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Abstrat. An almost osympleti (κ, µ, ν)-spae is by de�nition an almost osympleti man-ifold whose struture tensor �elds ϕ, ξ, η, g satisfy a ertain speial urvature ondition (seeformula (16)). This ondition is invariant with respet to the so-alled D-homotheti transforma-tions of almost osympleti strutures. For suh manifolds, the tensor �elds ϕ, h (= (1/2)Lξϕ),
A (= −∇ξ) ful�ll a ertain system of di�erential equations. It is proved that the leaves of theanonial foliation of an almost osympleti (κ, µ, ν)-spae with κ < 0 are loally �at Kähle-rian manifolds. A loal haraterization of suh manifolds is established up to a D-homothetitransformation of the almost osympleti strutures.1. Preliminaries. Let M be a onneted, di�erentiable manifold of dimension 2n + 1,
n > 1. A quadruple (ϕ, ξ, η, g) is alled an almost ontat metri struture [1℄ on M if
ϕ, ξ, η, g are, respetively, a (1, 1)-tensor �eld, a vetor �eld, a 1-form, a Riemannianmetri on M and

ϕ2 = −I + η ⊗ ξ, η(ξ) = 1, η(X) = g(X, ξ), g(ϕX, ϕY ) = g(X, Y ) − η(X)η(Y ).In the above and in the sequel, X, Y, . . . denote arbitrary vetor �elds on M if not other-wise stated. Let Φ denote the fundamental 2-form assoiated to an almost ontat metristruture by Φ(X, Y ) = g(ϕX, Y ).Given an almost ontat metri struture (ϕ, ξ, η, g) on M , we say that the manifold
M and the struture (ϕ, ξ, η, g) are:(a) almost osympleti if the forms η and Φ are losed [10℄;(b) osympleti if they are almost osympleti and the almost ontat struture
(ϕ, ξ, η) is normal (equivalently, ∇ϕ = 0, where ∇ is the Levi-Civita onnetion deter-mined by g [1℄).2000 Mathematis Subjet Classi�ation: Primary 53C25; Seondary 53D15.Key words and phrases: almost osympleti manifold, D-homotheti transformation, almostosympleti (κ, µ, ν)-spae.The paper is in �nal form and no version of it will be published elsewhere.
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212 P. DACKO AND Z. OLSZAKLet M be an almost osympleti manifold. Let F be the odimension 1 foliation of
M , whih is generated by the integrable distribution D = Ker η. Sine D = Im ϕ, D is
ϕ-invariant and a leaf (a maximal integral submanifold) N of F is ϕ-invariant. Hene, ϕ in-dues an almost omplex struture J (J2 = −I) on N by JX̃ = ϕX̃ for any vetor �eld X̃tangent to N . Let G be the Riemannian metri indued on N , G(X̃, Ỹ ) = g(X̃, Ỹ ). Thenthe pair (J, G) beomes an almost Hermitian struture on N (G(JX̃, JỸ ) = G(X̃, Ỹ )).The fundamental form Ω (Ω(X̃, Ỹ ) = g(JX̃, Ỹ )) of (J, G) is losed sine it is the pull-bakof the losed form Φ. Therefore, (J, G) is an almost Kählerian struture on N . In the asewhen J is a omplex struture, (J, G) beomes a Kählerian struture on N . If (J, G) isKählerian on every leaf of F, we will say that M is an almost osympleti manifold withKählerian leaves [5, 13℄.
2. Auxiliary tensor �elds. Let M be an almost osympleti manifold. Consider the
(1, 1)-tensor �eld A de�ned on M by(1) AX = −∇Xξ.This is a geometri interpretation of A: for an arbitrary leaf N of F, the vetor �eld ξrestrited to N is its normal vetor �eld and AX̃ = −∇

X̃
ξ is the shape operator withrespet to ξ.Another appliation of A follows from the following fat [11℄: an almost osympletimanifold M has Kählerian leaves if and only if(2) (∇Xϕ)Y = −g(ϕAX, Y )ξ + η(Y )ϕAX.The main algebrai properties of A an be found in [13℄,(3) g(AX, Y ) = g(AY, X), Aϕ + ϕA = 0, Aξ = 0, η ◦ A = 0.For further use, we also de�ne the (1,1)-tensor �eld h by(4) h =

1

2
Lξϕ.Observe that the tensor �elds A and h are related by(5) h = Aϕ, A = ϕh.In fat, using (3) and ∇ξϕ = 0 (f. eq. (2.10) in [11℄), we get

2hX = (Lξϕ)X = [ξ, ϕX] − ϕ[ξ, X] = 2AϕX.As a onsequene of (3) and (5), one �nds the following algebrai properties of h (f. also[7, 8℄, however the tensor �eld h de�ned in those papers di�ers in sign from ours)(6) g(hX, Y ) = g(hY, X), hϕ + ϕh = 0, hA + Ah = 0, hξ = 0, η ◦ h = 0.In the sequel, we also need the following lemma:



ALMOST COSYMPLECTIC (κ,µ,ν)-SPACES 213Lemma 1. For the tensor �eld A, we have
(∇ξA)ϕ + ϕ(∇ξA) = 0,(7)

LξA = ∇ξA(8)
R(X, Y )ξ = −(∇XA)Y + (∇Y A)X,(9)
R(ξ, Y )ξ = −(∇ξA)Y + A2Y,(10)where R(X, Y ) = [∇X ,∇Y ] −∇[X,Y ] are the urvature operators.Proof. The ovariant di�erentiation ∇ξ of the seond equality of (3) and an appliationof ∇ξϕ = 0 give (7). (8) an be found by a straightforward omputation using (1). (9) isjust the integrability ondition of (1). Finally, (10) follows from (9) by applying X = ξand the formulas (3), (1).3. D-homotheti transformations. Let M be an almost osympleti manifold and

(ϕ, ξ, η, g) its almost osympleti struture. Let Rη(M) be the subring of the ring ofsmooth funtions f on M for whih df ∧ η = 0, or equivalently df = df(ξ)η.Consider a D-homotheti transformation of (ϕ, ξ, η, g) into an almost ontat metristruture (ϕ′, ξ′, η′, g′) de�ned by(11) ϕ′ = ϕ, ξ′ =
1

β
ξ, η′ = βη, g′ = αg + (β2 − α)η ⊗ η,where α is a positive onstant and β ∈ Rη(M), β 6= 0 at any point of M . Sine dβ∧η = 0,it follows that dη′ = 0. Moreover dΦ′ = 0, sine the fundamental forms Φ, Φ′ of thestrutures are related by Φ′ = α Φ.Thus, a D-homotheti transformation of an almost osympleti struture (ϕ, ξ, η, g)always gives a new almost osympleti struture (ϕ′, ξ′, η′, g′) on the same manifold. Fortwo almost osympleti strutures (ϕ, ξ, η, g) and (ϕ′, ξ′, η′, g′) related by (11), we willsay that they are D-homotheti. In the sequel, geometri invariants orresponding to thestruture (ϕ′, ξ′, η′, g′) will be marked by primes.

D-homotheti transformations of almost ontat metri strutures with α, β = const.were studied in many papers (see [1, 12, 14℄, et.).Proposition 1. For D-homotheti almost osympleti strutures, the Levi-Civita on-netions ∇′ and ∇ are related by(12) ∇′

XY = ∇XY − β2 − α

β2
g(AX, Y )ξ +

dβ(ξ)

β
η(X)η(Y )ξ.Proof. Clearly, the operation ∇′ de�ned by the formula (12) is an a�ne onnetion on

M . ∇′ is symmetri by the symmetries of ∇ and A (f. (3)). Next, using (11), we �nd
(∇′

Xg′)(Y, Z) = α(∇′

Xg)(Y, Z) + 2βdβ(ξ)η(X)η(Y )η(Z)

+ (β2 − α)((∇′

Xη)(Y )η(Z) + η(Y )(∇′

Xη)(Z)),whene, by applying (12), (1), (3), we obtain ∇′g′ = 0, that is, ∇′ is metri. Thus, ∇′ isthe Levi-Civita onnetion with respet to g′, whih ompletes the proof.



214 P. DACKO AND Z. OLSZAKProposition 2. For D-homotheti almost osympleti strutures, we have
A′ =

1

β
A, h′ =

1

β
h(13)

R′(X, Y )ξ′ =
1

β
R(X, Y )ξ +

dβ(ξ)

β2
(η(X)AY − η(Y )AX).(14)Proof. Using (1), (3), (11) and (12), we �nd

A′X = −∇′

Xξ′ = − 1

β
∇Xξ =

1

β
AX.By the above and (5), (11), we get also the seond equality of (13). To prove (14), weneed the formula(15) (∇′

XA′)Y =
1

β
(∇XA)Y − β2 − α

β3
g(AX, AY )ξ − dβ(ξ)

β2
η(X)AY,whih is a onsequene of (12), (13) and (3). Now, using (9) and (15), we �nd

R′(X, Y )ξ′ = −(∇′

XA′)Y + (∇′

Y A′)X

=
1

β
(−(∇XA)Y + (∇Y A)X) +

dβ(ξ)

β2
(η(X)AY − η(Y )AX)

=
1

β
R(X, Y )ξ +

dβ(ξ)

β2
(η(X)AY − η(Y )AX),ompleting the proof.4. Auxiliary results. We are speially interested in almost osympleti manifoldswhose almost osympleti struture (ϕ, ξ, η, g) satis�es the ondition(16) R(X, Y )ξ = η(Y )(κI + µh + νA)X − η(X)(κI + µh + νA)Ywith κ, µ, ν ∈ Rη(M). In the sequel, suh a manifold will be alled an almost osympleti

(κ, µ, ν)-spae and (ϕ, ξ, η, g) will be alled an almost osympleti (κ, µ, ν)-struture.Almost osympleti manifolds satisfying the ondition (16) with κ = const., µ = ν =

0 were studied in [4℄; and with κ, µ = const., ν = 0 in [7, 8, 9℄.Contat metri manifolds ful�lling the ondition (16) with κ, µ = const. and ν = 0were extensively studied in [2, 3℄ and many other papers; see also the monograph [1℄ foronditions of this type.Proposition 3. For D-homotheti almost osympleti strutures, if (ϕ, ξ, η, g) is analmost osympleti (κ, µ, ν)-struture, then (ϕ′, ξ′, η′, g′) is an almost osympleti
(κ′, µ′, ν′)-struture with κ′, µ′, ν′ ∈ Rη ′(M) = Rη(M) being related to κ, µ, ν by(17) κ′ =

κ

β2
, µ′ =

µ

β
, ν′ =

νβ − dβ(ξ)

β2
,that is,(18) R′(X, Y )ξ′ = η′(Y )(κ′I + µ′h′ + ν′A′)X − η′(X)(κ′I + µ′h′ + ν′A′)Y.Proof. By applying (16) and next (11), (13) in (14) and making some omputations, weget both (18) and (17).The following algebrai lemma will be useful.



ALMOST COSYMPLECTIC (κ,µ,ν)-SPACES 215Lemma 2. Let B be a symmetri (1,1)-tensor �eld on an almost ontat metri manifoldsuh that Bξ = 0. Then B has a unique deomposition into a sum B = B− + B+, where
B−, B+ are symmetri (1,1)-tensor �elds suh that

B−ξ = B+ξ = 0, ϕB− − B−ϕ = 0, ϕB+ + B+ϕ = 0.Proof. Given B de�ne
B− =

1

2
(B − ϕBϕ), B+ =

1

2
(B + ϕBϕ).It is a straightforward veri�ation that we obtained the desired deomposition. Theuniqueness of the deomposition an also be easily seen.Proposition 4. For an almost osympleti (κ, µ, ν)-spae, the tensor �eld A and thefuntion κ satisfy the relations

A2Y = −κ(Y − η(Y )ξ) ,(19)
(∇ξA)Y = µhY + νAY,(20)

dκ(ξ) = 2νκ.(21)Proof. Let us suppose B = R(ξ, ·)ξ. First, note that for the tensor �eld B, the formula(10) gives the deomposition mentioned in Lemma 2 with B− = A2 and B+ = −∇ξA.This an be easily veri�ed with the help of (3) and (7).On the other hand, putting X = ξ in (16) and using (3) and (6), we have
B = R(ξ, ·)ξ = −κ(I − η ⊗ ξ) − µh − νA.Considering the right hand side of the above formula and the formulas (3), (6), we �nd

B− = −κ(I − η ⊗ ξ) and B+ = −µh − νA. Hene, by the uniqueness, we obtain (19)and (20).The ovariant di�erentiation ∇ξ of (19) and an appliation of the relations ∇ξξ = 0,
∇ξη = 0 (whih an be found in [11℄), (6) give dκ(ξ)(I − η ⊗ ξ) = −2νA2, whih againby (19) leads to (21).From (19) and (3) it follows that at every point of an almost osympleti (κ, µ, ν)-spae: (1) κ 6 0; (2) κ = 0 if and only if A = 0; (3) if κ < 0, then the eigenvalues of Aare 0 of multipliity 1 and ±

√
−κ both of multipliity n.Lemma 3. For an almost osympleti (κ, µ, ν)-spae, if κ = 0 at a ertain point of M ,then κ vanishes identially on M .Proof. Let Z be the losed subset of M ontaining the points q at whih κ(q) = 0.Suppose that p ∈ Z. Choose a oordinate neighborhood U = (−a, a) × Ũ around p suhthat t is the oordinate on the open interval (−a, a), (x1, . . . , x2n) are the oordinates on

Ũ and ξ = ∂/∂t, η = dt. Sine dκ ∧ η = 0, the funtion κ restrited to Z depends on
t ∈ (−a, a) only; and by (21) it satis�es the linear di�erential equation dκ/dt = 2νκ. Sine
κ vanishes at a ertain t, κ = 0 identially on (−a, a). Hene κ = 0 on the whole of U .Therefore, the set Z is open. Finally, Z = M sine M is onneted and Z is nonempty.



216 P. DACKO AND Z. OLSZAKProposition 5. For an almost osympleti (κ, µ, ν)-spae, the tensor �elds ϕ, h, Aful�ll the following system of di�erential equations:(22) Lξϕ = 2h, Lξh = − 2κϕ + νh − µA, LξA = µh + νA.Proof. The �rst equation follows from (4). The third equation follows from (8) and (20).Now, taking the Lie derivative of the �rst relation of (5), next using the just obtainedthird equation and (4), we �nd
Lξh = (LξA)ϕ + A(Lξϕ) = (µh + νA)ϕ + 2Ah,whih with the help of (3), (5) and (19) leads to the seond equation.5. Main results. By virtue of Lemma 3, the following two typial situations should betreated for almost osympleti (κ, µ, ν)-spaes M : κ = 0 identially on M or κ < 0 atevery point of M .Proposition 6. An almost osympleti (0, µ, ν)-spae is loally a produt of an openinterval and an almost Kählerian manifold.Proof. When κ = 0, then A = 0 by (19), and next ∇ξ = 0 by (1). Hene the assertionfollows.In the sequel, we restrit our investigations to the ase when κ < 0 beause of theabove proposition.Theorem 1. Let M be an almost osympleti (κ, µ, ν)-spae with κ < 0. Then the leavesof the anonial foliation F of M are loally �at Kählerian manifolds.Proof. For an arbitrary almost osympleti manifold, the following urvature identity iswell known [11℄:

R(X, Y, ϕZ, ξ) − R(ϕX, ϕY, ϕZ, ξ)− R(ϕX, Y, Z, ξ)

− R(X, ϕY, Z, ξ) = −2(∇AZΦ)(X, Y ),where R(·, ·, ·, ·) denotes the Riemann urvature (0, 4)-tensor,
R(X1, X2, X3, X4) = g(R(X1, X2)X3, X4).On the other hand, for our almost osympleti (κ, µ, ν)-spae, using (16), we �nd

R(X, Y, ϕZ, ξ) − R(ϕX, ϕY, ϕZ, ξ)− R(ϕX, Y, Z, ξ)

− R(X, ϕY, Z, ξ) = −2κ(η(Y )g(X, ϕZ)− η(X)g(Y, ϕZ)),whih applied to the previous relation gives
(∇AZΦ)(X, Y ) = κ(η(Y )g(X, ϕZ) − η(X)g(Y, ϕZ)).Putting AZ instead of Z into the last equation and taking into aount (19), κ < 0 and

∇ξΦ, we get
(∇ZΦ)(X, Y ) = η(X)g(Y, ϕAZ) − η(Y )g(X, ϕAZ),whih is equivalent to (2). Thus, by a result of [13℄, M is almost osympleti withKählerian leaves.The rest of the proof will be divided into two parts.



ALMOST COSYMPLECTIC (κ,µ,ν)-SPACES 217In the �rst part, we will prove that the leaves of F are �at in the ase when κ = −1.Let N be an arbitrary leaf of the anonial foliation F and (J, G) be the indued Kählerianstruture on N . Let Ã be the Weingarten operator of N so that we have ÃX̃ = AX̃ forany vetor �eld tangent to N .By Aϕ + ϕA = 0 and (19), Ã ful�lls the following relations:(23) ÃJ + JÃ = 0, Ã2 = I.They imply that ±1 are the eigenvalues of Ã both of the same multipliity. The orre-sponding eigendistributions will be denoted by D1 and D2, dim D1 = dim D2 = n.The tensor Ã, being the Weingarten operator of N , satis�es the Codazzi equation
R(X̃, Ỹ )ξ = −(∇̃

X̃
Ã)Ỹ + (∇̃

Ỹ
Ã)X̃,where ∇̃ is the Levi-Civita onnetion with respet to G. However, by (16), R(X̃, Ỹ )ξ = 0and the last identity turns into

(∇̃
X̃

Ã)Ỹ − (∇̃
Ỹ

Ã)X̃ = 0.Now, the tensor �eld Ã must be parallel sine it is a Codazzi tensor �eld and has twodi�erent onstant eigenvalues. Equivalently, the distributions D1, D2 are parallel.In what follows we denote by X̃1, Ỹ1, Z̃1, . . . and X̃2, Ỹ2, Z̃2, . . . vetor �elds belongingto D1 and D2, respetively.For the urvature tensor R̃ of ∇̃, the parallelity of D1 and D2 implies(24) R̃(X̃i, Ỹj)Z̃k = 0,if X̃i, Ỹj , Z̃k do not belong to the same distribution. Thus, R̃ is ompletely determinedby its behavior on Di, i = 1, 2. However, we will show that R̃|Di
= 0 for i = 1, 2. Indeed,by (23), we have JZ̃1 ∈ D2 and JZ̃2 ∈ D1. Consequently, by virtue of the identity

R̃(X̃, Ỹ ) = R̃(JX̃, JỸ ) and (24), we have
R̃(X̃1, Ỹ1)Z̃1 = R̃(JX̃1, JỸ1)Z̃1 = 0, R̃(X̃2, Ỹ2)Z̃2 = R̃(JX̃2, JỸ2)Z̃2 = 0.Thus, R̃ = 0 identially on N , that is, G is loally �at.In the seond part, we onsider the ase κ 6= const. We make a D-homotheti trans-formation (11) of the struture (ϕ, ξ, η, g) with α = 1 and β =

√
−κ. We obtain an almostosympleti (κ′, µ′, ν′)-struture (ϕ′, ξ′, η′, g′) with κ′ = −1. By virtue of the �rst part,the metri G′ indued from g′ on N is loally �at. But the metris G and G′ induedfrom g and g′ on the same leaf N are exatly the same. Thus, G is loally �at.Proposition 7. An almost osympleti (κ, µ, ν)-struture, κ < 0, an be D-homo-thetially transformed to an almost osympleti (−1, µ′, 0)-struture with µ′ = µ/

√
−κ.Proof. Let (ϕ, ξ, η, g) be an almost osympleti (κ, µ, ν)-struture. Make the D-homothe-ti transformation of the struture (ϕ, ξ, η, g) with α = 1 and β =

√
−κ. Then by Proposi-tion 3, we obtain an almost osympleti (κ′, µ′, ν′)-struture (ϕ′, ξ′, η′, g′) with κ′ = −1,

µ′ = −µ/
√
−κ and a ertain ν′; f. formula (17). But by Proposition 4, formula (21), forthe struture (ϕ′, ξ′, η′, g′), we must have dκ′(ξ′) = 2ν′κ′. This learly implies ν′ = 0.For almost osympleti (−1, µ, 0)-spaes, we have the following loal haraterization.



218 P. DACKO AND Z. OLSZAKTheorem 2. Let M be an almost osympleti manifold of dimension 2n + 1. Given
µ ∈ Rη(M), the following two onditions (I) and (II) are equivalent:(I) M is an almost osympleti (−1, µ, 0)-spae, that is,(25) R(X, Y )ξ = η(Y )(−I + µh)X − η(X)(−I + µh)Y.(II) At any point p ∈ M , there is a neighborhood U = (−a, a)×Ũ of p with oordinates
(t, x1, . . . , x2n), t being a oordinate on (−a, a) and (x1, . . . , x2n) oordinates on Ũ , andon U the struture tensor �elds ϕ, ξ, η, g an be expressed as(26) ϕ =

∑
ϕj

i dxi ⊗ ∂

∂xj
, ξ =

∂

∂t
, η = dt, g = dt ⊗ dt +

∑
gij dxi ⊗ dxj ,where the Latin indies take on values from the range {1, 2, . . . , 2n}, the sum is over therepeated indies and ϕj

i , gij are funtions depending on t only and suh that(27) ∑
ϕk

i gkj = +1 if j = i + n, −1 if i = j + n, 0 otherwise.Moreover, on U the tensor �elds A and h an be written as(28) A =
∑

Aj
i dxi ⊗ ∂

∂xj
, h =

∑
hj

i dxi ⊗ ∂

∂xj
,where Ai

j, hi
j are funtions of t only, whih satisfy the ondition ∑

As
i A

j
s = δj

i and thefollowing system of di�erential equations:(29) dϕj
i

dt
= 2hj

i ,
dhj

i

dt
= 2ϕj

i − µAj
i ,

dAj
i

dt
= µhj

i .Proof. (I)⇒ (II). Let M be an almost osympleti (−1, µ, 0)-spae and p be an arbitrarypoint on M . Aording to Theorem 1 of [13℄, hoose a oordinate neighborhood U ′ around
p with Darboux oordinates (t, x1, . . . , x2n) suh that U ′ = (−a, a) × Ũ , a > 0, where tis a oordinate on (−a, a) and (x1, . . . , x2n) are oordinates on Ũ . With respet to theseoordinates, the struture tensor �elds ϕ, ξ, η, g are expressed as in the formulas (26) and(27), but ϕj

i , gij are funtions depending on all oordinates t, x1, . . . , x2n in general. Noteadditionally that, by Aξ = 0 and hξ = 0, we also have (28) but with Aj
i , hj

i dependingon the all oordinates t, x1, . . . , x2n in general. With respet to this oordinate system,(22) takes the form(30) ∂ϕj
i

∂t
= 2hj

i ,
∂hj

i

∂t
= 2ϕj

i − µAj
i ,

∂Aj
i

∂t
= µhj

i .Observe that on U ′, µ is a funtion depending on t only.For any �xed t ∈ (−a, a), the subset {t} × Ũ ⊂ Up is an open part of a leaf of F. Theindued omplex struture J and the shape operator Ã an be written on {t}× Ũ in thefollowing way:
J =

∑
ϕj

i (t, ·) dxi ⊗ ∂

∂xj
, Ã =

∑
Aj

i (t, ·) dxi ⊗ ∂

∂xj
.Now, by Theorem 1 (the formula (23) should be onsidered too), we may assume that

(x1, . . . , x2n) are hosen suh that on {t} × Ũ

J
∂

∂xi
=

∂

∂xi+n
, J

∂

∂xi+n
= − ∂

∂xi
, Ã

∂

∂xi
=

∂

∂xi
, Ã

∂

∂xi+n
= − ∂

∂xi+n
.



ALMOST COSYMPLECTIC (κ,µ,ν)-SPACES 219This shows that ϕj
i and Aj

i depend on t only. Consequently, hj
i are funtions of t onlyin view of (5). And sine the omponents Φij of the fundamental form Φ are onstantsand gij = −

∑
ϕk

i Φkj , then gij depend on t only. Finally, (30) gives (29), and (19) gives∑
As

iA
j
s = δj

i .(II) ⇒ (I). We have only to prove that (25) holds under the additional assumptions(28) and (29).Let Xi = ∂/∂xi. Then ∇Xi
Xj = ∇Xj

Xi, ∇ξXi = ∇Xi
ξ. And sine Xi's are Killingvetor �elds, g(∇Xj

Xi, Xk) = 0 for any triple (Xi, Xj , Xk). Consequently, we have forthe Levi-Civita onnetion
∇Xi

Xj = ∇Xj
Xi = −g(Xi, AXj)ξ, ∇ξXi = ∇Xi

ξ = −AXi, ∇ξξ = 0.By the above formula and (28), (29), we ompute
R(Xi, Xj)ξ = [∇Xi

,∇Xj
]ξ = −∇Xi

AXj + ∇Xj
AXi

=
∑

(−Ak
j∇Xi

Xk + Ak
i ∇Xj

Xk) = 0,

R(ξ, Xi)ξ = ∇ξ∇Xi
ξ = −∇ξAXi = −

∑ (dAk
i

dt
Xk + Ak

i ∇ξXk

)

= −µ
∑

hk
i Xk + A2Xi = − µhXi + Xi.Using the two last formulas, we �nd

R(Y, Z)ξ = Y iZjR(Xi, Xj)ξ + Ziη(Y )R(ξ, Xi)ξ − Y iη(Z)R(ξ, Xi)ξ

= Ziη(Y )(−µhXi + Xi) − Y i(−µhXi + Xi)

= − η(Z)Y + η(Y )Z + µ(η(Z)hY − η(Y )hZ),whih is just the same as the formula (25).Investigations of the lass of almost osympleti (κ, µ, ν)-spaes will be ontinued inour forthoming paper [6℄.
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