjoint tensor field (fuA, fur) (fut
=fut=0) with null covariant derivatives.

That is, the A47, is necessarily a complex almost symplectic manifold and

the connection is a natural affine connecton with respect to the complex almost

symplectic structure (J19, f).

The condition ViJh=0 are written out fully as follows:

(6.4)

DfuA=p, fuA=0; conj. (identically satisfied)

QvfuA=wfuA-vufWA-wAwfuw-0; conj.

QvfuA=wfuAvu-fwA-vAfuw0; con.
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Since=0 if and only if f is pure, we can easily obtain from (6.4).

PROPOSITION 6.3. Let X4,a be a complex almost symplectic manifold

with complex almost symplectic structure (Ihi, fih). Then in order that there

exist a natural connection of the type (Ivur, PvuX) with respect to (Iih, J),

it is necessary and sufficient that the tensor fjih be pure.

Hence, in a complex symplectic X4n (fjih=0), there exists always a natural

connection of the type (Fvur, Pvur) with respect to the structure (Iih, fih).

We can define a tensor f such that fa(-fah)=h since such an fih

has a tensor character, and we see that f14 is also self -ad joint and anti-sym-

metric in i, h.

PROPOSITION 6.4. In an X4n with complex almost symplectic structure

(Iih, fih), there exists a natural connection with respect to (Iih, fin) whose
torsion tensor Sijh is given by

SVuA=-1/2fvuafaa, SVu=-3/4fVwafaA; conj.

PROOF. Let Pjih=(Tjua, PjuA) be an arbitrary natural connection with res-

pect to (It, fih), then it satisfies (6. 4). Since (hvuA, Pvu) is an affine connection
leaving invariant the Iih and (PuvA, TvuA) is a tensor, an affine connection (PjuA

PjuA) such that

raw=-(Svu-SfaufibA); conj.

yu=rvF, (Svur-SvbafaufPA)=1/2TvuA+1/2TvuafaufbA, conj.

is also an affine connection leaving invariant the And further we can see

that this affine connection is indeed a natural connection with respect to (Iih,

fih), by a simple calculation making use of (6.4). Taking account of (5.5) and

(6.3), the components of the tensor Sjih are given by

SvuA=1/3(SvuA+Svbafaufau-SubafabfbA)=-1/
2fvuafaA; conj.

SVuA=1/2(SvuA+S vbafaufbr)=-3/4fvuafaA; conj. Q. E. D.

REMARK. This Propos jtion corresponds to the Corollary of Theorem 5.4.

The natural connection (PjuA, TjuA) possesses a freedom of tensors such as Pjih

symmetric in j and i and satisfying PvuwfwA+PvAwfuw=0; conj.
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APENDIX

In connection with the almost complex case, we state several propositions

on affinely connected manifolds with restricted homogeneous holonomy Sp(m,

R), the real symplectic group in 2m-dimensional real linear space or one of

its subgroups. Hereafter the class of the manifolds in consideration are C2. The

following Proposition is easily obtained.

PROPOSITION 1. The necessary and sufficient condition that the restri-

cted homogeneous holonomy group of a 2m-dimensional afinely connected

manifold A2m(With or without torsion) be Sp(m, R) or one of its subgroups

is that there exists over A2,, an anti-symmetric tensor field F 4 of maximal

rank 2m satisfying

(1) VjFih=0,

where pi denotes the covariant differentiation with respect to the afine

connection of A2m.

A tensor field Fanti-symmetric in i and h of maximal rank in a 2m-

dimensional manifold is called a null-system. A differentiable manifold admit-

ting a null-system Fih(=-Fhi) or an exterior 2-form Feih dxi n dxh of maximal

rank is called an almost symplectic manifold (variete presque symplectique)

([2]; [3], especially Chap. IV), and the null-system or the 2-form is called almost
symplectic structure.

In an almost symplectic manifold, we can always introduce a positive

definite Riemannian metric such that Fda Fhbgan=9h([9], Section 14) and Fih
=Fi agah gives an almost complex structure for which the metric gth is herm-

itian. If we put gaiFah=FiT, then FiaFah=-6ih. We call an affine connection

satisfying (1) for an almost symplectic structure Fa natural afine connection

of Fih. The restricted homogeneous holonomy group of a natural affine connection

is Sp(m, R) or one of its subgroups.

We also remark that the above Riemannian metric geih is not unique, but

Fih is uniquely determined from the given Fe,, since FiaFah=-6hi (Cf.+5 and

6).

We can prove the following two propositions and a corollary by direct

calculations.

PROPOSITION 2. Let Fijt be an affine connection in an almost symplectic

A2m admitting an almost symplectic structure F1,,. Then the afine connection

Ijih such that

r=Tjih-1/2(VjFia)Fah
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is a natural affine connection of F, that it, a connection whose restricted

homogeneous holonomy group is Sp(m, R) or one of its subgroups.

PROPOSITION 3. Let P be a natural affine connection of Fe,, and let

Pjih be an arbitrary tensor field. Then,

=hJth+1(Pfih-PfbaFaiFb'L)

is also a natural affine connection of F.

COROLLARY. For an arbitrary natural mine connection Tjih, in order

that

Pjih=Fjih+Qj/h (Q5h: a tensor)

be also a natural affine connection, it is necessary and sufficient that the

tensor Qjih satisfy

QJiaFah+QjhaFia=0 or Qjih+QJbaFaiF=0.

Now, put

Fjih=aiJFihJ=(aJFih+azFhJ+ahFji),

then FJth is a tensor field. If P;is an arbitrary affine connection in A2, with

torsion tensor Sjih then we have

FJtla=VriF1+2 (SjiaFald+SihaFaJ+ShjaFai).

1f Tjih is a natural amne connection of we get

3/2F
Jih=SjiaFah+SihFal+ShjaFai,

from which

3/2FjiaFah= -sjih+Sibpi-SfbaFaiFbla

On the other hand, if we put

r'Iz=Tjih-2/3(Sh-SbJaFaiFb/c),

then Ith is also a natural connection by virtue of Proposition 3 and its torsion

tensor Sfih is given by

Sh=Tjih=1/3(Sjih+SjbaFaiFbh-SibaFajFbh)



202 H. WAKAKUWA

=-1/2FjiaFah

Thus we have

PROPOSITION 4. The necessary and sufficient condition that it be

possible to introduce a natural afine connection of F1h without torsion in
A2m is that the tensor Fjih=ajFih vanish identically.

COROLLARY. In our A2m, there exists a natural mine connection of

F1h with torsion tensor

Sjih=1/2FjiaFah.

If Fjih=ajFih=0, then the 2-form F1hdxi A dxh is closed and in this

case Fih is called a symplectic structure and the manifold is called a symplectic

manifold.

EXAMPLE. Consider an almost Kaehlerian manifold with metric tensor gji

perm itian with respect to its almost complex structure 0h. Then the almost

symplectic structure 0ji=0jgay, satisfies aj0ih=0, hence by Proposition 4

there exists a symmetric natural affine connection of 0ji, but this natural conn-

ection does not leave invariant the individual gj1 and 0ih unless 0ih is inte-

grable, i.e., unless the manifold is pseudo-Kaehlerian.
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