ON ALMOST ESSENTIALLY RUSTON ELEMENTS OF A BANACH ALGEBRA

Snežana Č. Živković-Zlatanović* and Robin E. Harte

Abstract

We introduce the class of "almost essentially Ruston elements" with respect to a homomorphism between two Banach algebras, a class intermediate between Ruston and Fredholm elements.

1 Introduction

Let \mathbb{C} denote the set of all complex numbers and let A and B denote complex Banach algebras, with identities denoted in both cases with 1 , and invertible groups A^{-1} and B^{-1}, respectively. By $\sigma(x, A)$ we denote the spectrum of an element $x \in A$. The radical of A is the set

$$
\operatorname{Rad}(A)=\left\{x \in A: 1-A x \subset A^{-1}\right\}=\left\{x \in A: 1-x A \subset A^{-1}\right\}
$$

The radical is unchanged if the invertible group A^{-1} is replaced by either the semigroup $A_{l e f t}^{-1}$ of left invertible elements, or the semigroup $A_{\text {right }}^{-1}$ of right invertible elements, and can also be realised as the intersection of all maximal proper left ideals, similarly right ideals.

Let S be a subset of A. The commutant of S is defined by $\operatorname{comm}(S)=\{x \in A$: $x s=s x$ for all $s \in S\}$. The perturbation class of S, denoted by $P(S)$, is the set

$$
P(S)=\{x \in A: x+s \in S \text { for every } s \in S\}
$$

The quasinilpotents of A form the set

$$
\begin{equation*}
Q N(A)=\{x \in A: \sigma(x, A)=\{0\}\}=\left\{x \in A: 1-\mathbb{C} x \subset A^{-1}\right\} . \tag{1}
\end{equation*}
$$

Recall that [6, Theorem 2.11]: if $x, y \in A$, then

$$
\begin{equation*}
x y=y x \Longrightarrow \sigma(x y, A) \subset \sigma(x, A) \sigma(y, A) \tag{2}
\end{equation*}
$$

2010 Mathematics Subject Classifications. 47A53.
Key words and Phrases. Ruston, Weyl, Fredholm.
Received: March 15, 2010
Communicated by Dragan S. Djordjević
*The author is supported by the Ministry oF Science of Serbia, grant no. 144003
and

$$
\begin{equation*}
x y=y x \Longrightarrow \sigma(x+y, A) \subset \sigma(x, A)+\sigma(y, A) \tag{3}
\end{equation*}
$$

From (2) it follows that

$$
\begin{equation*}
x \in Q N(A) \Longrightarrow \operatorname{comm}(x) x \subset Q N(A) \tag{4}
\end{equation*}
$$

which together with (1) implies

$$
\begin{equation*}
Q N(A)=\left\{x \in A: 1-\operatorname{comm}(x) x \subset A^{-1}\right\} \tag{5}
\end{equation*}
$$

The radical can be recognised as the perturbation class of the invertible group, and the quasinilpotents as a sort of commutative analogue: there are the equivalencies

$$
\begin{equation*}
x \in \operatorname{Rad}(A) \Longleftrightarrow(\forall g)\left(g \in A^{-1} \Longrightarrow x+g \in A^{-1}\right) \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
x \in Q N(A) \Longleftrightarrow(\forall g)\left(g \in A^{-1} \cap \operatorname{comm}(x) \Longrightarrow x+g \in A^{-1}\right) \tag{7}
\end{equation*}
$$

Observe also that (6) holds separately for the left and right invertible semigroups and that (7) follows from (5) and (1).

Recall that [6, Theorem 1.43]

$$
\begin{equation*}
x \in A \text { is invertible } \Longleftrightarrow x+\operatorname{Rad}(A) \text { is invertible in } A / \operatorname{Rad}(A) . \tag{8}
\end{equation*}
$$

Consequently,

$$
\begin{equation*}
\sigma(x, A)=\sigma(x+\operatorname{Rad}(A), A / \operatorname{Rad}(A)) \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
x \text { is quasinilpotent } \Longleftrightarrow x+\operatorname{Rad}(A) \text { is quasinilpotent. } \tag{10}
\end{equation*}
$$

A map $T: A \rightarrow B$ is a homomorphism if T is linear and satisfies $T(x y)=T x T y$, $x, y \in A$, and $T 1=1$. The homomorphism T has the Riesz property if 0 is the only one possible point of accumulation of $\sigma(x, A)$ for every $x \in T^{-1}(0)$, that is, if $T x=0$, then $\sigma(x, A)$ is either finite or a sequence converging to $0[1]$.

If $T: A \rightarrow B$ is a homomorphism, then $T\left(A^{-1}\right) \subset B^{-1}$ and hence

$$
A^{-1} \subset A^{-1}+T^{-1}(0) \subset T^{-1}\left(B^{-1}\right)
$$

Recall the following definitions from [1], [3]:
An element $a \in A$ is T-Fredholm if it has an invertible image,

$$
a \in T^{-1}\left(B^{-1}\right)
$$

and T-Weyl if it splits into the sum of an invertible and an essentially null element:

$$
a \in A^{-1}+T^{-1}(0)
$$

Thus, a is T-Weyl if

$$
a=c+d \text { with } c \in A^{-1}, T d=0
$$

If the previous sum is commutative, then $a \in A$ is T-Browder:

$$
a \in A^{-1}+{ }_{c} T^{-1}(0) .
$$

Corresponding spectra of $a \in A$ are defined as:
$\sigma_{f}^{T}(a)=\sigma(T a, B)$-the Fredholm spectrum,
$\sigma_{w}^{T}(a)=\{\lambda \in \mathbb{C}: a-\lambda$ is not $T-$ Weyl $\}$-the Weyl spectrum.

2 Almost essentially Ruston elements

Recall the following definitions from [4]:
An element $a \in A$ is T-Ruston if

$$
a=c+d \text { with } c \in A^{-1}, c d-d c \in\{0\}, T d \in Q N(B),
$$

an element $a \in A$ is essentially T-Ruston if

$$
a=c+d \text { with } c \in A^{-1}, c d-d c \in T^{-1}(0), T d \in Q N(B) .
$$

Let us mention that essentially Ruston elements are called almost Ruston elements in [4]. We introduce the following elements which are intermediate between essentially Ruston and Fredholm elements:

An element $a \in A$ is almost essentially T-Ruston if

$$
a=c+d \text { with } c \in A^{-1}, c d-d c \in T^{-1}(\operatorname{Rad}(B)), T d \in Q N(B)
$$

2.1 Theorem. Let $T: A \rightarrow B$ be a homomorphism. If $a \in A$ is an almost essentially T-Ruston element, that is $a=c+d$ where $c \in A^{-1}, T d \in Q N(B)$ and $c d-d c \in T^{-1}(\operatorname{Rad}(B))$, then $\sigma(T a, B)=\sigma(T c, B)$ and a is T-Fredholm.
Proof. Let $\pi: B \rightarrow B / \operatorname{Rad}(B)$ denote the quotient map and let $a=c+d$ where $c \in A^{-1}, T d \in Q N(B)$ and $c d-d c \in T^{-1}(\operatorname{Rad}(B))$. Hence $\pi(T c)$ and $\pi(T d)$ commute. By (9) we have $\sigma(T a, B)=\sigma(\pi(T a), B / \operatorname{Rad}(B)), \sigma(\pi(T d), B / \operatorname{Rad}(B))=$ $\sigma(T d, B)=\{0\}$ and $\sigma(\pi(T c), B / \operatorname{Rad}(B))=\sigma(T c, B)$. Then, according to (3), we have

$$
\begin{aligned}
\sigma(T a, B) & =\sigma(\pi(T a), B / \operatorname{Rad}(B)) \\
& =\sigma(\pi(T c)+\pi(T d), B / \operatorname{Rad}(B)) \\
& \subset \sigma(\pi(T c), B / \operatorname{Rad}(B))+\sigma(\pi(T d), B / \operatorname{Rad}(B)) \\
& =\sigma(\pi(T c), B / \operatorname{Rad}(B)) \\
& =\sigma(T c, B) .
\end{aligned}
$$

As $c=a-d$ and $a d-d a \in T^{-1}(\operatorname{Rad}(B))$, we get $\sigma(T c, B) \subset \sigma(T a, B)$. Hence $\sigma(T a, B)=\sigma(T c, B)$. Since $c \in A^{-1}$, it follows that $0 \notin \sigma(T c, B)$, which implies that $0 \notin \sigma(T a, B)$, i.e. $T a \in B^{-1}$. Thus a is T-Fredholm.

Let us remark that the fact that every almost essentially T-Ruston element is T-Fredholm can be proved also by using (7):

Suppose that $a \in A$ is an almost essentially T-Ruston element, i.e. $a=c+d$ where $c \in A^{-1}, T d \in Q N(B)$ and $T(c d-d c) \in \operatorname{Rad}(B)$. Then $\pi(T a)=\pi(T c)+$ $\pi(T d), \pi(T c)$ is invertible, $\pi(T d)$ is quasinilpotent and $\pi(T c)$ and $\pi(T d)$ commute. According to (7) we conclude that $\pi(T a)$ is invertible which by (8) implies that $T a$ is invertible. Hence a is T-Fredholm.

Therefore we have:

$$
\text { Browder } \Rightarrow \begin{gather*}
\text { Ruston } \tag{11}\\
\text { Weyl }
\end{gather*} \Rightarrow \text { essentially Ruston } \Rightarrow \text { almost essentially Ruston } \Rightarrow \text { Fredholm }
$$

The essentially Ruston spectrum of $a \in A$ is defined as:

$$
\sigma_{e r}^{T}(a)=\{\lambda \in \mathbb{C}: a-\lambda \text { is not essentially } T-\text { Ruston }\}
$$

and the almost essentially Ruston spectrum of $a \in A$ is defined as:

$$
\sigma_{\text {aer }}^{T}(a)=\{\lambda \in \mathbb{C}: a-\lambda \text { is not almost essentially } T-\text { Ruston }\} .
$$

Let us remark that

$$
\sigma_{a e r}^{T}(a)=\cap\left\{\sigma(a-d, A): T d \in Q N(B), a d-d a \in T^{-1}(\operatorname{Rad}(B))\right\}
$$

and consequently, this spectrum is compact. Clearly,

$$
\begin{equation*}
\sigma_{f}^{T}(a) \subset \sigma_{a e r}^{T}(a) \subset \sigma_{e r}^{T}(a) \subset \sigma_{w}^{T}(a) \tag{12}
\end{equation*}
$$

and we conclude that $\sigma_{\text {aer }}^{T}(a)$ is nonempty.
In [4, Theorem 6.6] it is proved that if $T: A \rightarrow B$ is a homomorphism with closed range which satisfies the Riesz property, then Ruston elements are Browder and essentially Ruston elements are Weyl. We can improve the second assertion:
2.2 Theorem. If $T: A \rightarrow B$ is a homomorphism with closed range which satisfies the Riesz property, then every almost essentially T-Ruston element is T-Weyl. Proof. Let $a=c+d$, where $c \in A^{-1}, d \in T^{-1}(Q N(B))$ and $c d-d c \in T^{-1}(\operatorname{Rad}(B))$. As $T c T d-T d T c \in \operatorname{Rad}(B)$, it follows that $T c^{-1} T d-T d T c^{-1} \in \operatorname{Rad}(B)$, since $\operatorname{Rad}(B)$ is a two-sided ideal. If $\pi: B \rightarrow B / \operatorname{Rad}(B)$ denotes the quotient map, then $\pi\left(T c^{-1}\right)$ and $\pi(T d)$ commute, and by (10), $\pi T d \in Q N(B / \operatorname{Rad}(B))$. From
(4) it follows that $\pi\left(T\left(c^{-1} d\right)\right) \in Q N(B / \operatorname{Rad}(B))$, and so $T\left(c^{-1} d\right) \in Q N(B)$ by (10). Therefore, $c^{-1} a=1+c^{-1} d$ is T-Ruston and by [4, Theorem 6.6.1], $c^{-1} a$ is T-Browder. Thus $a=c\left(c^{-1} a\right)$ is T-Weyl.
2.3 Corollary. If $T: A \rightarrow B$ is a homomorphism with closed range and satisfies the Riesz property, then the set of T-Weyl elements, the set of essentially T-Ruston elements and the set of almost essentially T-Ruston elements are equal.
Proof. Follows from Theorem 2.2 and the diagram (11).
2.4 Corollary. If $T: A \rightarrow B$ is a homomorphism with closed range and satisfies the Riesz property, then for $a \in A$

$$
\sigma_{a e r}^{T}(a)=\sigma_{e r}^{T}(a)=\sigma_{w}^{T}(a)
$$

If $K \subset \mathbb{C}$ is compact, then ηK denotes the connected hull of K, i.e. ηK is the union of K and the bounded components of the complement of K.
2.5 Corollary. If $T: A \rightarrow B$ is an onto homomorphism and $a \in A$, then $\sigma_{\text {aer }}^{T}(a) \subset$ $\eta \sigma_{f}^{T}(a)$ and hence $\eta \sigma_{a e r}^{T}(a)=\eta \sigma_{f}^{T}(a)$.
Proof. Follows from the first and the second inclusion in (12), and [4, Corollary 7.4].
2.6 Corollary. If $T: A \rightarrow B$ is a homomorphism with closed range and $a \in A$, then $\sigma_{\text {aer }}^{T}(a) \subset \eta \sigma_{f}^{T}(a)$ and hence $\eta \sigma_{\text {aer }}^{T}(a)=\eta \sigma_{f}^{T}(a)$.
Proof. Follows from the first and the second inclusion in (12), and [4, Corollary 7.5].
V. Müller [5, Definition 1] introduced the following concepts:

A subset R of a Banach algebra A is an upper semiregularity if
(i) $a \in R, n \in \mathbb{N} \Rightarrow a^{n} \in R$,
(ii) if a, b, c, d are mutually commuting elements of A satisfying $a c+b d=1$ and $a, b \in R$, then $a b \in R$,
(iii) R contains a neighbourhood of 1 ,
and an lower semiregularity if
(i) $a \in R, n \in \mathbb{N}, a^{n} \in R \Rightarrow a \in R$,
(ii) if a, b, c, d are mutually commuting elements of A satisfying $a c+b d=1$ and $a b \in R$, then $a, b \in R$.
2.7 Corollary. Let $T: A \rightarrow B$ be a homomorphism. If either B is commutative or T has closed range and satisfies the Riesz property, then the set of almost essentially T-Ruston elements is an upper semiregularity.
Proof. If B is commutative, then from the definitions it is obvious that the set of almost essentially T-Ruston elements is equal to the set of essentially T-Ruston
elements. If T has closed range and satisfies the Riesz property, then, by Corollary 2.3 , these sets are equal again. Now the assertion follows from [4, Corollary 8.4].
2.8 Corollary. Let $T: A \rightarrow B$ be a homomorphism. If either B is commutative or T has closed range and satisfies the Riesz property, then

$$
\sigma_{a e r}^{T}(f(a)) \subset f\left(\sigma_{a e r}^{T}(a)\right)
$$

for all $a \in A$ and all functions f analytic on a neighbourhood of $\sigma(a)$ and nonconstant on each component of its domain of definition.
Proof. Follows from Corollary 2.7 and [4, Corollary 8.5].
In [4] it is remarked that from [2, Example 4.4] it follows that the set of T Weyl elements is not a lower semiregularity even if the homomorphism T has the Riesz property and closed range. From Corollary 2.3 and the same example it follows that, in general, the set of almost essentially Ruston elements is not a lower semiregularity.

In [4] it is proved that if $a \in A$ is a Ruston (essentially Ruston) element, then a^{n} is a Ruston (essentially Ruston) element for every $n \in \mathbb{N}$. We prove:
2.9 Theorem. Let $T: A \rightarrow B$ be a homomorphism and $a \in A$. If a is almost essentially T-Ruston, then a^{n} is almost essentially T-Ruston for every $n \in \mathbb{N}$.
Proof. Suppose that $a=c+d$, where $c \in A^{-1}, T d \in Q N(B)$ and $c d-d c \in$ $T^{-1}(\operatorname{Rad}(B))$. Then $\pi(T c)$ and $\pi(T d)$ commute, and by $(9), \sigma(\pi(T d), B / \operatorname{Rad}(B))=$ $\sigma(T d, B)=\{0\}$, where $\pi: B \rightarrow B / \operatorname{Rad}(B)$ denotes the quotient map. For $n \in \mathbb{N}$, $a^{n}=c_{1}+d_{1}$, with $c_{1}=c^{n} \in A^{-1}$ and $d_{1}=\sum_{k=1}^{n}\binom{n}{k} c^{n-k} d^{k}$. Hence, according to (2) and (3), we get

$$
\begin{aligned}
& \sigma\left(\pi\left(T d_{1}\right), B / \operatorname{Rad}(B)\right)=\sigma\left(\sum_{k=1}^{n}\binom{n}{k}(\pi(T c))^{n-k}(\pi(T d))^{k}, B / \operatorname{Rad}(B)\right) \\
& \quad \subset \sum_{k=1}^{n}\binom{n}{k}(\sigma(\pi(T c), B / \operatorname{Rad}(B)))^{n-k}(\sigma(\pi(T d), B / \operatorname{Rad}(B)))^{k} \\
& \quad=\{0\}
\end{aligned}
$$

By (9), $\sigma\left(T d_{1}, B\right)=\sigma\left(\pi\left(T d_{1}\right), B / \operatorname{Rad}(B)\right)$, and so $T d_{1} \in Q N(B)$. Since $\pi(T c)$ and $\pi(T d)$ commute, it follows that $\pi\left(T c_{1}\right)$ and $\pi\left(T d_{1}\right)$ commute, i.e. $c_{1} d_{1}-d_{1} c_{1} \in$ $T^{-1}(\operatorname{Rad}(B))$. Therefore, a^{n} is almost essentially T-Ruston.

In [4] it is noticed that product of two Ruston elements does not have to be Ruston. We remark that also product of two essentially Ruston element is not always essentially Ruston:

Suppose that $a=c+d$ where $c \in A^{-1}, T d \in Q N(B)$ and $T c T d-T d T c \in$ $\operatorname{Rad}(B) \backslash\{0\}$, in other words a is almost essentially T-Ruston but not essentially
T-Ruston. As in the proof of Theorem 2.2 we conclude that $T\left(c^{-1} d\right) \in Q N(B)$. Thus $1+c^{-1} d$ is T-Ruston and so it is an essentially T-Ruston element. Since $a=c\left(1+c^{-1} d\right)$, it follows that a is a product of two essentially T-Ruston elements which is not essentially T-Ruston.

Moreover, we see that every almost essentially T-Ruston element is the product of two T-Ruston elements.

References

[1] R. Harte, Fredholm theory relative to Banach algebra homomorphism, Math. Z. 179 (1982), 431-436.
[2] R. Harte, Fredholm, Weyl and Browder theory, Proc. R. Ir. Acad. 85A(2) (1985), 151-176.
[3] R. Harte, Invertibility and singularity for bounded linear operators, Marcel Dekker, New York, 1988.
[4] H. du T. Mouton, S. Mouton and H. Raubenheimer, Fredholm theory relative to unbounded homomorphisms, preprint.
[5] V. Müller, Axiomatic theory of spectrum III: semiregularities, Studia Math. 142(2) (2000), 159-169.
[6] V. Müller, Spectral theory of linear operators and spectral systems in Banach algebras, (2nd edition) Birkhäuser Verlag, 2007.

Snežana Č. Živković-Zlatanović
Department of Mathematics, University of Niš
E-mail: mladvlad@ptt.rs
Robin E. Harte
School of Mathemetics, Trinity College Dublin
E-mail: rharte@maths.tcd.ie

