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ON ALMOST COSYMPLECTIC MANIFOLDS

By ZBIGNIEW OLSZAK

§1. Introduction.

The purpose of the present paper is to study the structure of almost cosym-
plectic manifolds. §2 presents the basic definitions and some preliminary pro-
perties of an almost cosymplectic structure. Examples of such structures are
given in §3. In §4 we state many important curvature identities for almost
cosymplectic manifolds. In §5 we give certain sufficient conditions for an almost
contact metricstructure to be almost cosymplectic. Basing on the identities from
§4 we prove in §6 that almost cosymplectic manifolds of non-zero constant sec-
tional curvature do not exist in dimensions greater than three. However it is
known (cf. [2]) that such manifolds of zero sectional curvature (i.e. locally flat)
exist and they are cosymplectic. Moreover we give certain restrictions on the
scalar curvature of almost cosymplectic manifolds which are conformally flat or
of constant ¢-sectional curvature.

All manifolds considered in this paper are assumed to be connected and of
class C~. All tensor fields, including differential forms, are of class C®. The
notation and terminology will be the same as that employed in [2].

§2. Preliminaries.

Let (M, ¢, &, 9, g) be a (2n+1)-dimensional almost contact metric manifold,
that is, M is a differentiable manifold and (¢, &, 5, g) an almost contact metric
structure on M, formed by tensor fields ¢, & 7 of type (1, 1), (1, 0), (0, 1), respec-
tively, and a Riemannian metric g such that

P*=—I1+7Q¢, ¢&=0, 7n-¢=0, 7)=1,
n(X)=g(X, §), g(gX, ¢Y)=g(X, ¥V)—p(X)n(Y).

On such manifold we may always define a 2-form @ by @(X, ¥V)=g(¢X, ¥).
(M, ¢, &, n, g) is said to be an almost cosymplectic manifold (cf. [2]) if the forms
@ and 7 are closed, i.e. d@=0 and d7=0, where d is the operator of exterior
differentiation. In particular, if the almost contact structure of an almost cosym-
plectic manifold is normal, then it is said to be a cosymplectic manifold (cf. [1]).
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As it is known, an almost contact metric structure is cosymplectic if and only if
both Fy and F@ vanish, where /' is the covariant differentiation with respect
to g.

LEMMA 2.1. Let (M, ¢, &, 3, g) be an almost contact metric manifold. If 2-
form @ is closed, then

QD Fex®NY, 2)+F xOXY, Z)—n(X){dn(¢Y, Z)+dn(Y, $2)}
+p(V){dn(¢Z, X)—1/2L:g)Z, X} +9(2){dn(X, ¢Y)—dn(X, Y)} =0,

where L is Lie differentiation.

Proof. Because @ is closed, we have (F x @)Y, Z)+F yO)Z, X)+F ;) X, YV)
=0. This implies

(2.2) W xO)Y, 2)+WyD)Z, X)+F ,P)X, Y)
+V2P)$X, $Y)+F 52 DNpY, 2)+F 4 P)Z, $X)
—VxDX@Y, 92)— W 3y D) $Z, X)—( 35D)(X, §Y)
+,0X9Z, ¢ X)+ W 520)$X, Y)+ I 4x @)Y, $Z)=0.

The following relations are valid in any almost contact metric manifold and are
easy to obtain

(2.3) VT xDN@Y, ¢Z)+W xOXY, Z)=n(V)V xn)(@Z)—(Z)F xp)PY),
(24) T x0XoY, Z)=W xOXY, $Z)=n(Y)V x ) Z)+p(Z)F x7)Y).

In view of (2.3) and (2.4) the equality (2.2) reduces to (2.1), if we recall that
dn(X, V)=1/2{ xn)Y)=Fyp)X)} and (L:g)X, Y)=gW &, Y)+ g€, X)=
W x)(Y)+WF yp)(X). The proof is complete.

Suppose that (M, ¢, &, », g) is almost cosymplectic. Thus, the relations

2.5) WV xp)(Y)=W yp)(X)=0,
2.6 W xOXY, Z)+W y @) Z, X)+F D)X, Y)=0
hold good.

LEMMA 2.2. In an almost cosymplectic manifold we have
2.7 FxP)gY+W xd)Y—7(Y)V 5x6=0.

Proof. In our case dy=0 and (Leg)Z, ¢X)=2(F sx7)Z), by (2.5). There-
fore (2.1) gives

VsxDNY, Z)+ W xOXY, Z)— (V) 3x7)(2)=0,
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which leads to (2.7), completing the proof.
Now we give certain consequences of (2.7), which together with (2.7) play

very important role in §4. First, by

(V¢X¢)¢Y=(V¢X7))(Y)§+ 77(Y)7¢X5—¢(V¢X¢)Y,
we obtain from (2.7)
(2.8) OV 3x0)Y =W x)Y—F s x)(Y)E=0.

Operating ¢ onto (2.8) we get

(2.9 FoxP) Y+ xd) Y+ 4x)(pY)E=0.

2.7) for X=¢&, Y=¢ results

(2.10) V=0,

(2.11) Vsx§=—¢V x§,

respectively. Substituting X=¢ in (2.11), we see that ¢F:£=0, which yields
(2.12) V£=0.

On the other hand, (2.11) gives

(2.13) Fox)(Y)=W x9)@Y),

hence it follows that

(2.14) T oxnl@Y)=—WF xn)Y).

§3. Examples of almost cosymplectic manifolds.

The simplest examples of almost cosymplectic manifolds may be constructed
as follows. Let (N, J, G) be an almost Kihlerian manifold, that is, N is a 2n-
dimensional manifold, J is an almost complex structure and G is a Riemannian
metric on N such that J?=—1, G(JX, JY)=G(X, Y) and dF=0, where F is 2-
form defined on N by F(X, Y)=G(JX, Y). Let R be real line, and let G, be a
Riemannian metric, § a vector field and 7, a 1-form on R such that 7.&,)=1
and G, &,)=1. Consider the manifold M=NXR. Let (X;, X,) denote a tan-
gent vector to M, where X, is a tangent vector to NV and X, is a tangent vector
to R. Define a tensor field ¢ of type (1, 1), a vector field & and a 1-form 7 on
M taking ¢(X,, X,)=(JX,, 0), £=(0, &) and 7((X,, X.)=7¢(X:). Define also a
Riemannian metric g on M as the product of the metrics G and G,. Then
(¢, & 7, g) is clearly an almost cosymplectic structure on M. In like manner one
can construct an almost cosymplectic structure on NXS!, where S! is a circle.
In both these cases the structure vector field is parallel with respect to the Rie-
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mannian connection.

In the sequel we state almost cosymplectic structures with non-parallel vector
field & on certain Lie groups in every odd dimension.

Let L be a (2n+1)-dimensional real vector space and choose a basis {e,, e,
-, eynt of L. Let Ay, ---, Asn be constants such that A}+ --- +A%,>0. Define
a two-linear mapping [+, -]: LXL—L, taking for the basis vectors

Leo, e.]=—[e,, e)]=—Ase;— Arinlisn,
Leo, erinl=—[Crin, eo]=—Arsne;+Asrsn

for :=1, ---, n and [e,, ¢,]=0 in other cases. Observe that [-, -] is antisym-
metric and satisfies the Jacobi identity. Thus, L is a (2n-+1)-dimensional Lie
algebra with respect to [-, -].

Consider a connected Lie subgroup M of general linear group GL(k, R), for
certain %, such that the Lie algebra LM of M is isomorphic with L. Let o:
L—LM be the isomorphism. Let {E,, E,, ---, E,,} be the basis of LM formed
by left invariant vector fields on M such that E,=¢(e;) for j=0, 1, ---, 2n. Then

[EOy El]:—Ain'—At+nE1+n s
EEO; E1+n]:_A1+nEi+AzE1+n

for /=1, ---, n and [E,, E,]=0 in other cases. Define a left invariant Riemannian
metric g on M by g(E,, E,)=0;, 7, k=0, 1, -+, 2n. Define a left invariant
linear connection /' on M by

VEiEOIAIEi+Al+nEl+nt VEiELZ'—AzEO: VEIEHn:_AHnEo ,
VE”,LE():AHnEi—AzEHn; VE1+nE1:_A1+nEO; VE1+nE1+TL:ALE0 ’

for :=1, ---, n and VEjEk-——O in other cases. It is easy to verify that /' is metric
with respect to g and symmetric, that is, // is the Riemannian connection with
respect to g.

Define a 1-form 7 and a (1, I)-tensor field ¢ on M by 7(E;)=d,, for j=0, 1,
=+, 2n, and ¢E,=0, ¢E.=E\.p, §E,.n,=—E,, for 1=1, -+, n. Suppose also E=E,.
Then (¢, &, 7, g) is an almost contact metric structure on M. We show that
(4, &, 1, g) is an almost cosymplectic structure. First one can find that

2d9(E), E)=8Wg,E0, Ex)—gWg,Eo E)H=0,

for j, k=0, 1, ---, 2n, i.e. (2.5) holds good. Further, from our definitions follow
the equalities

(VEi¢)E0:AZ+nEi_A1E1+7L; (VEi¢)Ez:_Az+nE0; (VE1¢)E‘L+TL:A1E0 ’
(VE“.,,QS)E():_Ain'_AHnEHny (VE1+,L¢)E1:A1E0; (VEl+n¢)E1+n:A1+nE0,
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for =1, -+, n and (F Ej¢)Ek=O in other cases. In virtue of these relations, we
verify that

3(d@)<E1: Ek} El):g((VEJ¢)Ek) El)+g((VEk¢)Ely E]>+g((VEL¢)EJ) Ek):O,

for 7, k, (=0, 1, ---, 2n, i.e. (2.6) holds good. Finally, because of A%+ --- +A%,>0,
V&+0 and F¢+0.

§4. Curvature identities.

Assume that (M, ¢, &, n, g) is an almost cosymplectic manifold. We denote
by R the curvature tensor, i.e. Rxyzw=g(RxyZ, W), where Rxy=[V x, Vy]—Vix v
is the curvature transformation. Let S be the Ricci tensor, and S* the Ricci *

2n

tensor defined by S*(X, Y)= X Rg,x¢rsr;, Where {E,, E;, -+, Esn} is an ortho-
1=0

normal frame. Let » be the scalar curvature and r* the scalar * curvature de-

fined by r*= 25*(5'@, E).

THEOREM 4.1.  Any almost cosymplectic manifold satisfies the following
identities

(4.1) Ryyzw— Rxyszow— Roxgvzw+ Roxovozew+ Roxvezwt+ Roxvzew
2n
+RX¢Y¢ZW+RX¢YZ¢W"21§0(VE,,@)(Xy Y)YV g, 0)Z, W)=0,
4.2) S(Y, 2)+S(@Y, ¢Z)—SXY, Z)—S¥Z, Y)

1 2n
_ _2‘(R5¢Y¢Z$+ R&YZ5)+ g}) g((VElﬁf’) Y, (VE,¢)Z):0 B

3 r—r*=S@, &+ 5 7 $|=0.

Proof. Relation (2.9) in virtue of (2.14) may be rewritten in the following
form

(4.4) Vy@Z—V 4w Z4 ¢V vy ZA-V v Z—Y(9(Z))E=0.
Hence by the covariant differentiation we derive
(4.5) ViV sy@Z—V x @V 3w ZAV 3V y ¢ Z+V £V Z— X(Y(p(Z)))E— Y ((Z))WV x6=0.

Taking ¢X instead of X in (4.5) and using (4.4) and (2.11) we obtain
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VoxVoy@Z—V 3xV 53 Z—V xVy @ ZA-V 1V 33y 24V 3 xVy ¢ ZA-V 3 xV v Z
+ @V x ¢V svZ— @V x ¢V y$Z— XV 3y 206+ X(n(W v Z))6
—(@X)(Y((ZE+Y((Z)V x£=0.
On the other hand operating ¢ onto (4.5) we have
OV 5V 5y Z—V 3@V 33 Z+V x Vv Z+ PV 5V v Z— Y ((Z))$V x£=0.
Adding the two last equalities we get
4.6) VxV sy @Z—@V 4V g5 Z—V xVyPZ+V xVyZ+V 53V y ¢ Z+V 52V vZ
+ OV xV sy pZ+V 3V yv Z— X 5w Z)E—(p XN Y (p( 2+ X(n(V v Z))E=0.
In the sequel we fix a point m< M and assume that X, Y, Z, W are covariant
constant at m. Then the antisymmetrization of (4.6) with respect to X and Y
and the projection of the resulting equation onto ¢V lead to
4.7 Ryxgpvzgw— Ryxgvaw— Rxvgzgw+ Rxvzw
+Ryxvozwt Ryxvzgw+ Rxgyrozw+ Rxgrzgw
+8Wesx, 90192, SW)+eW o x vivex, g Z, W)
+ W) {Rsxgrze— Rxyvzs— Ryxvgzi— Rxgyoze— W igx. viscx, gri9Z)} =0.

From (2.6) it follows that (F x¢)Y —(Vy¢) X=— 2gn())(VEl(Z))(X, Y)E,. Therefore and
by (2.9) and (2.5) we find

[6X, $Y 1= sx )Y~ ) X=— | x )V ~(F3$)X} = 3 75, 00X, V).,

[$X, YI+[X, §Y I=(7 )Y —(Fr§)X=— 3 (75, 0XX, V)E, .
These identities and (4.4) imply

8P csr. 9092, $W)= 3 T 500X, V)g( 45,67, $1)
== B 75,00X, V)glgl .92, $WV)
== BT 0(X, V{5,002, W)=y 5,62y},

8Pioxrcx,srpZ, W)=— 8 75, 00X, V)75, 0XZ, W),
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PPegx.ronce grpZ)=— 2 T, O(X, V)97 5,$2).

Moreover, using (2.6), (2.10) and (2.11), we find

V5, 02)=g((Vp,$)Z, £)=—g((V29)§, E)=g(¢V 2, E)=—g 325, E.).
If we use the above identities in (4.7), then we obtain
4.8 Ryxgvozew— Rysxovaw— Rxvozew+ Rxvaow

+Ryxvgzwt Roxvzow+ Rxgrszwt+ Rxgyzow

+W){Ryxpvze— Rxvze— Ryxvgze— Rxgroze—2 p 4,6 0)X, Y)}

—2 g(VELq)xX, Y )V 5.9)Z, W)=0.
Symmetrizing of (4.8) with respect to Z and W, and next taking W=¢& in the
resulting equality we find

R¢X¢YZ§_ RXYZG'— R¢XY¢Z§'— RX¢Y¢Z$—2(VV¢Z$@)(Xy Y)=0.

In view of the above identity, (4.8) implies (4.1).

Now we choose a ¢-basis, i.e. an orthonormal frame {E,, E,, -, E;a} such
that Ey=§ and E,.,=¢FE, for :=1, -, n. Taking X=W=E, into (4.1) and
summing over 5j=0, 1, ---, 2n, we obtain (4.2). Substituting Y=Z=F, into (4.2)
and summing over k=0, 1, ---, 2n we get (4.3). This completes the proof.

THEOREM 4.2. For any almost cosymplectic manifold we have

(4.9 RXY¢Z$— R¢X¢Y¢Z5— R¢XYZ$'_ RX¢Y25—2(VVZ$(D)(X- Y)=0,
(4.10) Repzet Repyozet+2gWyvE, V 26)=0,
(4.11) S, &)+ 1F&1*=0.

Proof. We have already known that
4.12) Rxyze— Ryxprzet Roxvozet Rxgvozet2(Vp 5,:@)X, Y)=0.

If we take ¢Z instead of Z in (4.12) and recall (2.12), then we find (4.9). For
X=&, the relation (4.12) yields

(4.13) R5Y25+R$¢Y¢Z£+2(VV¢ZSQ))(Ey Y)=0.
But by (2.11) and (2.5) we have
(VV¢25@)(57 Y):_g(¢VV¢ZE§: Y):g(VszE) Y):g(VYSV VZS) s

which together with (4.13) implies (4.10). Now for a choosen ¢-basis we take
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Y=7=E, into (4.10) and sum over j=0, 1, ---, 2n. Then we obtain (4.11), which
completes the proof.

§5. Certain sufficient conditions.

First of all we state the necessary denotations.

Let (M, ¢, & 7, g) be an almost contact metric manifold. Let {E, Ey, -+, Esn}
be an orthonormal frame of T,(M), peM. By the same letters we denote local
extension vector fields of this frame, which are orthonormal and covariant con-
stant at p. If V is a vector field on M, then its divergence is given by

div V=trace (X—F xV} = 3 g5V, E).
If w is a differential r-form on M, then the codifferential of w is defined by
2n
oYy, -, Yr_1)=—1§ Vgw)E, Yy, o, Yoio).
A differential form is said to be harmonic, if it is zero of the operators d and 4.

LEMMA 5.1.

(5.1) div (P §+095)=S(§, &)+ |V&|*—(dn)*—2]dy|*.

Proof is given in local coordinates in [4], p. 41.

LEMMA 5.2, If V=33 6075, )Es and U= 3 (T $)pE., then

(5.2) div V—div U=r—r*—S(§, $)+%|V¢|2—%I dO|*—690]*.
Proof. Compute
(5.3) div V=—3 (ss.9)E. e dE)
+8(Ree ) Ei+V gV e, $)E., JE}
== 10012 +r—r*=5 = 3 g(TsF s, HE., HEy).
Moreover

(5.4 divU=— 3 (e(Vsf 2@, $E)+2(T 2, 9)Es, T $)E))

== 3 s s HE, SEI+ 5 1dDI— 1T,
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because of |d®| 22% \Ve|*— %l jzzo gV e, 9 E,;, Vg,¢)E,). The equalities (5.3) and

(5.4) give now our assertion, i.e. (5.2).

We know that any almost cosymplectic manifold satisfies necessarily the
equalities (4.3) and (4.11). In a compact case the following theorem is true:

THEOREM 5.3. If a compact almost contact metric mamfold satisfies the
equalities (4.3) and (4.11), then 1t 1s almost cosymplectic.

Proof. By Green’s theorem (cf. e.g. [3], Appendix 6), we have from (5.1)
and (5.2)

|, 156 o+1rel—@yr—2ldy|* am=0,

[ fr—r=s o+ 5 1Pg1— 51401 100 1 ar=o,

M

respectively, where dM is the natural volume element on M. These integrals
under our assumptions, i.e. (4.3) and (4.11), reduce to

[ Jonrratayitam=0, | {Z1401+1501}am=0.

Hence d7=0 and d@=0, which completes the proof.

The forms » and @ of an almost cosymplectic manifold are coclosed, i.e.
d7p=0 and d@=0 (see [2]; it also clearly follows from our relations (2.7) and
(2.14)). Thus, they are harmonic forms. We prove

THEOREM 5.4. If an almost contact metric manifold (M, ¢, &, 3, g) fulfills
the conditions (4.3), (4.11), V:£=0 and the forms 7n and @ are coclosed, then
(M, ¢, &, n, g) s almost cosymplectic.

Proof. By our assumptions it follows from (5.1) that d»=0. The coclosed-
ness of @ yields immediately that ¥=0. On the other hand we have

U= B (75" Ei V=—0,8+7 &~ V=0.

The vanishing of vector fields V, U and our assumptions used in (5.2) give d@=0,
completing the proof.

LEMMA 5.5. Any 3-dimensional almost contact metric manifold fulfils the
relations |V ¢|*=2|F&|?, 3|dD|*=2(0%)* and |09 |*=2|dp|*

Proof. Choose a local ¢-basis {E,=§, E,, E;=¢£E,} of M. By direct calcula-
tions we obtain
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2

PgI= 5 g $)Es E}*=2 3 {eWs,Bo E0F=2I75|",

1,7, k=0

Moreover one can verify that 3dD(E,, E,, E;)=—087, 6Q(E)=2d7(E,, E), 6O(E,)
=2d7(E,, Ev), 0O(E,)=2d7(E,, E;). These equations give |d®@|*=2/3(67)* and
|09 ]2=2|d7|? completing the proof.

The following corollaries one can obtain as consequences of the above lemma.

COROLLARY 5.6. Any 3-dimensional almost contact metric manifold s cosym-
plectic if and only 1f VE=0.

COROLLARY 5.7. Let (M, ¢, &, 5, g) be a 3-dimensional almost contact metric
manifold. If at least one of the forms n or @ s harmonic, then (M, ¢, &, 7, g)
is almost cosymplectic.

The next theorem follows from Lemma 5.1 and Corollary 5.7.

THEOREM 5.8. Any compact 3-dimensional almost contact metric manifold
satisfying the condition (4.11) s almost cosymplectic.

§6. Almost cosymplectic manifolds under some additional conditions.

It has been proved in [1] that a cosymplectic manifold of constant curvature
is locally flat. For almost cosymplectic manifolds it is proved in [2] that an
almost cosymplectic manifold of constant curvature is cosymplectic if and only if
it is locally flat. However we prove here

THEOREM 6.1. Almost cosymplectic manifolds of non-zero constant curvature
do not exist in dimensions=5.

Proof. Assume RyyZ=K{g(Y, Z)X—g(X, Z)Y}, K=const.#0. Then (4.9)
and (4.10) give

(6.1) V5 2ep) X=K{n(X)pZ—g(¢Z, X)&},

6.2) gWyé, V28)=—K{g(Y, Z)—n(Y)n(2)},

respectively. Since by (2.5) g(Wy€, V26)=g(V £, Y), we obtain from (6.2) V&
=—K{Z—n(Z)&}. Therefore, the substitution / ;£ instead of Z in (6.1) yields, by
(2.10),

V29)Y=—n(X)V 26— gV 2£, $X)E .

Hence we derive |F¢|?=2|F&|% But [F&|*=—2nK, by (411). Thus, [F¢|*=
—4nK. In view of this relation and »=2n(2n+1)K, r*=2nK, S, &)=2nK, it
follows from (4.3) that n=1 or dim M=3. This completes the proof.
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THEOREM 6.2. Let (M, ¢, &, 7, g) be a conformally flat almost cosymplectic
manifold with dim M=5. Then the scalar curvature of (M, ¢, &, », g) 1s non-
positive and the manifold is cosymplectic if and only if it is locally flat.

Proof. Conformal flatness yields

1
63 Ryvaw= 15— (g(X, WS(Y, 2)—g(Y, W)S(X, Z)+g(Y, 2)S(X, W)
7
~g(X, 2)S(Y, W)} = 550 5 {elX, W)g(Y, 2)—g(X, Z)g(YV, W) .
It follows immediately from (6.3) that r*= an_ 1 {r—2S(, &)}, which together

with (4.3) and (4.11) gives

2n—2 2n—3
on—1 " o1

From (6.4) we have =0 and »=0 if and only if /=0, F$=0. To finish the
proof we must only prove that cosymplecticity of (M, ¢, &, 5, g) implies its local
flatness. But, if Vé=0 and F¢=0, then Ryxyé=0 and by (6.4) »=0. Hence
S(X, £)=0. Substituting X=W=¢& in (6.3) and applying the above relations we
obtain S(Y, Z)=0, which completes the proof.

In the next theorem we consider an almost cosymplectic manifold of constant
¢-sectional curvature. That is, we assume that at any point p&M the sectional
curvature K(X, ¢X) (denote it by H,) is independent of the choice of the tangent
vector X=T,(M), 0+X1& By H we denote the ¢-sectional curvature of the
manifold, i.e. H: M—R, H(p)=H,.

(6.4)

P15 1761°=0.

THEOREM 6.3. Let (M, ¢, &, v, g) be an almost cosymplectic manifold of con-
stant ¢-sectional curvature. Then the scalar curvature and the ¢-sectional curva-
ture satisfy the inequality n(n+1)H=r. Equality holds 1f and only if (M, ¢,&, 5, g)
is cosymplectic.

Proof. By the assumption we have Rysxxsx+H,| X|*=0 at any point peM
and for any XeT (M), X1§&. Clearly, this condition implies

(6.5) RyxgtxgxgixtHylgX|'=0

at any point peM and for any XeT ,(M). Set
Pyyaw=Rsxgvozs’w+H,8(0X, 02)g(¢Y, gW).

The tensor P satisfies Pyxyzw=Pzwxy. [herefore (6.5) is equivalent to

(6.6) Pxyzw+ Pxywz+ Prxzw+ Prxwz+ Pxwrzt+Pxwzy
+Pwxyzt+Pwxzvt Pxzvw+ Pxzwy+Pzxyw+ Pzxwy=0.
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Choosing a ¢-basis, taking X=W=E,, Y=Z=EF, into (6.6) and summing over 7
and ; we obtain

2n
l’]=0(PEiE]EjEl+PE,;EjEiEJ+PEiEiEjEj):O )

which by the definition of P and the first Bianchi identity gives
dn(n+1)H—3r*—r+2S(, £)=0.
This together with (4.3) and (4.11) yields

n(nt DH—r= P81+ S g1,

which completes the proof.
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