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abstract. In this paper basic properties of APN permutations, which 
can be used in an iterated secret-key block cipher as a round function 
to protect it from a differential cryptanalysis, are investigated. Several 
classes of almost perfect nonlinear permutations and other permutations 
in GF(2)" with good nonlinearity and high nonlinear order are presented. 
Included here are also three methods for constructing permutations with 
good nonlinearity. 

1 Introduction 
Many secret-key block ciphers are based on iterating a substitution function 
several times. Each iteration is called a round. Such a substitution function is 
refered to as the round function. The Security of such iterated block ciphers 
depends mainly on the "strength" of the round function. It is known that the 
nonlinearity of the round function is crutial for the security of an iterated block 
cipher. 

There are two related concepts for nonlinearity of a substitution function: 
local nonlinearity and global nonlinearity. Let f(z) be a substitution function 
of GF(q), then 

is the measure of the local nonlinearity and 

is that of the global nonlinearity of f (X).  
The linearity and nonlinearity of some cipher functions have been analyzed 

by Chaum and Evertse [3], Biham and Shamir [l, 21, Lai, Massey and Murphy 
[4], Nyberg and knudsen [5], Pieprzyk [6]. The differential cryptanalysis of DES- 
like functions introduced by Biham and Shamir [1,2] are closely related with 
the nonlinearity of cryptofunctions. As shown by Biham and Shamir [1,2], Lai, 
Massey and Murphy [4], Nyberg and Knudsen [5], to  make an iterated block 
cipher immune to a differential cryptanalysis, i t  suffices to make the global non- 
linearity Pj of the round function as small as enough. 
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For a round function f over GF(2)", the minimum value for Pj is 2'-". 
Permutations of GF(2)" with Pj = 2'-" were said to be almost perfect nonlin- 
ear(APN)[5]. In (51 Nyberg and Knudsen have given some results about quar- 
datic APN permutations. In this paper basic properties of APN permutations 
in GF(2)" are developed in Section 2. Section 3 presents results about the re- 
lationships between permutations in GF(2") and in GF(2)". Section 4 gives 
quadratic permutations with controllable nonlinearity. Section 5 provides with 
a class of permutations of order 3 with good nonlinearity. Section 6 presents a 
class of APN permutations in GF(2)" with maximum order n- 1. Section 7 gives 
a class of permutations of order n - 2 with controllable nonlinearity. Section 8 
discusses the nonlinearity of the permutations Xd in CF(2") with d = 2m - 1. 

2 Properties of APN Permutations 
First of all, we would like to mention that the concept of nonlinearity is associated 
with a definite operation. In this paper we only discuss the nonlinearity of 
permutations in C F ( 2 " )  and in GF(2)" under the additions of them respectively. 

From the definition of APN permutation, it is apparent t h a t  the following 
Lemma 1 holds: 

Lemma 1 Let f(z) be a permutation ofCF(2)" and g(z, a )  = f ( z )  + f(z + a ) .  
Then f(z) is A P N  iff g(z ,a)  takes ezactly 2"-' differed nonzero vedors of 
GF(2)" and each of them iwo times when 2 runs over GF(2)" for each a # 0 .  

It may be cryptographically beneficial to require that g(z,a) takes each 
nonzero vector of GF(2)" equally likely, i.e. , g(z, a )  takes each vector of GF(2)" 
2" times when z runs over GF(2)" and a over GF(2)" - ( 0 ) .  We call such func- 
tions difference uniformly distributed (DUD). The f(z) in the following Example 
1 is APN,  but not DUD. The permutation in Example 2 is APN and DUD. 

Example 1 L e l f ( z )  = ( f l , f z , f 3 )  inGF(2)3, w h e r e f i ( z )  = t 1 + 2 2 + 1 + z ~ z 3 ,  

f2(z) = zl + 23 + zl(22 + z3)r f3(z) = 2 2  + r123- 

From Lemma 1 it follows that the following Theorem 1 holds: 

Theorem 1 Let f(z) = (fl(z), . . . , fn(z)) be a permutation in GF(2)",  then 
1) fi(z) i s  balanced, bul not bent; 
2) the order ord(fi)  5 n - 1; 
3) if f(z) as A P N  (DUD), ihen h(z )  = f ( A z  + b )  is also APN (DUD) for each 
nonsingular n x n matrix A over GF(2) and each b in GF(2)". 

lowing definitions and results: 
Before to present a characterization of A P N  permutations, we need the fol- 
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Definition 1 Let S be a subset of GF(2)"-{0) .  If for any a # 0, b # 0,  
a + b # 0 ,  a ,  b E GF(2)",  there is at least one of the a ,  b, a + 6, which belongs 
to S ,  then we call S a differential representation set o f G F ( 2 ) " .  A differential 
representation set o f G F ( 2 ) "  such that IS1 is minimal, is called a diflerential 
basis of GF(2)", and IS( is called the diflerenttal dimension (DD). 

Theorem 2 A subset S of GF(2)" is a differential representaiion set of GF(2)" 
iff the difference of any  two distinct elements of the set GF(2)" -S -  (0) belongs 
to s. 
Theorem 3 The differential dimension (OD) o f ( G F ( 2 ) " , + )  is 2"-' - 1 and 
the set E = {z : WH(Z) even, z E GF(2)" , z  # 0 )  is a differential basis of 
GF(2)",  where WH(Z) denotes the Hamming weight of the vector x. 

Proof: Let S be any differential representation set of GF(2)" ,  IS1 = k, then 
13'1 = IGF(2)" - S - { 0 } 1  = 2" - k - 1.  Suppose that S' = { s l , . . . , s p - k - l } ,  
then the elements s1+ s2, s1 +a, . .. , s1 + S p - k - l ,  are distinct and all belongs 
to S, therefore we have k 2 2" - k - 2, which is equivalent to k 2 2"-' - 1. It 
is clear that E is a representation set of GF(2)" and IEl = 2"-' - 1. 

Theorem 4 Let D = { d l , .  . . , d2,,-l-1} be a n y  differential basis o fGF(2)" ,  and 
f(z) be a permutation in GF(2)".  Then f(z) is  A P N  iff for each i ,  g(z,di) = 
f ( z )  + f ( z  + di)  takes ezactly 2"-' diflereni nonzero vectors of GF(2)" and each 
two times. 

Proof: By definition the necessity is natural. What remains to be proved is the 
sufficiency. For any a # 0, z # y and z + y  # a, let b = z + y ,  then b # a, b # 0. 
Noticing that 

d = [fk) + f (. + a11 + [f (Y) + f (Y + .)I 
[f(.) + f(Y)l+ [ F ( z  + 0) + f (Y + .)I 

+ f(Y + .)I + If (2 + a) + f(4l  
= 

= [f 
and that there is at least one of the elements in {a, b, a + b} that  belongs to D, 
we have d = 0. This proves the sufficiency. 

From Theorem 4 we see that f(z) is APN iff for each nonzero vector e of 
even Hamming weight, g(z,e) takes 2"-' different nonzero vector of GF(2)" .  
This result reduces largely the operation in searching for APN permutations. 

Theorem 5 Let f(z) = (fl(z), . . . , fn(z)) be a APN permutation, then none of 
f i , . . . ,  fn,  is agine. 

Proof: Suppose that f l ( z )  = blnzn + . . . + b l l z l  + 60,  then 

n 
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so we can find a vector c # 0 such that f l (z)  + f ~ ( z  + c )  = 0.  whence 

Toensure that f(z)+f(z+c) takes 2"-' distinct vectors of GF(2)", there must 
exist a vector z such that 

'This is contrary to the one-to-one property of f(z). This completes the proof. 
This theorem demonstrates that each component function of a APN permu- 

tation can not be affine. In what follows in this section, we shall discusss the 
nonlinear terms zizj( i  # j )  of APN permutations. 

Theorem 6 Let f(z) = (fi(z), - a ,  fn(z)) be a A P N  permutation of GF(2)". 
Then every quadraiic term z i z , ( i  # j )  must appear in at least one of the com- 
ponent functions f1 ,  - e . , fn . 

Proof: For c , z  E GF(2)", let zc = 0 when z # c ,  and zc = 1 otherwise. 
Therefore f(z) can be expressed aa 

where c: = 1 + ci. Without the loss of generality, we consider the cofficients of 
the term zn-ltn, which is 

not equal to zero vector by the definition of APN permutations. This proves the 
theorem. 

The nonlinear oder of a permutation f(z) = (fl(z), .. -, fn(z)) is defined as 

ord(f )  = m q  ord(fi), 
l<i<n 

where ord(f i )  is the nonlinear order of f i ( z ) .  Theorem 1 means that the max- 
imum nonlinear order of a APN permutation in CF(2)" is n - 1. This upper 
bound is achievable (see Example 1 and 2, also Section 6). Theorem 6 tell us that 
any APN permutation must be depentent of all the quadratic terms, this may 
mean that the most important terms of a APN permutation are the quadratic 
ones. 
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3 The Nonlinearity of Permutations in GF(2)" 
and in GF(2") 

If f(zi,*-.,zfl) = ( f i ( z ) , . . . , f , , ( z ) )  is a permutation of GF(2)", let B = 
{mi ,  . * * , an} be any basis of GF(2") over C F ( 2 ) ,  then 

n 

F(X) = ~ f j ( z l , . . - , z n ) a j  
i=l  

is a permutation in GF(2"),  and vice versa, where X = C z j a i  E GF(2").  So 
there is an one-to-one correspondence between the permutations of GF(2)" and 
those of GF(2") under a chosen basis of GF(2") over G F ( 2 ) .  We denote here 
and hereafter the permutation f(z) = (fl(z), . . . , f f l (z))  in (1) as [ F ( X ) J s .  

For odd n, let {a:, - .  . , a+,} be the dual basis of B, then each component of 
f(z) can be expressed as 

fi(z) = Tr( F(  X)a:), (2) 

where X = Cziai. 
The following result about the nonlinearity of the function F(X) and f(z) 

in (1) is obviously true, but is the theoretical foundation for constructing per- 
mutations in GF(2)" with good nonlinearity from those in GF(2").  

Theorem 7 Let B = {al,.. . ,a,,} be a basis of GF(2")  over G F ( 2 ) ,  2 = 
(z~,**',zn), Y = (~i,***,~n), a = (ai)..*,an), b = (bi,...,bn) E GF(2)", 
and X = Ctiaj, Y = x y j a j ,  A = Caiaj, B = C bjai E GF(2"),  then 

8) PF(B) = Pf(b); 

4) PF = PF3i f o r  each integer i .  

1) P(F(X)+F(Y) = A I X + Y  = B )  = P(f(z)+f(y) = a I z + y =  b); 

3) PF = Pf; 

This theorem show- that the global and local nonlinearity of F(X) and f(z) 
is the same. 

Theorem 8 Let f(z) = (fi(z), . . ', f f l (z))  be a A P N  (DUD) permutation in 
GF(2)", then for each nonsingular n x n matriz A over GF(2) ,  g(z) = 
(fi(~),**.,fn(~))A i s  also A P N  (DUD). 

The above Theorem 8 is useful in constructing APN permutations. TWO 
permutations f(z) and g(z) in GF(2)" are said to be linearly equivalent if there 
are a nonsingular n x n matrix A over CF(2)  and a vector b in GF(2)" such 
that f(z) = g(Az + b ) .  

Let f ( z )  = [ F ( X ) ] e .  For the changing of the basis, let Bf = {pi,. . . ,&,} be 
another basis of GF(2")  over GF(2),  f(z) = [F(X)] , t  and 

( P I ,  * Pn) = (al,.  . ' 3  an)At, (3) 
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then A is nonsingular and

f'(x) = (f1(xA),--Jn(xA))A-i (4)

This result showes that the permutations deduced from a permutation in GF(2")
by changing the basis are usually not linear equivalent.

We now consider the conjugacy class of Z\*_x mod (2n — 1). A conjugacy
class Ck is the set {*2' mod (2n - l),t = 0,1, • • • , } . Theorem 7 tell us that
PF = Ppti for any permutations in GF(2n), so we can construct a class of
permutations with good nonlinearity, provided that we can construct one.

It is well known that Xd is a permutation of GF(2n) iff gcd(d,2n - 1) = 1.
In the following sections we investigate mainly the permutations Xd in GF(2n)
with good nonlinearity. Before doing so, we need the following result about the
nonlinear order of [A"d]s, which was proved in [8] according to the citation of [7]
(So we have deleted here our original proof).

Theorem 9 Let B be a basis of GF(2n) over GF(2), and d an integer, then
ord{[Xd]a) = Wtf(d), where WH(d) is the Hamming weight of the binary repre-
sentation of the integer d.

4 Quadratic Permutations with Controllable
Nonlinearity

In [5] Nyberg and Knudsen have studied the permutations / in GF(2m) =
GF(2d)n which satisfy the property that every nonzero linear combination of
the components of / is a balanced quadratic form x*Cx in n indeterminates
over GF(2d) with rank(C + C ) = n— 1. We now present a general result about
the quadratic APN permutations.

Theorem 10 Lei f(x) = ( / i , • •• , /„) be a permutation in GF(2)n, where

Setting the entries a-? of the matrix A\ as 0 when i = j , as amin{,J}max{iFj}
otherweise, then f(x) is APN iff rank(AiW*, • • •, Anw*) — n — 1 for each w ̂  0.

Proof: Let

g,(x,w) = f,(x) +ft(x + w)

= xA,w' + f,(w)

For each w ̂  0, the set of linear equations

(</l(x, u;), • • •, gn(x, w)) = (dit • • •, dn) ? 0 (5)
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has no solution or only two solutions iff rank(Alwt, . . . , A n d )  = n - 1 for each 
w # 0. This proves the theorem. 

If we denote f ~ ( z )  as f1(z) = zC,z' + f1(0), then AI = CI + C:. Therefore 
the result presented here seems to be different from the one in [5]. From the 
forgoing proof i t  follows that  the following Corollary 1 holds: 

Corollary 1 Lei the symbols and notations as in Theorem 10. If 

Anw') = k, 

then PI 5 2-'. 

Theorem 11 Let d = 2'(2' + l) ,  gcd(d, 2" - 1) = 1 and m = gcd(2" - 1,2' - l ) ,  
B be any basis ofGF(2") over G F ( 2 ) ,  f(z) = [ X d ] ~ ,  then PJ 5 ( m  + 1)/2". 
Proof: Because of Theorem 7 i t  suffices to prove the case d = 2' + 1. Let 

G ( X ,  p) = Xd + ( X  + p ) d  = xzkp + xp2" + = Q (6) 

Noticing tha t  G ( X , P )  is a linearized function of X,  we need only to consider 
the number of solutions of the equation 

px2" + p k x  = 0, ( 7 )  

which is equivalent to X = 0 and ( X p - 1 ) 2 k - '  = 1. 
Setting H = {z : 2" = 1,z E GF(2")},  we see that  H is a subgroup of 

the cyclic group GF(2")+, so it is also cyclic, say H = (h), then i t  is obvious 
that  h" = 1. Hence oder(h) divides m. It  follows that the number of solutions 
of equation (7) is at most rn + 1, so is that of equation (6). This proves the 
theorem. 

Corollary 2 Lei gcd(2' + 1,2" - 1) = 1, then the permutation [ X 2 1 ( 2 k + ' ) ] ~  i s  
A P N  iflgcd(k,n) = 1. 

Proof: The permutation [ X 2 1 ( 2 k + ' ) ] ~  is  APN iff m = gcd(2' - 1,2" - 1) = 1, 
which is equivalent to gcd(k, n) = 1. 

For odd n the result of Corollary 2 has been proved in [5]. We get here a 
general result without requiring n being odd. On the other hand, it is apparent 
that  O ~ ~ ( [ X ~ ' ( ~ ~ + ~ ) ] B )  = 2. 

5 A Class of Permutations of Order 3 with 
Good Nonlinearity 

For a quadratic APN permutation f = (fl,. . . , fn) in C F ( 2 ) " ,  it is not difficult 
to see that  each fi(z) has a linear structure, i.e. , there is a vector w such that 
fi(Z) + fi(z + W )  = fi(w) + fi(0). This may be a cryptographical demerit. In 
this sense it is important to  construct permutations which have good nonlinearity 
and high nonlinear order. In this section we present a class of permutations of 
order 3 with good nonlinearity. 
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Theorem 12 Let gcd(3,2" - 1) = 1, d = 2 ' t2  + 2' t1  + 2', and i >_ 0, B a basis 
o fGF(2")  over GF(2)  and f(z) = [ X d ] ~ ,  then ord(f) = 3 and Pi = 2'-" or 
3 * 21'". 

Proof: Because of Theorem 7 and d = 7 * 2', it suffices to prove the case d = 7. 
Let 

G ( X , P ) = X d + ( X + P ) d , P # O ,  (8) 

(9) 

then G ( X , P )  = a is equivalent to  

Y d  + (Y + l)d = y, 

where Y = X / P ,  y = afl-d. If y = 1, then equation (9) is equivalent to 
Y ( Y 6  - 1) = 0. Noticing that gcd(6,2" - 1) = gcd(3,2" - 1) = 1, so (9) has 
only two solutions. 

If  y # 0, assume that (9) has two solutions in GF(2"),  say Y1, l+Yl. Suppose 
it has another two solutions Y2 and 1 + Y2 in GF(2"), let Y3 and 1 + Y3 be the 
other two solutions of (9) in an extension field of GF(2"). By making use of the 
relationships between the cofficients and roots of equation ( g ) ,  we get 

Y1 + YZ +Y3 = Oor 1. 

This means that Y3 E GF(2"). Whence G ( X , P )  = (I has either no solution 
or two solutions or six solutions in GF(2"). This proves the first part of the 
theorem. Finally, it follows from Theorem 9 that ord(f) = 3. 

In the following sections we will see that permutation [ X 7 ] ~  of GF(2)5 is 
APN. We now discuss when the f(z) in Theorem 12 is APN. If (9) has more 
then two solutions in GF(2") , then it follows from the above proof that it has 
sixsolutions, say, Y1, l + Y l ,  Y2, 1+Y2, Y3, 1+Y3. By making use of the relations 
between the cofficients and roots of equation (9), we get 

(y: + Y1l2 + (y: + Y2I2 + (Y: + Yl)(Y;L + Y2) = 1 { (Y: + Y l ) ( Y .  + Y2)(Y; + Y2 + Y: + Y l )  = r + 1 

Let Y;" + Y1 = a, Y: + Y2 = b ,  then 0 ,  b E GF(2"). Whence we obtain 

a2 + bZ + ab = 1 { ab(o + b )  = r + 1, 

which is equivalent to 

b3 + b + r + I = o 
a 3 + a + r + l = 0  { (a + b)3 + o + b + r + 1 = 0, 

because a ,  bf 0. This means that the equation 

x3 + x + + 1 = 0 
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has three solutions in GF(2"). 
On the other hand, let 

z3 + X  + r + 1 = (X + a)(x2 + a x  + c), 

then we have 
a 2 + c = 1  
ac= r +  1. 

Since X' + a X  + a2 + 1 = aa[(X/a)2 + (X/a) + (a2 + 1)/a2] and it is known 
that polynomial Y 2  + Y + d is reducible in GF(2") iff Tr(a) = Tr(o-'), where 
dE CF(2"). Therefore X3+X+r+l has only one solution a iff Tr(a) = Tr(a-') .  
Thus, if we can give a condition such that gcd(3,2" - 1) = 1 and every solution 
Y of equation (9) satisfies Tr(Y)  = Tr(Y-')  in GF(2"), then the permutation 
f in Theorem 12 must be APN. 

6 A Class of APN Permutations of Order n - 1 
in GF(2)" 

It has been already been mentioned that constructing higher order permutations 
with good nonlinearity is cryptographically desirable. In this section we present 
a class of maximum order permutations in GF(2)". 

Theorem 13 Lei gcd(3,2" - 1) = 1 and d = 2" - 2' - 1, 0 5 i 5 n - 1, E 
a basis ofGF(2") ouer GF(2). Then f(z) = [ X d ] ~  is a mazirnurn order A P N  
permafation in GF(2)". 

Proof: We first consider the case i = 0. Then F(X) = Xd = 0 when X = 0, 
F(X) = X-' otherweise. Now we discuss the number of solutions of the equation 

Xd + (X + P ) d  = a (11) 

If a = pd, then 0 and p are two solutions of (11)  in GF(2"). Suppose that 
X # 0, /3, is another solution of (11) in GF(2"), then we get from (11)  that 

x2 + px + p2 = 0. (12) 

It follows that X3 = @, which gives X = P,  because that gcd(3,2" - 1) = 1. A 
contridiction. Hence, in this case (11) has only two solutions. 

If a # pd, then (11) has no solutions 0 and p. Whence (11 )  can be written 
as 

G(X, P )  = X-' + (X + @)-I = P/X(X + P)  = a, 

x2 + px + a-'p = 0. 

(13) 

which is equivalent to 

(14) 

Obviously, (14) has at most two solutions for each a # Pd,  so h a s  equation (13). 
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Summarizing the above results, we see that [ X d ] ~  is APN.  Noticing that 
d = 2" - 2, we get WH(d)  = n - 1. Whence ord(f) = n - 1. Finally, it follows 
from Theorem 7 that for each d = 2" - 1 - 2', the conclusion of the theorem is 
true. 

7 A Class of Permutaions of Order n - 2 in 
GF(2)" with Good Nonlinearity 

This section presents a class of permutations of order n - 2 in C F ( 2 )  with good 
nonlinearity. 

Theorem 14 Lei gcd(3,2" - 1) = 1, gcd(7,2" - 1) = 1 and d = 2" - 2'+' - 
2' - 1, O _< i 5 n - 2 .  Then the permutation f(z) = [ X d ] ~  has order n-2 and 
nonlinearity Pi = 2'-" o r  3 * 2l-". 

Proof: Because of Theorem 7 it suffices to prove the case d = 2" - 1 - 3. Consider 
now the equation 

G(X,P) = X d  + (X + p ) d  = a, a # p d ,  0.  (15) 

Apparently, (15) has no solutions 0 and p. Therefore (15) is equivalent to 

x6 + x5/3 + X4pZ + X 3 @  + X Z a - ' P  + Xa- 'P2  + a-'P3 = 0. (16) 

Similar to the proof of Theorem 12, we can prove that (15) has either no solution 
or two or six solutions in GF(2"). 

What remains to be consided, is the equation 

X d  + ( X  + P)d = Pd. (17) 

Let Y = X/p, then (17) is equivalent to 

Yd + ( 1  + Y ) d  = 1. (18) 

We conclude that (18) has only two solutions 0 and 1 in GF(2") .  If not so, say 
that Yl # 0, 1, is another one in GF(2"). Then we get 

Whence Y: = 1. It follows that Yl = 1, a contridiction. Hence (18) has only 
two solutions in GF(2"). 

By summarizing the above results, we see that PI = 2l-" or  3 * 2l-". I t  can 
be easily seen that ord(f)=n - 2. 
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8 On the Nonlinearity of the Permutations X d  
in GF(2") with d = 2" - 1 

For d = 2" + 1 with gcd(m,n) = 1, we have seen that Xd is APN in GF(2") .  
It is natural to ask whether the permutation X2=-'  is APN. A simple example 
is that z7 is APN in G F ( 2 5 ) ,  but not APN in G F ( 2 4 ) .  Therefore X2"-l may 
be APN or not in GF(2") ,  it depents on the structure of the field CF(2"). To 
investigate the problem further. We need the following lemma: 

Lemma 2 Assume ihat n and 2" - 1 are iwo  primes, ihen each nonzero conju- 
gacy class of Z,',-Imod(2n - 1) has n elements, and there are (2" - 2)/n such 
conjugacy classes. 

Since d = 2'" - 1, we get 

C ( X ,  a)  = X d  + ( X  + P)d = Pd(Yd + l ) / ( Y  + l) ,  x # P, 

where Y = X / p .  Therefore we need only to discuss the number of solutions of 
the equation 

+ 1 = r(Y + l) ,  r # 0 ,  1. y 3 m - 1  (20 )  

For the solutions of (20 ) ,  we have the following conjecture: 

Conjecture 1 Assume ihat n and 2" - 1 are two primes, then for each 2 5 i 5 
n - 1, equaiion (20) has at most two solutions other then 1 in G F ( 2 " ) .  

In the case m = n - 1, the conclusion has already been proved in Theorem 
13. If the conjecture is true, then every permutation [x2"- ' ]B(2  5 m 5 n - 1)  
is APN in GF(2)" .  

9 Summary and Remarks 
In this paper basic properties of APN permutations are presented. These results 
are useful in seeing the nature of the APN permutations and in constructing 
these permutations. By investigating mainly the permutations X d  in GF(2") ,  
several classes of permutations in GF(2)" with good nonlinearity have been 
obtained. Some of them have high nonlinear order. 

Included here are also three kinds of methods for constructing APN per- 
mutations in GF(2)" . 1) Matrix Method: From an APN permutation f = 
( f 1 ,  - -, fn) by multiplying a n x n nonsingular matrix A over G F ( 2 )  to obtain 
another APN permutation g(z) = (f1,. . . , fn)A; 2 )  Conjugacy Method: From 
a APN permutation F ( X )  in GF(2")  to get G ( X )  = F(X)2'  = F ( X Z ' ) ;  3) 
Basis Method: From a APN permutation F ( X )  in GF(2")  to obtain different 
[ F ( X ) ] B ,  by changing the basis B of GF(2")  over G F ( 2 ) .  

After the simultaneous submissions of this paper and [7], we have found some 
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overlaps between them, which should be made clear. Theorem 11 in this paper 
ie an overlap with the first part of Proposition 3 in [7], and Theorem 13 here is 
a special case of of Proposition 6 in [7]. 

During Eurocrypt’93 Dr Nyberg has made some comments and suggestions for 
this paper. One is that the condition gcd(3,2” - 1) = 1 in Theorem 12 and 13 
is actually that n is odd. Another suggestion of Nyberg is a generalized def- 
inition of the linear equivalence for permutations, by which two permutations 
f and g over a field F are said to be linearly equivalent if there are two affine 
permutations A and B such that f = B o g o A, here o denotes the composition 
operation of functions. By this definition all the functions td ’s  for d’s in the 
same conjugacy clans are linearly equivalent. 

Acknowlegements: The authors would like to thank Dr. Nyberg for the above 
helpful comments and suggestions, and the referees for pointing out a necessary 
condition of Corollary 2 and some typos of the original paper. 
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