Journal of Geometry

On almost paracontact Riemannian manifolds of type (n, n)

Mancho Manev and Maria Staikova

Abstract. In this paper we give a classification with eleven basic classes of almost paracontact Riemannian manifolds of type (n, n) with respect to the covariant derivative of the $(1,1)$-tensor of the almost paracontact structure.

Mathematics Subject Classification (2000): 53C15, 53C25.
Key words: Almost paracontact, Riemannian manifolds.

1. Introduction

In 1976 I. Sato [1] introduced the concepts of almost paracontact manifolds and of almost paracontact Riemannian manifolds as analogues of almost contact manifolds and of almost contact Riemannian manifolds.

After that S. Sasaki [2] defined the notion of an almost paracontact Riemannian manifold of type (p, q) and arbitrary dimension, where p and q are the numbers of the multiplicity of the structural eigenvalues 1 and -1 , respectively. In addition, there is a simple eigenvalue 0 .

In this paper we consider almost paracontact Riemannian manifolds of type (n, n), i.e. $p=q=n$. We put this fixation in view of reasons of later investigations relevant to $2 n$-dimensional Riemannian almost product manifolds ($M^{2 n}, P, g$) with structural group $O(n) \times O(n)$, which are classified in [3]. In this reason the manifolds in our consideration could be construct by natural way as a direct product of $\left(M^{2 n}, P, g\right)$ and a real line or as a hypersurface of ($M^{2 n}, P, g$).
The method used in the present paper is analogous to the methods of classification in [4] and partly to those in [5] for the almost contact metric manifolds and for the almost contact manifolds with B-metric, respectively.

2. Preliminaries

A $(2 n+1)$-dimensional real differentiable manifold M is said to have an almost paracontact structure (ϕ, ξ, η) of type (n, n), if it admits a (1, 1$)$-tensor ϕ, a vector field ξ and a 1 -form η satisfying the following conditions:

$$
\begin{equation*}
\eta(\xi)=1, \quad \phi^{2}=I_{2 n+1}-\eta \otimes \xi, \quad \operatorname{tr} \phi=0 \tag{1}
\end{equation*}
$$

A positive definite Riemannian metric g is said to be compatible with the almost paracontact structure if it satisfies the following conditions

$$
\begin{equation*}
g(x, \xi)=\eta(x), \quad g(\phi x, \phi y)=g(x, y)-\eta(x) \eta(y) \tag{2}
\end{equation*}
$$

for all vectors x, y in the tangent space $T_{p} M$.
The quadruple (ϕ, ξ, η, g) of an almost paracontact structure of type (n, n) and a compatible metric is called an almost paracontact Riemannian structure of type (n, n).
We introduce the tensor \tilde{g} given by the equation

$$
\begin{equation*}
\tilde{g}(\cdot, \cdot)=g(\cdot, \phi \cdot)+\eta(\cdot) \eta(\cdot) \tag{3}
\end{equation*}
$$

It is a compatible metric with the almost paracontact structure, too. The associated metric \tilde{g} to the Riemannian metric g is a pseudo-Riemannian metric of signature $(n+1, n)$.
Let us denote the tensor of type $(0,3)$ by the equation

$$
\begin{equation*}
F(x, y, z)=g\left(\left(\nabla_{x} \phi\right) y, z\right) \quad\left(x, y, z \in T_{p} M\right) \tag{4}
\end{equation*}
$$

Because of (1) and (2) the tensor F has the following properties

$$
\begin{align*}
& F(x, y, z)=F(x, z, y)=-F(x, \phi y, \phi z) \tag{5}\\
& +\eta(y) F(x, \xi, z)+\eta(z) F(x, y, \xi)
\end{align*}
$$

for all vectors x, y, z in $T_{p} M$.
If $\left\{e_{i}, \xi\right\}(i=1,2, \ldots, 2 n)$ is a basis of the tangent space $T_{p} M$ and $g^{i j}$ are the components of the inverse matrix of g, then the following 1 -forms are associated with the tensor F

$$
\begin{equation*}
\theta(x)=g^{i j} F\left(e_{i}, e_{j}, x\right), \quad \theta^{*}(x)=g^{i j} F\left(e_{i}, \phi e_{j}, x\right), \quad \omega(x)=F(\xi, \xi, x) . \tag{6}
\end{equation*}
$$

for an arbitrary vector $x \in T_{p} M$.

3. The space of covariant derivatives of the $(1,1)$-tensor of the almost paracontact structure

Let (V, ϕ, ξ, η, g) be $(2 n+1)$-dimensional vector space with almost paracontact Riemannian structure of type (n, n). We consider the vector space \mathcal{F} of the tensors of type $(0,3)$ over V having the properties (6). The metric g induces on \mathcal{F} an inner product \langle,$\rangle , defined$ by

$$
\left\langle F^{\prime}, F^{\prime \prime}\right\rangle=g^{i p} g^{j q} g^{k r} F^{\prime}\left(e_{i}, e_{j}, e_{k}\right) F^{\prime \prime}\left(e_{p}, e_{q}, e_{r}\right)
$$

for arbitrary elements $F^{\prime}, F^{\prime \prime}$ in \mathcal{F} and a V 's basis $\left\{e_{i}, e_{2 n+1}=\xi\right\}(i=1,2, \ldots, 2 n)$.

The standard representation of the structural group $O(n) \times O(n) \times I$ in V induces a natural representation of the structural group in \mathcal{F} :

$$
(\lambda(a) F)(x, y, z)=F\left(a^{-1} x, a^{-1} y, a^{-1} z\right)
$$

where $a \in O(n) \times O(n) \times I, F \in \mathcal{F}, x, y, z \in V$, so that

$$
\left\langle\lambda(a) F^{\prime}, \lambda(a) F^{\prime \prime}\right\rangle=\left\langle F^{\prime}, F^{\prime \prime}\right\rangle .
$$

We consider operators h, v, w on V with the properties

$$
\begin{gather*}
h^{2}=h, \quad v^{2}=v, \quad w^{2}=w, \\
h \circ v=v \circ h=h \circ w=w \circ h=v \circ w=w \circ v=0 . \tag{7}
\end{gather*}
$$

The action of these operators on the space \mathcal{F} is represented by the equations

$$
\begin{align*}
h F(x, y, z)= & F\left(\phi^{2} x, \phi^{2} y, \phi^{2} z\right) \\
v F(X, Y, Z)= & \eta(x) F(\xi, y, z)+\eta(y) F(x, z, \xi)+\eta(z) F(x, y, \xi) \tag{8}\\
& -2 \eta(x)[\eta(y) F(\xi, \xi, z)+\eta(z) F(\xi, \xi, y)] \\
w F(x, y, z)= & \eta(x)[\eta(y) F(\xi, \xi, z)+\eta(z) F(\xi, \xi, y)]
\end{align*}
$$

The equality (8) implies

$$
\begin{equation*}
F=h F+v F+w F . \tag{9}
\end{equation*}
$$

Now we define basic operators $F_{i}: \mathcal{F} \rightarrow \mathcal{F}(i=1,2, \ldots, 10)$ by the equations:

$$
\begin{align*}
F_{1}(F)(x, y, z)= & \eta(x) F(\xi, y, z), \\
F_{2}(F)(x, y, z)= & \eta(y) F(x, z, \xi)+\eta(z) F(x, y, \xi), \\
F_{3}(F)(x, y, z)= & \eta(x)[\eta(y) F(\xi, \xi, z)+\eta(z) F(\xi, \xi, y)], \\
F_{4}(F)(x, y, z)= & \eta(y) F(z, \xi, x)+\eta(z) F(y, \xi, x) \\
& -2 \eta(y) \eta(z) F(\xi, \xi, x) \\
F_{5}(F)(x, y, z)= & \eta(y) F(\phi x, \xi, \phi z)+\eta(z) F(\phi x, \xi, \phi y), \\
F_{6}(F)(x, y, z)= & \eta(y) F(\phi z, \xi, \phi x)+\eta(z) F(\phi y, \xi, \phi x), \tag{10}\\
F_{7}(F)(x, y, z)= & \frac{\theta(F)(\xi)}{2 n}\{\eta(y) g(\phi x, \phi z)+\eta(z) g(\phi x, \phi y)\}, \\
F_{8}(F)(x, y, z)= & \frac{\theta^{*}(F)(\xi)}{2 n}\{\eta(y) g(x, \phi z)+\eta(z) g(x, \phi y)\}, \\
F_{9}(F)(x, y, z)= & \frac{1}{2 n}\left\{g(\phi x, \phi y) \theta\left(\phi^{2} z\right)+g(\phi x, \phi z) \theta\left(\phi^{2} y\right)\right. \\
& -g(x, \phi y) \theta(\phi z)-g(x, \phi z) \theta(\phi y)\}, \\
F_{10}(F)(x, y, z)= & \frac{1}{3}\{h F(x, y, z)+h F(y, z, x)+h F(z, x, y)\} .
\end{align*}
$$

It is easy to check that $F_{i}(F) \in F$ for $F \in \mathcal{F}(i=1,2, \ldots, 10)$.
By necessity we have to compute the compositions of the basic operators and the associated 1-forms of $F_{i}(F)$.

LEMMA 1. Let $F \in \mathcal{F}$ and $F_{i, j}(F)=F_{i}\left(F_{j}(F)\right)(i, j=1,2, \ldots, 10)$. Then we have:
a) $F_{i, i}(F)=F_{i}(F)$ for $i=1,2,3,7, \ldots, 10$;
$F_{i, i}(F)=F_{2}(F)-F_{3}(F)$ for $\quad i=4,5,6 ;$
$F_{1, i}(F)=F_{i, 1}(F)=F_{3}(F) \quad$ for $\quad i=2,3$;
$F_{2, i}(F)=F_{i, 2}(F)=F_{i}(F)$ for $i=3,4,5,6,7,8$;
$F_{i, j}(F)=F_{k}(F) \quad$ for $\quad i, j, k=4,5,6$;
$F_{i, j}(F)=F_{j, i}(F)=F_{j}(F) \quad$ for $\quad i=4,5,6 \quad$ and $\quad j=7,8$
and the rest of $F_{i, j}(F)$ are zeros;
b) $\theta\left(F_{i}(F)\right)=\theta(F)(\xi) \eta$ for $i=2,4,5,6,7$;
$\theta^{*}\left(F_{i}(F)\right)=\theta^{*}(F)(\xi) \eta$ for $i=2,4,5,6,8$;
$\omega\left(F_{i}(F)\right)=\omega(F)$ for $i=1,2,3$
and the rest of the associated 1 -forms are zeros.
By virtue of the operators F_{i} we construct new operators $L_{j}(j=1,2, \ldots, 9)$. Let

$$
L_{1}: \mathcal{F} \rightarrow \mathcal{F}, \quad L_{1}(F)=F-2 F_{3}(F), \quad F \in \mathcal{F}
$$

In a straightforward way using Lemma 1 we get that the operator L_{1} is an involutive isometry on \mathcal{F} and commutes with the action of $O(n) \times O(n) \times I$. Hence L_{1} has two eigenvalues +1 and -1 , and the corresponding eigenspaces $\left(L_{1} \mathcal{F}\right)^{+}$and $\left(L_{1} \mathcal{F}\right)^{-}$are orthogonal and invariant mutually complementary subspaces of \mathcal{F}. Besides that, the components of F in the subspaces $\left(L_{1} \mathcal{F}\right)^{+}$and $\left(L_{1} \mathcal{F}\right)^{-}$are $\frac{1}{2}\left\{F+L_{1}(F)\right\}$ and $\frac{1}{2}\left\{F-L_{1}(F)\right\}$, respectively.

It is easy to show

LEMMA 2. If $F \in \mathcal{F}$ then
a) $F_{3}(F)=0$ iff $\quad \omega(F)=0$;
b) $F \in\left(L_{1} \mathcal{F}\right)^{+}$, i.e. $\quad L_{1}(F)=F \quad$ iff $\quad F_{3}(F)=0$;
c) $F \in\left(L_{1} \mathcal{F}\right)^{-}$, i.e. $\quad L_{1}(F)=-F \quad$ iff $\quad F=F_{3}(F)$.

If we denote $\mathcal{F}_{11}=\left(L_{1} \mathcal{F}\right)^{-}$and $\mathcal{F}_{11}^{\perp}=\left(L_{1} \mathcal{F}\right)^{+}$, then according Lemma 2 we have

$$
\mathcal{F}_{11}=\left\{F \in \mathcal{F} \mid F=F_{3}(F)\right\}, \quad \mathcal{F}_{11}^{\perp}=\{F \in \mathcal{F} \mid \omega(F)=0\} .
$$

Thereby we obtain immediately
PROPOSITION 3. The decomposition $\mathcal{F}=\mathcal{F}_{11} \oplus \mathcal{F}_{11}^{\perp}$ is orthogonal and invariant with respect to the action of $O(n) \times O(n) \times I$. The component of an arbitrary element F in \mathcal{F}_{11} (respectively in $\mathcal{F}_{11}{ }^{\perp}$) is $F_{3}(F)$ (respectively $F-F_{3}(F)$).

Figure 1

Using the same method we continue to decompose \mathcal{F} orthogonally and invariantly with respect to the action of $O(n) \times O(n) \times I$. Thereby we obtain the complete decomposition into irreducible components by the scheme of Figure 1.

The rest of operators $L_{j}(j=2,3, \ldots, 9)$ we define by:

$$
\begin{array}{ll}
L_{2}(F)=F-2\left\{F_{1}(F)+F_{2}(F)\right\}, & L_{6}(F)=F-2 F_{7}(F), \\
L_{3}(F)=F_{2}(F)-F_{1}(F), & L_{7}(F)=F-2 F_{8}(F), \\
L_{4}(F)=-F_{5}(F), & L_{8}(F)=F-2 F_{9}(F), \\
L_{5}(F)=-F_{4}(F), & L_{9}(F)=F-2 F_{10}(F)
\end{array}
$$

The operators $L_{j}(j=2,3, \ldots, 9)$ are involutive isometries on the corresponding subspaces and also commute with the action of $O(n) \times O(n) \times I$. According the applying method the corresponding eigenspaces of the eigenvalues +1 and -1 are orthogonal and mutually complementary subspaces of the reducible subspace of \mathcal{F}.

Since the endomorphism ϕ induces an almost product structure on the orthogonal complement $\{\xi\}^{\perp}$ of the subspace spanned by ξ and the restriction of g on $\{\xi\}^{\perp}$ is a Riemannian metric compatible with the almost product structure, then the decomposition of $h \mathcal{F}$ coincides with the known decomposition of the space of covariant derivatives of the traceless almost product structure [3].

Taking into account the above reasons we obtain

THEOREM 4. The decomposition $\mathcal{F}=\mathcal{F}_{1} \oplus \mathcal{F}_{2} \oplus \cdots \oplus \mathcal{F}_{11}$ is orthogonal and invariant with respect to the action of $O(n) \times O(n) \times I$. The characterization conditions of the factors $\mathcal{F}_{i}(i=1,2, \ldots, 11)$ for arbitrary vectors x, y, z in V are:

```
    \(\mathcal{F}_{1}: \quad F(x, y, z)=\frac{1}{2 n}\left\{g(\phi x, \phi y) \theta\left(\phi^{2} z\right)+g(\phi x, \phi z) \theta\left(\phi^{2} y\right)\right.\)
            \(-g(x, \phi y) \theta(\phi z)-g(x, \phi z) \theta(\phi y)\} ;\)
    \(\mathcal{F}_{2}: \quad F(x, y, \phi z)+F(y, z, \phi x)+F(z, x, \phi y)=0\),
    \(F(\xi, y, z)=F(x, y, \xi)=0, \quad \theta=0 ;\)
    \(\mathcal{F}_{3}: \quad F(x, y, z)+F(y, z, x)+F(z, x, y)=0, \quad F(\xi, y, z)=F(x, y, \xi)=0 ;\)
    \(\mathcal{F}_{4}: \quad F(x, y, z)=\frac{\theta(\xi)}{2 n}\{g(\phi x, \phi y) \eta(z)+g(\phi x, \phi z) \eta(y)\} ;\)
    \(\mathcal{F}_{5}: \quad F(x, y, z)=\frac{\theta^{*}(\xi)}{2 n}\{g(x, \phi y) \eta(z)+g(x, \phi z) \eta(y)\} ;\)
    \(\mathcal{F}_{6}: \quad F(x, y, z)=\eta(y) F(z, \xi, x)+\eta(z) F(y, \xi, x)-2 \eta(y) \eta(z) F(\xi, \xi, x)\)
        \(=\eta(y) F(\phi x, \xi, \phi z)+\eta(z) F(\phi x, \xi, \phi y), \quad \theta(\xi)=\theta^{*}(\xi)=0 ;\)
    \(\mathcal{F}_{7}: \quad F(x, y, z)=-\eta(y) F(z, \xi, x)-\eta(z) F(y, \xi, x)+2 \eta(y) \eta(z) F(\xi, \xi, x)\)
        \(=\eta(y) F(\phi x, \xi, \phi z)+\eta(z) F(\phi x, \xi, \phi y) ;\)
    \(\mathcal{F}_{8}: \quad F(x, y, z)=\eta(y) F(z, \xi, x)+\eta(z) F(y, \xi, x)-2 \eta(y) \eta(z) F(\xi, \xi, x)\)
        \(=-\eta(y) F(\phi x, \xi, \phi z)-\eta(z) F(\phi x, \xi, \phi y) ;\)
    \(\mathcal{F}_{9}: \quad F(x, y, z)=-\eta(y) F(z, \xi, x)-\eta(z) F(y, \xi, x)+2 \eta(y) \eta(z) F(\xi, \xi, x)\)
        \(=-\eta(y) F(\phi x, \xi, \phi z)-\eta(z) F(\phi x, \xi, \phi y) ;\)
\(\mathcal{F}_{10}: \quad F(x, y, z)=\eta(x) F(\xi, y, z), \quad F(x, y, \xi)=0 ;\)
\(\mathcal{F}_{11}: \quad F(x, y, z)=\eta(x)\{\eta(y) \omega(z)+\eta(z) \omega(y)\}\).
```

The components $p_{i}(F)$ of an arbitrary element F of \mathcal{F} in $\mathcal{F}_{i}(i=1,2, \ldots, 11)$ are

$$
\begin{aligned}
& p_{1}(F)=F_{9}(F), \quad p_{2}(F)=F_{10}(F), \\
& p_{3}(F)=h F-F_{9}(F)-F_{10}(F), \quad p_{4}(F)=F_{7}(F), \quad p_{5}(F)=F_{8}(F), \\
& p_{6}(F)=\frac{1}{4}\left\{F_{2}(F)-F_{3}(F)+F_{4}(F)+F_{5}(F)+F_{6}(F)\right\}-F_{7}(F)-F_{8}(F), \\
& p_{7}(F)=\frac{1}{4}\left\{F_{2}(F)-F_{3}(F)-F_{4}(F)+F_{5}(F)-F_{6}(F)\right\}, \\
& p_{8}(F)=\frac{1}{4}\left\{F_{2}(F)-F_{3}(F)+F_{4}(F)-F_{5}(F)-F_{6}(F)\right\}, \\
& p_{9}(F)=\frac{1}{4}\left\{F_{2}(F)-F_{3}(F)-F_{4}(F)-F_{5}(F)+F_{6}(F)\right\}, \\
& p_{10}(F)=F_{1}(F)-F_{3}(F), \quad p_{11}(F)=F_{3}(F) .
\end{aligned}
$$

4. Basic classes of almost paracontact Riemannian manifolds of type (n, n)

Let (M, ϕ, ξ, η, g) be almost paracontact Riemannian manifolds of type (n, n). The tangent space $T_{p} M$ at an arbitrary point p in M is the vector space V equipped with an almost paracontact Riemannian structure of type (n, n). Then the corresponding vector space \mathcal{F} considered in the previous section has eleven orthogonal and invariant subspaces \mathcal{F}_{i}. In such a way the conditions for F at every point $p \in M$ give rise to the corresponding class of manifolds under consideration. Namely, an almost paracontact Riemannian manifold of type (n, n) is said to be in the class \mathcal{F}_{i} if the tensor F belongs to the subspace \mathcal{F}_{i} $(i=1,2, \ldots, 11)$ over $T_{p} M$ at every p in M. Thus the conditions define the eleven basic classes of almost paracontact Riemannian manifolds of type (n, n). Of course, the number of all classes of manifold under conversation is 2^{11} and their defining conditions are
easily obtainable by the basic ones. The special class \mathcal{F}_{0} of almost paracontact Riemannian manifolds of type (n, n) is defined by the condition $F=0$. This class belongs to each of the defined classes. It is an analogue to the class of cosymplectic almost contact metric manifolds [4] and to the respective class \mathcal{F}_{0} in the classification of almost contact manifolds with B-metric [5].

The defined class \mathcal{F}_{4} contains paracontact Riemannian manifolds of type (n, n) [1] and in particular para-Sasakian manifolds of type (n, n) [7].

References

[1] Sato, I., On a structure similar to the almost contact structure, Tensor N.S. 30 (1976), 219-224.
[2] Sasaki, S., On paracontact Riemannian manifolds, TRU Math. 16-2 (1980), 75-86.
[3] Staikova, M. and Gribachev, K., Canonical connections and their conformal invariants on Riemannian almost-product manifolds, Serdica 18 (1992), 150-161.
[4] Alexiev, V. and Ganchev, G., On the classification of the almost contact metric manifolds, Math. and Educ. in Math., Proc. 15th Spring Conference of UBM, 1986, 155-161.
[5] Ganchev, G., Mihova, V. and Gribachev, K., Almost contact manifolds with B-metric, Math. Balk. 7 (1993), 3-4, 261-276.
[6] Ganchev, G. and Borisov, A., Note on the almost complex manifolds with a Norden metric, C.R. Acad. Bulg. Sci. 39 (1986), 3134.
[7] Adati, T. and Miyazawa, T., On paracontact Riemannian manifolds, TRU Math. 13-2 (1977), 27-39.

Mancho Manev and Maria Staikova
Faculty of Mathematics and Informatics
236 Bulgaria blvd.
Plovdiv 4004
Bulgaria
e-mail: mmanev@pu.acad.bg or mmanev@yahoo.com
e-mail: stajkova@uni-plovdiv.bg

Received 10 May 2000.

