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Abstract

In this paper we present a general formulation of an algorithm, the adaptive independent chain
(AIC), that was introduced in a special context in G̊asemyr, Natvig and Sørensen (2000). The
algorithm aims at producing samples from a specific target distribution Π, and is an adaptive,
non-Markovian version of the Metropolis-Hastings independent chain (IC), see Hastings (1970),
Tierney (1994). We show that under certain conditions, the algorithm produces an exact sample
from Π in a finite number of iterations (with probability 1), and hence that it converges to Π.
We also study features such as acceptance rate and autocovariance, and argue heuristically for
the profitability of the adaptive procedure. We also study the asymptotic efficiency compared
to that of rejection sampling, and indicate the relationship to importance sampling. A modified
version of the AIC, the componentwise AIC (CAIC) is also introduced.

Key words: coupling, exact sampling, importance sampling, independent chain, Markov
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1 Introduction

Let Π be a distribution on a space X . We assume it is too complicated to draw a sample from
Π directly. We also assume that it is impossible to compute EΠ(h(X)) analytically, where h is a
function on X . Rejection sampling, importance sampling and sampling importance resampling
(SIR) are techniques for using samples from a different distribution P to obtain such samples
or estimates. Another such method is to use P as a proposal distribution for a Metropolis-
Hastings algorithm, independent of the current state of the Markov chain that is generated.
Such a Markov chain is referred to as an independent chain (IC) in the terminology of Tierney
(1994), while Liu (1996) refers to the algorithm as Metropolized independent sampling. A
reasonable performance of these procedures depends on P not being too far from Π in some
sense. If it is impossible to make a good guess at Π by an easily simulated P , other Markov
chain methods, such as the Gibbs sampler or versions of the Metropolis-Hastings algorithm
based on local moves around the current state, may be the solution. These Markov chain
methods have the disadvantage that they often converge slowly, or at least that diagnosis of
the convergence is difficult.

The problem of poor match between Π and P for an independent chain may in some cases
be solved by letting P change adaptively during the running of the chain. We may refer
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to this as an adaptive independent chain (AIC). This falls within the general framework of
Holden (2000), where many references on adaptive algorithms can be found. A special case
of the AIC is presented in G̊asemyr, Natvig and Sørensen (2000) along with two algorithms
based on a similar idea, changing the proposal distribution as likelihoods from independent
data sets are sequentially incorporated in a posterior distribution. In the present paper we
focus on the adaptive aspect, but plan to return to applications within a sequential framework,
such as state space models, in future work. In G̊asemyr, Natvig and Sørensen (2000) both a
parametric version (PAIC) and a non parametric one (NPAIC) of the AIC are formulated, and
the parametric one is shown to perform quite well.

The advantage of the AIC compared to the Markov chain methods making dependent moves,
is that the nice convergence properties that are established for IC can be generalised. In fact,
one may even obtain exact samples from Π using this method. The problem of obtaining exact
samples when using MCMC techniques has been given much attention since the breakthrough
made by Propp and Wilson (1996), who used the technique of coupling from the past to obtain
exact samples. A very simple fact which seems to have been overlooked so far, is that one can
obtain exact samples by forward coupling in the case of IC. This can be generalized to AIC.
Compared to rejection sampling, importance sampling and IC, the AIC has the advantage that
it is not so vulnerable to the choice of proposal distribution. Intermediate samples generated
by means of a bad proposal do contain information that can be used to improve the proposal.

The notion of AIC is introduced more precisely in section 2 of this paper, and the mentioned
results on convergence rate and exact sampling are stated and proved. We also compute
acceptance probability and autocovariances under stationarity. In section 3 we present a general
framework suitable for construction of AIC algorithms, and argue heuristically that the adaptive
strategy should be beneficial and converge. We present as an example the model type discussed
in G̊asemyr, Natvig and Sørensen (2000). We also discuss how to determine the burn in. In
section 4 we discuss the relationship of the IC to rejection sampling and compare efficiencies of
the IC and the AIC with that of rejection sampling asymptotically. For the IC, this has been
done in the discrete case by Liu (1996) by means of spectral theory. Our discussion, covering
also the continuous case, is based on purely probabilistic arguments. This argument in itself
provides insight into the relationship between the algorithms, and shows that the best bound
on the relative efficiency that is generally applicable, does in fact represent a very extreme
worst case. Also, the relationship to importance sampling is discussed briefly.

Section 5 is more speculative in nature. The expected behaviour of the AIC as the dimension
of the problem increases is considered, and some ideas concerning the construction of proposal
distributions are presented. The ideas are demonstrated through an example referring to Arjas
and Gasbarra (1996). A variant of our suggested algorithms called CAIC (componentwise
adaptive independent chain), which may be considered as an adaptive approximation to the
Gibbs sampler, is also presented. In appendix A we give sufficient conditions for the validity of
our main theorem (Theorem 1), while appendix B gives a theoretical result that is not directly
applicable to the AIC, but sheds more light on the behaviour of the algorithm, and may form
the basis for more elaborate versions.
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2 Definition and basic properties

Let {Pφ} be a family of probability distributions on the subspace X of Rn, with the parameter
φ ranging in a subset Φ of Rd for some integer d ≥ 1. Let pφ be the density of Pφ, assumed
to be continuous. We denote by π the density of the target distribution Π that we want to
sample from, also assumed continuous. To specify an AIC we must specify a sequence length
K and a function φ̂ on XK with φ̂(x) ∈ Φ for any sequence x = (x1, x2, . . . , xK) with xt ∈ X
for each t. The algorithm is described as follows: Choose an initial proposal distribution P
and run a Metropolis-Hastings chain for K iterations with P as proposal distribution, That
is, for each t = 1, . . . , K generate Y t from P and accept Y t, i.e. put X t = Y t, if U t ≤
min{1, (π(Y t)p(X t−1))/(π(X t−1)p(Y t))}. Otherwise, reject Y t, i.e. put X t = X t−1. Here, p is
the density of P , and the U t’s are independent samples from the uniform distribution on [0, 1].
Calculate φ1 = φ̂(X1, . . . , XK) and run according to the Metropolis-Hastings scheme another
K iterations with Pφ1 as proposal. Calculate φ2 = φ̂(XK+1, . . . , X2K) and repeat inductively.
In addition, a convergence criterion is specified for the sequence X1, X2, . . . . If satisfied for the
first time at X t, we put M = [(t− 1)/K], where [·] denotes integer value. This means that φM

is the proposal distribution used to generate X t (see Theorem 1). Alternatively, a convergence
criterion may be specified directly in terms of the sequence φ1,φ2, . . . . If satisfied for the first
time at φm for some m, we put M = m (see the last part of section 3). In any case, the proposal
is then fixed at PφM for the rest of the iterations, i.e. from t = KM + 1 onwards. This time
point may then naturally be taken as the end of the burn in. The idea is to choose φ̂ in such
a way that the closer (x1, . . . xK) is to represent a sample from π, the more should Pφ̂(x1,... ,xK)

resemble π. We will return to the question of what kind of ”resemblance” that is desirable, and
how this can be achieved. By fixing the proposal when the convergence criterion indicates that
the last sequence is reasonably representative of π, we save computation time and obtain more
stability and control of the estimation procedure.

Note that the transition probabilities at t in principle depend on all Xs for s ≤ K[t/K].
This follows since at iteration no. t, the proposal distribution is Pφ[t/K]

. Hence the stochastic
process that has been defined, is not a Markov chain. Nevertheless, the process can be shown
to converge under certain conditions:

Theorem 1 Define wφ(x) = π(x)/pφ(x), and suppose w∗
φ = supx(wφ(x)) < ∞ for all φ ∈ Φ,

and also w∗ = supφ(w
∗
φ) < ∞. Furthermore, define

τ = min{t : U t ≤ wφ[(t−1)/K]
(Y t)/w∗

φ[(t−1)/K]
} (1)

and let the proposal distribution be fixed at PφM after τ , where M = [(τ − 1)/K]. Then

(i) τ is stochastically dominated by a variable which is geometrically distributed with param-
eter 1/w∗, and in particular, τ is finite with probability 1.

(ii) For any integers t, s with t ≤ s the distribution P s of Xs satisfies P s(·|τ = t) = P s(·|τ =
t, X0, . . . , X t−1) = Π(·).

(iii) The distribution P t of X t satisfies |P t(A) − Π(A)| ≤ (1 − 1/w∗)t for any A ⊆ X . In
particular, P t converges to π in total variation norm.
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Proof: Suppose that at iteration no. t, pφ is the proposal density, i.e. φ[(t−1)/K] = φ. Clearly,
Pr(U t ≤ wφ(Y t)/w∗

φ) =
∫
X (wφ(y)/w∗

φ)pφ(y)dy = 1/w∗
φ ≥ 1/w∗. This proves (i). Note that

by definition, (τ = t) is equivalent to (U t ≤ wφ(Y t)/w∗
φ) ∩ (τ ≥ t). Note also that U t ≤

wφ(Y t)/w∗
φ implies X t = Y t. Furthermore, φ[(t−1)/K] is determined by X0, . . . , X t−1, and given

that φ[(t−1)/K] = φ, the variables Y t and U t are independent of the variables X0, . . . , X t−1 and
the events τ (= 1, . . . , τ (= t − 1, whose intersection is the event τ ≥ t. Hence, we have

P t(A|τ = t, X0, . . . , X t−1) = P t(A|U t ≤ wφ(Y
t)/w∗

φ, τ ≥ t, X0, . . . , X t−1)

= P ((X t ∈ A) ∩ (U t ≤ wφ(Y
t)/w∗

φ)|τ ≥ t, X0, . . . , X t−1)/P (U t

≤ wφ(Y
t)/w∗

φ|τ ≥ t, X0, . . . , X t−1)

= P ((Y t ∈ A) ∩ (U t ≤ wφ(Y
t)/w∗

φ)|φ[(t−1)/K] = φ)/P (U t ≤ wφ(Y
t)/w∗

φ|φ[(t−1)/K] = φ)

=
( ∫

A

wφ(y)pφ(y)dy
)/( ∫

X
wφ(y)pφ(y)dy

)
= Π(A) .

Now assume that (ii) is satisfied for some s ≥ t. The candidate Y s+1 for Xs+1 is gener-
ated by PφM . For any φ, we denote by Pφ(x; ·) the transition kernel for a chain generated by
the Metropolis-Hastings algorithm with Pφ as proposal distribution and Π as target distribu-
tion. Note that the random variable φM , given τ = t, X0, . . . , X t−1, is in fact a deterministic
function of X1, . . . , X t−1. Hence for any A ⊆ X we have P s+1(A|τ = t, X0, . . . , X t−1) =∫
X ps(x|τ = t, X0, . . . , X t−1)pφM (x; A)dx =

∫
X π(x)pφM (x; A)dx = Π(A) by the reversibility of

the Metropolis-Hastings transition kernel pφM (x; ·) with respect to π. Integrating with respect
to X0, . . . , X t−1 shows that P s+1(A|τ = t) = Π(A). By induction, this proves (ii). By (i) and
(ii), we have |P t(A)−Π(A)| ≤ P (τ ≤ t)|P t(A|τ ≤ t)−Π(A)|+P (τ > t)|P t(A|τ > t)−Π(A)| ≤
P (τ > t) ≤ (1 − 1/w∗)t. Recall that the total variation distance is given by

|P t − Π|TV =

∫

X
|pt(x) − π(x)|dx = 2 sup

A⊆X
|P t(A) − Π(A)|. (2)

Hence (iii) follows.
Note that part (ii) contradicts the assertion in Liu (1996) (cf. section 5) that the target

distribution is never actually attained. Note also that by (ii), the AIC algorithm may be
regarded as a procedure for exact sampling, with Xτ being an exact sample from π.

Suppose π is only known up to a proportionality constant, i.e. we know that π = cf for
some known function f and an unknown constant c. We may then define the ratios wφ in terms
of f instead of π and still detect the time τ for which the first exact sample Xτ is obtained. We
still have a geometric rate of convergence, but the rate will equal 1/cw∗ and will be unknown.

The boundedness condition on wφ(x) will be discussed in appendix A. Of course, the con-
vergence takes place even if one is not able to compute the suprema of wφ(x), as long as this
function is known to be uniformly bounded. In fact, the theorem remains valid if w∗

φ and w∗

are replaced by any upper bounds c∗φ and c∗ with c∗φ ≤ c∗. This is important, since it may be
difficult to compute w∗

φ and w∗ explicitly. If we define τ1, τ2, . . . as the successive values of t for
which U t ≤ wφ[(t−1)/K)]

(Y t)/c∗φ[(t−1)/K)]
, then Xτ1 , Xτ2 , . . . are independent samples from π. This

observation will be very useful in the comparison with the rejection sampler in section 4. The
times τi resemble the regeneration times used as times for adaption of the transition kernel in
the scheme of Gilks, Roberts and Sahu (1998). But unlike the situation for the regeneration
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times, the probability for the events (τi = t), i = 1, 2 . . . depend on the proposed value Y t

rather than on the state X t−1. Another difference is that these events are determined by the
same unitary U t that decides acceptance or rejection of Y t.

In the case of an IC, corresponding to Φ collapsing to a one point set {φ}, and with φ̂(x) = φ
for all x ∈ X the rate of convergence in Theorem 1 is the same as the rate given in Liu (1996).
In the case of continuous distributions, Liu uses a coupling argument. It is worth noting
that τ also may be considered as a coupling time, at least if there exists x∗ ∈ X such that
wφ(x∗) = w∗

φ = w∗. Indeed, if one chain is started in x∗, while the initial value of another
chain is sampled from π, and the two chains are linked by using the same proposals Y t and the
same uniform U t to decide acceptance, then τ is the time the chains coalesce. Taking the Dirac
measure at x∗ as initial distribution, we also observe that (1 − 1/w∗)t is the smallest possible
convergence rate for the total variation norm covering all initial distributions. To see this, note
that if X0 = x∗, then τ > t implies that X t = x∗. Hence P t(X − {x∗}|X0 = x∗, τ > t) = 0.
We then find by conditioning on the events {τ > t} and {τ ≤ t} and using the continuity of π
Π(X − {x∗})− P t(X − {x∗}) = Pr(τ > t) = (1− 1/w∗)t. (See also Smith and Tierney (1996),
section 4).

It is seen from Theorem 1 that in order to obtain fast convergence to π, one should look for
Pφ for which π(y)/pφ(y) stays small throughout all of X . In particular, tail behaviour must be
under control. After the chain has converged to π, acceptance rate and decay of autocovariances
is more important, and may entail other requirements on Pφ. These characteristics of the
algorithm, which are of interest in their own right, will be discussed in the rest of this section.

We consider a time t ≥ τ , so that X t is π-distributed. For simplicity, we omit the index φ.
Note that the inequality w(y) ≥ w(x) defines an ordering on X . We put A = {(x, y) ∈ X 2 :
w(y) ≥ w(x)}, B = Ac.

We first consider the acceptance rate a. Note that a = 1 is equivalent to p = π, so the
Metropolis-Hastings algorithm would give independent samples from π. Hence, intuitively, a
high acceptance rate is desirable. Also, practical experience indicates that a good estimate of
the density function requires a certain number of different sample values from π, see G̊asemyr,
Natvig and Sørensen (2000). This too makes a high acceptance rate favourable. We denote by
Ax the set {y : (x, y) ∈ A} and by By the set {x : (x, y) ∈ B}. We find the rejection rate

1 − a = 1 −
∫

A

π(x)p(y)dxdy −
∫

B

π(y)p(x)dx dy

=

∫

A

π(x)π(y)dx dy +

∫

B

π(x)π(y)dx dy

−
∫

X
π(x)(

∫

Ax

p(y)dy)dx −
∫

X
π(y)(

∫

By

p(x)dx)dy

≤
∫

X
π(x)(

∫

Ax

(π(y) − p(y))+dy)dx

+

∫

X
π(y)(

∫

By

(π(x) − p(x))+dx)dy ≤ |π − p|TV .

Here, r+ denotes the positive part of the real number r. Hence trying to minimize the total
variation distance between proposal and target distributions would seem to result in a high
acceptance rate.
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We restrict our covariance analysis to one-step autocovariances. We assume without loss of
generality that the function h for which we want to estimate Eπ(h(X)), satisfies Eπ(h(X)) = 0.
We have

cov(h(X t), h(X t+1)) =

∫

B

[h(x)2(1 − w(y)/w(x))

+h(x)h(y)w(y)/w(x)]π(x)p(y)dx dy +

∫

A

h(x)h(y)π(x)p(y)dxdy

=

∫

B

h(x)2π(x)p(y)dxdy +

∫

B

(−h(x)2)π(y)p(x)dx dy

+

∫

B

h(x)h(y)π(y)p(x)dxdy +

∫

A

h(x)h(y)π(x)p(y)dx dy.

Here h(x)2π(x)π(y) may be subtracted from the first integrand and added to the second. Since
Eπ(h(X)) = 0 implies that

∫

X 2

h(x)h(y)π(x)π(y)dxdy = 0 ,

we may subtract h(x)h(y)π(x)π(y)dxdy from the two last integrands to obtain

cov(h(X t), h(X t+1)) =

=

∫

B

h(x)2π(x)(p(y) − π(y))dxdy +

∫

B

h(x)2π(y)(π(x) − p(x))dxdy

+

∫

B

h(x)h(y)π(y)(p(x) − π(x))dxdy +

∫

A

h(x)h(y)π(x)(p(y) − π(y))dxdy.

If now |h| is bounded by c, we obtain

cov(h(X t), h(X t+1)) ≤ c2

∫

X 2

π(x)|p(y) − π(y)|dxdy + c2

∫

X 2

π(y)(π(x) − p(x))+dxdy

+c2

∫

X 2

π(y)|p(x) − π(x)|dxdy ≤ (5/2)c2|π − p|TV .

If |h| is decreasing (relative to the ordering defined by w), we have |h(x)| ≤| h(y)| for (x, y) ∈ B
and |h(y)| ≤| h(x)| for (x, y) ∈ A. In this case it therefore follows by a similar argument that
cov(h(X t), h(X t+1)) ≤ (5/2)varπ(h(X))|π−p|TV . This monotonicity condition is of course very
unlikely to be satified by coincidence, but if we have estimation of a particular h as a primary
purpose of the analysis, we may try to search for proposal densities that satisfy this ordering
condition. Thus, p(x) should be large compared to π(x) if |h(x)| is large. But apart from this
guideline for choosing p, it still seems to be useful to aim for a small total variation distance,
especially if one is interested in estimating the expectations of several different functions.

3 Framework for constructing AIC algorithms, examples
and heuristic arguments

We start this section by presenting a general framework for how the AIC algorithm may choose
proposal distributions. Let θ̃ = (θ̃1, . . . , θ̃r) be an r-dimensional function on the set of distribu-
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tion functions, whose components are characteristics of the distribution such as moments, quan-
tiles or modulus. We will assume that the mapping φ → θ̃(Pφ) is continuous. Put θ0 = θ̃(Π),
and let Θ = θ̃({Pφ})∪ {θ0}. The aim of the algorithm is to arrive at a PφM which is close to Π,
presumably achieved if PφM have almost the same distribution characteristics as Π, i.e if φM

satisfies

θ̃(PφM ) ≈ θ0 (3)

”Closeness” should preferably be with respect to both total variation distance and to the
distance measure d(Pφ, π) = w∗

φ. To this end we construct a continuous function φ̃ : Θ→ Φ for
which we have:

(i) φ̃(θ̃(Pφ)) ≈ φ,φ ∈ Φ and also θ̃(Pφ̃(θ)) ≈ θ, θ ∈ Θ.

(ii) By definition, φ̃(θ0) = φ0.

(iii) The closer θ is to θ0, the closer is φ̃(θ) to φ0 .

The function φ̂ introduced in the previous section is then defined by φ̂(x1, . . . , xK) =
φ̃(θ̂(x1, . . . , xK), where θ̂ is an estimator for the relevant distribution characteristics. If for in-
stance θ̃i(P ) = EP (ψi(X)) for some ψi, we may put θ̂i(x1, . . . , xK) = (1/K)

∑K
l=1 ψi(xl). Quan-

tile estimates may also readily be obtained from the sample sequences of size K. In the special
case of modulus estimates, a considerable extension of the framework may be useful. Indeed,
the modulus could be estimated by monitoring the π(Y t), which must be known up to a pro-
portionality constant and must be calculated anyway, for the proposed values Y t, t = 1, 2, . . . .
The modulus estimate is changed to Y t if π(Y t) is a new peak, exceeding all previous values.

Heuristically, we can argue that the adaptive algorithm should speed up convergence as
follows: Let Y Km+1, . . . , Y K(m+1) be a sample from Pφm . Using (i), we should then have
approximately φ̂(Y Km+1, . . . , Y K(m+1)) = φ̃(θ̂(Y Km+1, . . . , Y K(m+1))) ≈ φ̃(θ̃(Pφm)) ≈ φm. The
Metropolis-Hastings acceptance-rejection procedure should ensure that XKm+1, . . . , XK(m+1)

is more representative for π than Y Km+1, . . . , Y K(m+1) is, and hence by (iii) that φm+1 =
φ̂(XKm+1, . . . , XK(m+1)) is closer to φ0 than φm ≈ φ̂(Y Km+1, . . . , Y K(m+1)) is. More formally,
we would have |φm+1 − φ0|d < |φm − φ0|d. Here, | · |d denotes some distance measure in Rd.
Hence the algorithm should work its way towards the ”optimal” proposal distribution Pφ0 , until
it arrives at a φM close to φ0 when the convergence criterion is satisfied. By the continuity of
θ̃, and by (ii) and (i), the distribution PφM satisfies θ̃(PφM ) ≈ θ̃(Pφ0) = θ̃(Pφ̃(θ0)) ≈ θ0, so that
(3) is satisfied.

Remark 1 It seems that existing proofs of convergence for adaptive algorithms that have been
suggested, use some kind of uniform boundedness condition, satisfied either by assumption or
by construction by the transition kernels or the samples they generate. The condition must
be met for any possible history determining the transition kernels. This is the case for the
convergence proofs in Gilks et al (1998), Hario et al (1998) and Holden (2000), as well as for
our Theorem 1. In our view, it would be very attractive to construct convergence arguments
actually taking advantage of the improvements in the ability of the transition kernels to produce
approximate samples from Π which is intended by the adaption scheme. The above argument
is an attempt in this direction. The most fundamental difficulty in formalising this argument
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is to be able to control the effect of transforming a sample of independent variables from Pφ by
means of the Metropolis-Hastings accept-reject procedure.

The discussion so far in this section fits in with the parametric version (PAIC) presented in
G̊asemyr, Natvig and Sørensen (2000). The non parametric version (NPAIC) can be covered
by letting φ̂ be a density estimator and Φ the set of possible densities generated by φ̂. The
heuristics can be adapted to cover this case as well.

Example 1. Suppose we may expect π to be reasonably well approximated by a gamma
distribution with the correct expectation and variance. We may then define θ̃(P ) = (EP (X),
varP (X)),Θ = (0,∞)2, and pφ(x) = pa,b(x) = g(x; a, b), where g(x; a, b) denotes the gamma
density with a, b respectively the shape and scale parameter. Hence, Φ = (0,∞)2. With ξ and
σ2 representing respectively expectation and variance, we define φ̃(ξ,σ2) = (ξ2/σ2, ξ/σ2). In
this case φ̃ is a bijection between Φ and Θ, and φ̃(θ̃(Pφ)) = φ. We put φ0 = φ̃(θ0) by definition,
and we then have that Pφ0 and π have the same expectation and variance. The monotonicity
of distances (iii) can be achieved by choosing some metric, e.g. the Eucledian metric, for Φ,
and defining the distance of θ and θ′ in Θ as the corresponding distance in Φ between φ̃(θ)
and φ̃(θ′). With these definitions, this example fits very well into the general set up. Different
versions of this example have been studied in G̊asemyr, Natvig and Sørensen (2000), with π
representing the posterior distribution for the failure rates in exponential survival models with
data containing left censorings. Extensions of the example where n > 1 and Pφ is a product of
n gamma distributions, are also studied. The results are very promising. With execution times
comparable to any of the other simulation techniques that were tried, samples were produced
that could be used to produce very good approximations to the marginal densities of π.

If in some model another two-parametric class of distributions is expected to approximate
π better than the class of gamma distributions, one may clearly copy the procedure described
in example 1 with this class instead of the gamma distributions.

In the examples studied in G̊asemyr, Natvig and Sørensen (2000), the condition w∗ < ∞
is not satisfied, so theoretically convergence is not assured. Nevertheless, the AIC algorithm
worked very well in practice. It was also observed that the scale and shape parameters of
the proposal distributions displayed a nice, monotonic convergence to the target values. This
suggests that the heuristic argument above may be a better description of the mechanism
behind the algorithm than the theoretical proof of Theorem 1.

However, the boundedness condition may in many cases be obtained by allowing φ to run in
only a subset Φ1 of the possible parameter values. Hence, assume that w∗

1 = supφ∈Φ1
(w∗

φ) < ∞.

Correspondingly define a function φ̃1 : Θ→ Φ1 still satisfying (i), (ii) and (iii). Replacing φ̃ by
φ̃1 in the construction of an AIC gives an algorithm for which Theorem 1 is valid. Restricting
the parameter space in this way, one must expect less accuracy in the approximations (i). To
compensate for this, one may as a compromise choose a mixture distribution αPφ1 +(1−α)Pφ2 ,
with parameter space correspondingly extended to Φ = Φ1 × Φ2 and a function φ̃ = (φ̃1, φ̃2).
Here Φ1, φ̃1 are as above, Φ2 is the full original parameter space, φ̃2 chooses a best possible match
within {Pφ,φ ∈ Φ2} for the distribution characteristics θ1, . . . , θr and α is a fixed weight, 0 <
α ≤ 1. More generally, α may be allowed to depend on the sample, i.e. α = α̃(θ̂(x1, . . . , xK)),
but must at least be bounded below by a fixed β > 0 in order to ensure w∗ < ∞. Indeed,
we obtain w∗ ≤ (1/β)w∗

1 < ∞. Accordingly, the parameter space may be taken as Φ =
Φ1 × Φ2 × [β, 1].
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Suppose in particular that π(x) ∝ π0(x)Lx(D), where π0 is a prior distribution and Lx(D) is
the likelihood for x obtained from data D. Then the boundedness condition w∗ < ∞ is ensured
if pφ1 is replaced by π0 in the above set up and Lx(D) is bounded. In Bayesian analysis the
prior distribution is often easy to simulate from, so that the conditions ensuring convergence
in Theorem 1 can often be met in a practical way.

The burn in of the AIC algorithm may be taken as the iterations performed before X t

can be considered as either exactly or approximately π-distributed. It is natural to fix the
proposal distribution after the burn in. For if XKm+1, . . . , XK(m+1) are approximately π-
distributed, then φm is almost as good an approximation to φ0 as φk would be for any k > m.
Another reason to fix the proposal after some time is that as φm approaches φ0, the expected
size of the moves towards φ0 of the sequence {φm} must necessarily drop, and therefore get
outpowered by the Monte Carlo variance at some stage. Theorem 1 indicates a burn in of length
K[(τ − 1)/K]. However, if w∗ = ∞ this does not work. In addition, Theorem 1 may suggest
a far too long burn in if the real convergence rate is governed by the mechanism described in
our heuristic convergence argument. Instead we suggest as a diagnostic test to stop the burn
in at t = K(m + 1) if |φm − φm+1|d is sufficiently small. Hence, we use PφM with

M = 1 + inf{m : |φm − φm+1|d ≤ δ} (4)

as proposal for the rest of the iterations. For instance, we may put |φm−φm+1|d = sup1≤i≤d{|φm,i

−φ(m+1),i|/εi}, where εi are scaling constants. Using the criterion |φm − φm+1|d ≤ 1, the result
is that the burn in is finished when for the first time |φm,i − φ(m+1),i| ≤ εi for all i = 1, . . . , d.
Such a criterion is used successfully in the examples in G̊asemyr, Natvig and Sørensen (2000).
In less nicely behaved applications, the criterion might be met prematurely by chance, resulting
in a too short burn in. This could be remedied by requiring the criterion to be met for several
consecutive values of m.

The procedure for determining the burn in described above focuses on the distance between
components of the parameter vector φ for the consecutive proposal distributions. An alternative
is to focus on the distance of components of the vector θ of distribution characteristics. This
would seem particularly sensible if θ consists of moments and a primary purpose of the analysis
is to estimate moments of π. The result would be that when the distances between moment
estimates, based on consecutive sequences, are small enough, the burn in is terminated. Such a
criterion for ending the burn in does not ensure that the chain has converged to the stationary
distribution π, but it would nevertheless seem reasonable to believe that subsequent samples
represent features of π relevant for moment estimation sufficiently well. These considerations
are relevant also if the aim is to estimate Eπ(h(X)) if h is well approximated by the first few
terms of the Taylor series expansion within most of the support of π.

Numerous modifications of the framework outlined in this section could be made. An obvious
and probably sensible possibility is to use parameter values of the form (1/l)(φm+1 + · · ·+φm+l)
for some l > 1, both as a basis for the diagnostic test and as the parameter for the final proposal
distribution. Presumably, this would diminish the sensitivity of the algorithm to Monte Carlo
variability. The same effect could be achieved by replacing the fixed sequence length K by
an increasing K(m). In this way the dominance of Monte Carlo variation over the size of the
expected move towards φ0 as φm approaches φ0 may be defeated. This is the basis for a proof
of convergence that does not require the boundedness condition, see Theorem 2 in appendix
B. The function K(m) may be deterministic or random, depending on the history. In practice,
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the choice of such a function would have to be done by trial and error, which would probably
not be worthwhile if the procedure is constructed only for the analysis of a particular problem.
If on the other hand the procedure is meant for regular use with varying input, investment in
the search for a suitable function K(m) may be justified.

4 Comparison of rejection sampling, independent chains
and importance sampling

In this section we consider a fixed proposal distribution, and derive a bound on the asymptotic
efficiency of an independent chain relative to rejection sampling using the same candidate
distribution. This is the relevant criterion for asymptotic comparison also of the AIC with
rejection sampling, since the proposal distribution of the AIC is fixed after the burn in.

Define µ = Eπ(h(X)) and σ2 = varπ(h(X)). Let P be a fixed proposal distribution with
density p, and suppose that w∗ = supX (w(x)) is finite and known. Then a sequence of N
independent pairs (Y t, U t), where Y t is P -distributed, and U t is uniform on [0, 1] and inde-
pendent of Y t, can be used as a basis for estimates of µ both using rejection sampling and an
independent chain Metropolis-Hastings algorithm. It is convenient to consider N as random,
equal to the smallest number τm of samples needed to obtain m independent draws from π using
the rejection sampler, where m is any integer > 0. We denote the corresponding sample mean
estimate of µ by µ̂R(m). Based on the Markov chain X t obtained from (Y t, U t), we can define
the sample mean estimate for µ as µ̂M(m) = (1/τm)

∑τm
t=1 h(X t). We want to compare these

two estimates asymptotically, and we may assume that the initial state X0 of the Markov chain
is π-distributed. A natural criterion for comparison of rejection sampling with the independent
chain is then the size of ρ = limm→∞ ρ(m), where ρ(m) = var(µ̂M(m))/var(µ̂R(m)).

Now put M(0) = 0 and M(t) =
∑t

s=1 I(U s ≤ w(Y s)/w∗) = the number of independent
drawings from π obtained after t samples from P for t = 1, 2, . . . . Also put τ0 = 0, τi = min{t :
M(t) = i}, i = 1, . . . , m. Also, define Ri = τi − τi−1, i = 1, . . . , m. The variables X1, . . . , Xτm

may be grouped into independent segments {X1, . . . , Xτ1−1}, {Xτ1 , . . . , Xτ2−1}, . . . , {Xτm}
with respectively R1 − 1, R2, R3, . . . , Rm, 1 variables. The variables Ri, i = 1, . . . , m are in-
dependent and geometrically distributed with parameter 1/w∗. We have

N = τm =
m∑

i=1

Ri (5)

Define µ̂i = (1/Ri)
∑τi−1

t=τi−1
h(X t), i = 2, 3, . . . , m. For i = 1 the expression is for convenience

slightly modified by replacing h(X0) by h(Xτm). This gives

µ̂M(m) = (1/τm)
m∑

i=1

Riµ̂i (6)

Clearly, the µ̂i’s are independent. On the other hand, we make no assumptions on the covariance
structure within each segment {Xτi , Xτi+1, . . . , Xτi+1−1} of the Markov chain. This means that
we may have cov(h(X t), h(X t+s)) = σ2 given that τi ≤ t < t + s < τi+1 for some i, indicating
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a deterministic dependence between samples from the same segment. Hence, we only base our
comparison on the very conservative bound

var(µ̂i) ≤ σ2 (7)

Using (6), (7) and (5), the independence of the µ̂i’s and the symmetry of the Ri, i = 1, . . . , m
this gives

ρ(m) = mvar(µ̂M(m))/σ2 = (m/σ2)[E(var(µ̂M(m)|τ1, . . . , τm)) + var(E(µ̂M(m)|τ1, . . . , τm))]

= (m/σ2)[E((1/τ 2
m)(

m∑

i=1

R2
i var(µ̂i|τ1, . . . , τm))

+var(µ|τ1, . . . , τm)] ≤ mE((1/τ 2
m)(

m∑

i=1

R2
i )) = m2E((1/τ 2

m)R2
1) ≤ m2E((R2

1/(
m∑

i=2

Ri)
2)

= E(R2
1)E(((1/m)

m∑

i=2

Ri)
−2).

Since R1 is geometrically distributed with parameter w∗, the first factor is 2(w∗)2−w∗, while the
second factor tends to (1/w∗)2 by the strong law of large numbers and the bounded convergence
theorem. Hence, we get

ρ ≤ 2 − 1/w∗ (8)

In fact, this matches exactly the result obtained in Liu (1996) in the case of finite state spaces,
and shows that rejection sampling may potentially be twice as efficient as independent Metropo-
lis sampling. But remember that our result is based on assuming cov(h(X t), h(X t+s)) = σ2

given that τi ≤ t < t + s < τi+1 for some i. By a reasonable decay of autocovariances, the
independent Metropolis sampling will be much more efficient. Furthermore, if w∗ has to be
replaced by an upper bound c∗, the efficiency of independent Metropolis-Hastings sampling
remains unchanged, whereas the efficiency of the rejection method will be reduced. Moreover,
the Metropolis-Hastings sampling will be even further improved by allowing for adaptivity if
this leads to a reduction in autocovariances and in w∗

φ for the final proposal density pφ.
If we modify the estimate for µ based on the IC to µ̂M

1 (m) = (1/m)
∑m

i=1 µ̂i, we obtain
a corresponding ratio of variances ρ1(m) satisfying ρ1(m) ≤ 1. The fact that we may have
ρ(m) > 1 for the standard estimate µ̂M(m) is accounted for by the extra variability due to
the random weights Ri/(

∑m
j=1 Rj) allotted to the µ̂i. This does not necessarily mean that the

estimate µ̂M
1 (m) using fixed weights 1/m is better in practice.

Remark 2 Relation to importance sampling.
The variable Y t sampled from p at time t is represented in the resulting IC a random number

W t(Y t) times. We will show that if the chain is started at stationarity, then

E(W t(Y t)|Y t = y) = w(y) ,

so that Y t is represented by a weight whose expected value is the same as the weight that would
have been used in importance sampling using the same proposal distribution. To see this, denote
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by P and Π the cumulative distribution functions associated with p and π respectively, where
the ordering of X is determined by the value of w(y), y ∈ X . The probability of accepting y
when proposed is q(y) =

∫
x<y π(x)dx +

∫
x≥y(w(y)/w(x))π(x)dx = Π(y) + w(y)P̄ (y). On the

other hand, if the current state is y, the probability of rejecting the next proposal is λ(y) =∫
y′<y(1−w(y′)/w(y))p(y′)dy′ = P (y)−(1/w(y))Π(y). The distribution of W t(Y t) given Y t = y

equals the distribution of ZS, where Z, S are independent, Z is Bernoulli with parameter q(y)
and S is geometric with parameter 1−λ(y) = P̄ (y)+ (1/w(y))Π(y) = (1/w(y))q(y). This gives
E(W t(Y t)|Y t = y) = E(Z)E(S) = w(y) as asserted.

In principle, one could make a comparison of the asymptotic efficiency of the IC and im-
portance sampling based on the framework given in this proof. This would involve studying the
covariance structure of the IC by means of the pairs (Y t, W t(Y t)) rather than directly on the
X t-chain. We have not been able to obtain any striking results by persuing this idea, however.

5 High-dimensional models

Even though the heuristic arguments of section 3 indicate that the proposal distribution will
approach the ”optimal” Pφ0 when t increases, the performance of the AIC algorithm depends
crucially on the possibility of approximating the target distribution sufficienly well by such a
parametric distribution Pφ0 . The higher the dimension of X is, the more difficult this would
seem to be. This problem is studied in this section. We briefly consider heuristically the ex-
pected behaviour of the AIC as dimension increases, and present some ideas concerning the
construction of proposal distributions. A modified version of the AIC, called CAIC, (compo-
nentwise AIC) emerges from this general discussion. We also present an example showing how
one could go about constructing proposal distributions in practice in a model of moderately
high dimension.

As stated earlier, there is both heuristic and experimental evidence that total variation dis-
tance between target and proposal distributions is the most important feature of the approxi-
mation. Recall that |P1 − P2|TV denotes the total variation distance between the distributions
P1, P2 (cf. (2)). For any distribution P (x, y) we denote by PX and PY |x the marginal distribu-
tion of X and the conditional distribution of Y given X = x respectively. Now if n = 2 and
X = R2 we have for any proposal distribution P with density p that

|P − Π|TV =

∫

R2

|π(x1, x2) − p(x1, x2)|dx1dx2 ≤
∫

R2

πX2|X1(x2|x1)|πX1(x1) − pX1(x1)|

+

∫

R2

pX1(x1)|πX2|X1(x2|x1) − pX2|X1(x2|x1)|dx1dx2

= |PX1 − ΠX1 |TV +

∫

R

pX1(x1)|PX2|x1 − ΠX2|x1|TV dx1 .

By replacing X1 by (X1, . . . , Xn−1) and X2 by Xn it follows by induction that we have for
arbitrary n that

|P − Π|TV ≤ |PX1 − ΠX1 |TV + · · · +
∫

Rn−1

pX1,... ,Xn−1(x1, . . . , xn−1)|PXn|x1,... ,xn−1

−ΠXn|x1,... ,xn−1 |TV dx1 · · · dxn−1 (9)
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The significance of (9) is perhaps most evident when considering a model class where new
dimensions can be added within a common symmetric structure. The inequality (9) then ex-
presses a roughly linearly increasing bound on the total variation distance as the dimensionality
of the model increases. This does not indicate a more serious problem with high dimensionality
for the AIC algorithm in general than for e.g. the Gibbs sampler or versions of the Metropolis-
Hastings algorithm treating one component of x at a time.

The sequential conditioning structure in (9) also suggests a way of choosing proposal distri-
butions in many problems, in particular in models involving discrete time. It will then often be
natural to choose a proposal distribution of the form Pφ(x) = Pφ1(x1)Pφ2(x2|x1) · · ·Pφn(xn|x1,
. . . , xn−1) In this situation the parameter vector φ = (φ1, . . . ,φn) may be selected component-

wise by choosing distribution characteristics θ̃k = (θ̃k
1 , . . . , θ̃k

r ), k = 1, . . . , n such that θ̃k(P )
primarily reflects the distributional aspects of Xk given X1, . . . , Xk−1 under P . We define
corresponding estimators θ̂k, k = 1, . . . , n based on samples of size K, and obtain proposal dis-
tribution parameters of the form φ̂(x1, . . . , xK) = (φ̃1(θ̂1(x1, . . . , xK)), . . . , φ̃n(θ̂n(x1, . . . , xK)))
for suitably chosen functions φ̃k, k = 1, . . . , n.

As a simple illustration, suppose that the number of cases of a decease, occurring in a
particular population in time intervals (tk−1, tk), k = 1, . . . , n of equal length, are Poisson
distributed with unknown parameters λk. Let xk = λk, and let Π be the posterior distribution
of x = (x1, . . . , xn) given data D. Even in such a seemingly simple model, the data D may be
in a form that gives a very complicated likelihood function, and the computational challenge
may be formidable, see e.g. Glad et al. (2000). One possibility for proposal distribution is
to let Pφk

be a normal distribution with a trend adjusted expectation and a variance common
for all k. Hence, EPφk

(Xk|x1, . . . , xk−1) = xk−1 + φk. In this situation, it is natural to choose

θ̃k(P ) = EP (Xk − Xk−1), which is readily estimated by the corresponding sample mean, and
φ̃k(θk) = θk.

From the sequential procedure for selecting components of φ described above, it is a short
step to an adaptive, non-Markovian version of a more traditional Metropolis-Hastings algorithm
processing one component of x at a time. To construct such an algorithm, we should like
to choose a Pφk

that approximates ΠXk|Xl,l *=k. The distribution characteristics θ̃k should then
reflect the conditional distribution of Xk given all other components of x, not only X1, . . . , Xk−1.
Each proposed xk drawn from Pφk

is exposed to the usual Metropolis-Hastings accept-reject
step separately. We still base the selection of parameters φk on estimates based on sequences
of length K of previous iterations, however, so that the Markov property is not satisfied. In
the Poisson model described above, one could e.g. obtain such an algorithm by means of the
same basic parameters, only replacing xk−1 by (xk−1 + xk+1)/2 in the definitions.

The algorithm just described differs from an AIC by processing one component at a time.
A more essential difference is that the proposal distributions do not stay fixed throughout the
sequence of K iterations, since the proposal distribution for the k-th component depends on
xl, l (= k. On the other hand, it resembles the AIC by not depending on the value of xk from the
previous iteration. In these respects, the algorithm also resembles the Gibbs sampler, and may
be viewed as an adaptive approximation to the Gibbs sampler in situations where it is impossible
or at least very difficult to sample directly from the conditional distributions, as required in
the Gibbs sampler. This approximation is closer the better Pφk

(xk|xl, l (= k) approximates
Π(xk|xl, l (= k). We will term the algorithm a componentwise adaptive independent chain
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(CAIC).
At present we can not give any general recipy for choosing proposal distributions in the AIC

in any particular situation. The Poisson example described above may give some ideas. We
recall from the example in section 3 that another possibility is to estimate the marginal expec-
tation and variance for each component of x, derive proposal distributions for each component
within a certain two-parameter parametric class with the corresponding moments, and use the
product of these distributions as proposal. It should also be mentioned that if a multivariate
normal distribution seems like a suitable choice for proposal distribution, then the expectation
and the covariance matrix may be determined by means of estimates based on previous samples.
However, measures must be taken to ensure a positive definite covariance matrix. Section 4.2 of
Gilks et al. (1998) also presents examples where a Gaussian proposal distribution is updated in
this way, based on their “adaption at regeneration times” scheme with independent Gaussian
proposals. In Haario et al. (2000) a similar idea is used, but their algorithm is based on ran-
dom walk proposals, and also differs by using the entire history in the estimation of covariance
matrices (versions of the algorithm using only the last K iterations are also presented, but do
not necessarily converge). To give further ideas for the selection of proposal distributions, we
conclude this section by a somewhat more complicated example.

Example 2. This example is taken from Arjas an Gasbarra (1996), and we have chosen to
stick essentially to their notation. This is partly in conflict with the notation used elsewhere
in this paper. The aim is to obtain samples from Π(λ), the posterior distribution for λ =
(λ1, . . . ,λn), a parameter vector representing a piecewise constant approximation to the hazard
rate λ(t), t0 ≤ t ≤ tn for failure of some sort, e.g. the occurence of a decease, or death due
to it, among individuals in a certain population. Here, λk is the hazard rate on the interval
(tk−1, tk], where t0 < t1 < . . . < tn and tk − tk−1 = (1/n)(tn − t0). The data D are of the
form (Xi, δi), i = 1, . . . , N , obtained from a study population of N individuals. Here Xi =
the time at which the i-th individual was last seen and δi is the indicator function for the i-th
individual failing at Xi. The prior distribution is defined as follows: Let g(·; a, b) be the gamma
distribution with shape parameter a and scale parameter b. Fix parameters α0, β0,α. Let λ1

be distributed according to g(·;α0, β0). Given λ1, . . . ,λk−1, let λk be distributed according to
g(·;α, βk), where βk = α/λk−1. This means that EΠ0(λk|λ1, . . . ,λk−1) = λk−1. Defining Y (t) =
the number of individuals at risk at time t and Rk =

∑N
i=1 I(tk−1 < Xi ≤ tk)δi, the likelihood

is given by L(λ|D) =
∏n

k=1[λ
Rk
k exp(−λk

∫ tk
tk−1

Y (s)ds)].
Our suggestion for proposal distribution is to use the sequential conditioning framework

described in this section with each Pφk
(·|λ1, . . . ,λk−1) being a gamma distribution with shape

and scale parameters respectively being αk and γk(λk−1) = βk + ηk = α/λk−1 + ηk. In order to
make this definition cover the case k = 1, we define λ0 = α/β0, implying that β1 = β0. The
procedure for selecting φk = (αk, ηk) is motivated by a wish to obtain approximate equality of
conditional first and second moments, i.e.

EΠ(λk|λk−1) ≈ EPφk
(λk|λk−1) = αk/(α/λk−1 + ηk) and

EΠ(λ2
k|λk−1) ≈ EPφk

(λ2
k|λk−1) = (αk(αk + 1))/(α/λk−1 + ηk)

2 .

To derive equations for determination of αk and ηk from these approximate equalities, we
multiply with the denominators on the right hand side and take expectations with respect to
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λk−1 to obtain

αk ≈ αEΠ(λk/λk−1) + ηkEΠ(λk) (10)

and

αk(αk + 1) ≈ α2EΠ((λk/λk−1)
2) + 2αηkEΠ(λ2

k/λk−1) + η2
kEΠ(λ2

k) (11)

We now replace the distribution characteristics θ̃k
i (Π), i = 1, . . . , 5, being respectively EΠ(λk),

EΠ(λk/λk−1), EΠ(λ2
k), EΠ(λ2

k/λk−1) and EΠ((λk/λk−1)2) by corresponding estimates θ̂k
i and the

≈ signs by equality signs to obtain a pair of equations that can be solved by inserting the right
hand side of the first equation for αk in the second.

It is worth noting that following this procedure, it is, at least theoretically, possible to obtain
exact samples by restricting the parameter space Φ. Indeed, some standard calculations show
that we have

wφ(λ) ∝
[ n−1∏

k=2

λ
Rk−αk+αk+1

k (α + λkηk+1)
−αk+1e

−λk(
∫ tk

tk−1
Y (s)ds−ηk)

]

×λR1−α1+α2+α0−α
1 (α + λ1η2)

−α2e−λ1(
∫ t1

t0
Y (s)ds−η1)λRn+α−αn

n e
−λn(

∫ tn
tn−1

Y (s)ds−ηn)

Note that this product form arises due to cancellations of equal terms from π(λ) and pφ(λ),
despite the dependence of λ1, . . . ,λn under both these densities. By suitably restricting the
parameter space Φ, this can be maximized term by term with respect to λ. We must necessarily
have the restriction ηk ≤

∫ tk
tk−1

Y (s)ds, k = 1, . . . , n. The restriction for (α1, . . . ,αn) is some-
what more arbitrary, but it is very natural to impose α ≤ αk ≤ α+ Rk. With such a restricted
Φ, Theorem 1 applies and permits exact sampling. One may also use a mixture distribution
with one component based on a restricted parameter space and one based on the unrestricted
(R+)2n.

Note that these upper bounds for ηk and αk correspond to updating of scale and shape
parameters of the prior distribution for λk, given λ1, . . . ,λk−1, with respectively the total time
on test and the number of observed failures that correspond to the interval (tk−1, tk] and is
summarised in that part of the likelihood that involves λk. This would be the correct way of
updating the parameters had λ1, . . . ,λn been independent a priori. Using this simple update
may be a good choice for an initial proposal distribution.

Arjas and Gasbarra themselves use a Metropolis-Hastings algorithm that is in some respects
similar to the CAIC algorithm introduced above. Like the CAIC, their algorithm processes one
component of λ at a time, and the proposal distribution for λk is allowed to depend on λi, i (= k,
but not on the old value of λk. On the other hand, the proposal distribution does not adapt
to what could be learned from previous iterations. The proposal is a gamma distribution
whose modulus mk is the same as for π(λk|λi, i (= k). A CAIC could be based on the same
gamma proposals as above, i.e. with parameters derived from equations based on (10) and (11).
Alternatively, one could replace (10) by (αk − 1)/(α/λk−1 + ηk) = mk, so that the proposal has
the same modulus as in the Arjas - Gasbarra algorithm.

We emphasize that the algorithm used by Arjas and Gasbarra (1996) seems to work quite
well and is not in need of replacement. In fact, the model described here is only a building block
in the cumulative hazard rate ordering problem they are actually considering. The purpose of
our alternative suggestions is to present ideas that may have more general applicability.
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6 Appendix A Sufficient conditions for Theorem 1 and
counterexample.

The following proposition gives a sufficient condition for the boundedness of wφ(x), ensuring
the validity of Theorem 1.

Proposition 1 Suppose that Φ is compact, and that for any ε > 0 there exists δ > 0 such that
for any x ∈ X , we have |wφ(x)−wφ′(x)| < ε whenever |φ− φ′| < δ. Then wφ(x) is bounded on
Φ× X .

Proof: We show that w∗
φ is continuous in φ. The assertion then follows from the compactness

of Φ.
Let φ ∈ Φ be arbitrary. Choose x ∈ X such that wφ(x) > w∗

φ − ε/2. By assumption,
there exists δ > 0, which may be chosen independently of φ, such that if |φ′ − φ| < δ, then
|wφ′(x) − wφ(x)| < ε/2. Hence |φ′ − φ| < δ implies that w∗

φ′ > w∗
φ − ε. By symmetry we also

have w∗
φ > w∗

φ′ − ε. Hence w∗
φ is in fact uniformly continuous in φ, and the proposition follows.

The following example shows that it is not enough that wφ(x) is uniformly continuous in φ
for each x ∈ X .

Example 3. Define π(x) = 1/x2 for x ∈ X = [1,∞). For φ ∈ Φ = [0, 1/2] define pφ(x) =
cφgφ(x), where g0(x) = π(x), gφ(x) = (1/x2)[I(|x−1/φ| > 1)+I(|x−1/φ| ≤ 1)((1−φ)|x−1/φ|+
φ)], 0 < φ ≤ 1/2. Then each pφ is continuous. Clearly, the normalizing constant cφ is continuous
in φ. It decreases to 1 as φ decreases to 0, and satisfies 1 = c0 ≤ cφ ≤ c1/2 < 1/(

∫ ∞
3 (1/x2)dx) =

3. Clearly, wφ(x) = π(x)/pφ(x) is maximized for x = 1/φ, giving w∗
φ = 1/(cφφ) > 1/(3φ).

Hence w∗
φ is not bounded. This occurs even though wφ(x) is continuous in φ for each x, in fact

uniformly continuous by the compactness of Φ.

Appendix B Convergence without boundedness of wφ(x).

The easiest way to obtain convergence for an AIC algorithm defined by a family {Pφ} of
proposal distributions for which wφ(x) is not bounded, is to add to the proposal distribution
a component with sufficiently heavy tails (cf. section 3). If the tails are heavier than those of
Π, this works at least if the density π is bounded. In this appendix we show how convergence
can be obtained by allowing the sequence lengths to vary and to depend on the history. Even
though we can not describe the sequence lengths as explicit functions of the history, we think
that this result tells an important part of the story about why the AIC algorithm seems to
work in practice even if wφ(x) is not bounded.

Suppose the basic defining ingredients for an AIC are given, i.e. we have

(i) An initial proposal distribution P0.

(ii) Distribution characteristics θ̃ = (θ̃1, . . . , θ̃r), of the form θ̃(P ) =
EP (ψ(X)) = (EP (ψ1(X)), . . . , EP (ψr(X))) ∈ Θ.

(iii) A family of proposal distributions Pφ,φ ∈ Φ, and a continuous function φ̃ : Θ→ Φ

(iv) A criterion for fixing the proposal at PφM as in (4).
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In order to specify an AIC procedure, it only remains to add to (i) - (iv) the specification
of sequence lengths. For the sake of stating and proving the theorem below, we must consider
a version of the AIC where the proposal distribution is not fixed after the criterion (iv) is
satisfied. Let the sequence lengths for this version be K1, K2, . . . . These may vary from run to
run of the algorithm. For the standard version, we fix the sequence length at KM+1 from the
(M + 1)-st sequence onwards. Define Lm = K1 + · · ·+ Km = the total number of iterations at
the end of the m-th sequence. We denote by {Zt} the chain arising by not fixing the proposal
at PφM after the burn in, i.e. by letting the adaptation go on indefinitely. Then Zt coincides
with X t for t ≤ LM+1, but differs later because the proposal distribution differs. Define

θm = θ̂(ZLm−1+1, . . . , ZLm) = (1/Km)
Lm∑

t=Lm−1+1

ψ(Zt), m = 1, 2, . . . (12)

and

φm = φ̃(θm), m = 1, 2, . . . (13)

We then have the following result:

Theorem 2 There exist sequence lengths K1, K2, . . . , where Km may depend on Zt for t ≤
Lm−1, such that

(i) θm converges almost surely to θ0 = θ̃(Π)

(ii) φm converges almost surely to φ0 = φ̃(θ0)

(iii) M is finite almost surely.

(iv) The distribution P t of X t converges to Π in total variation norm.

Proof: Define θ0 = θ̃(P0), the distribution characteristics of the initial distribution. We
may assume without loss of generality that the Euclidean distance |θ0 − θ0| ≤ 1. Since θ1 is
defined as a sample mean, it follows by the ergodicity of the Metropolis-Hastings algorithm
that there exists K1 such that P (|θ1 − θ0| > 1) ≤ 1/2. In the same way, there exists K2,
which may depend on Z1, . . . , ZK1 through the proposal distribution parameter vector φ1 and
the initial value ZK1 for a new Metropolis-Hastings chain, such that P (|θ2 − θ0| > 1/2) ≤
(1/2)2. Continuing inductively, there exists Km, which may depend on the proposal distribution
parameter vector φm−1 for the m-th sequence and the initial value ZLm−1 , such that P (|θm −
θ0| > 1/m) ≤ (1/2)m, m = 3, 4, . . . . Define the events B = (θm does not converge to θ0) and
Am = (|θm − θ0| > 1/m), m = 1, 2, . . . We then have that B ⊆ ∩∞

N=1 ∪∞
m=N Am. Choosing

sequence lengths in the above manner, we have P (Am) ≤ (1/2)m, and it follows that P (B) ≤
limN→∞

∑∞
m=N P (Am) = 0, proving (i). Part (ii) follows from (i) by the continuity of φ̃, while

(iii) follows immediately from (ii). To prove (iv), let ε > 0 be arbitrary. It follows from (iii)
that LM is also almost surely finite. Therefore, there exists t0 such that P (LM > t0) ≤ ε. For
t > t0 and A ⊆ X we have

|P t(A) − Π(A)| ≤ P (LM > t0)|P t(A|LM > t0) − Π(A)|
+P (LM ≤ t0)|P t(A|LM ≤ t0) − Π(A)| ≤ ε + |P t(A|LM ≤ t0) − Π(A)| (14)

18



Denote by Q0
φ the distribution of X t0 given that LM ≤ t0 and φM = φ, where φ is any parameter

vector in Φ. Denote by Qs
φ the distribution of V s, where {V s} is the chain generated by an

independent chain Metropolis-Hastings algorithm with Q0
φ as initial distribution and Pφ as

proposal distribution. We then have for t > t0

P t(·|LM ≤ t0,φM = φ) = Qt−t0
φ (·) (15)

For any φ ∈ Φ, choose sφ such that s ≥ sφ implies that for all A ⊆ X we have |Qs
φ(A)−Π(A)| ≤

ε. Such an sφ exists by the convergence in total variation norm of the Metropolis-Hastings
algorithm, and may e.g. be taken as the smallest integer with this property. Then S = sφM

may be considered as a random variable, being a deterministic function of φM , which is almost
surely finite given that LM ≤ t0. Choose s0 such that P (S > s0|LM ≤ t0) ≤ ε, and put
Φ0 = {φ ∈ Φ : sφ ≤ s0}. We then have for any A ⊆ X

φ ∈ Φ0 and s ≥ s0 ⇒ |Qs
φ(A) − Π(A)| ≤ ε (16)

Furthermore, since clearly φM ∈ Φ0 if and only if S ≤ s0,

P (φM /∈ Φ0|LM ≤ t0) ≤ ε (17)

By (15), (16) and (17) it follows that for t ≥ t0 + s0 and A ⊆ X

|P t(A|LM ≤ t0) − Π(A)| ≤ P (φM ∈ Φ0|LM ≤ t0)|P t(A|LM ≤ t0,φM ∈ Φ0) − Π(A)|
+P (φM /∈ Φ0|LM ≤ t0)|P t(A|LM ≤ t0,φM /∈ Φ0) − Π(A)|

≤ |P t(A|LM ≤ t0,φM ∈ Φ0) − Π(A)| + P (φM /∈ Φ0|LM ≤ t0) ≤ 2ε (18)

Combining (14) and (18) finally gives (iv).

Remark 3 Note that the structure of the algorithm ensures that φm is gradually attracted to
φ0. Hence, the proof is in line with the heuristic argument of section 3 and the idea expressed in
Remark 1, and indeed no uniform boundedness condition is used. It is likely that the sequence
length Km will have to increase with m in order to meet the increasing precision requirement
P (|θm − θ0| > 1/m) ≤ (1/2)m). On the other hand, the proposal distribution Pφm should be an
ever improving approximation to Π, working against this increase in Km at least for a while.

Remark 4 It is an obvious drawback of this result that the sequence lengths are not specified
explicitly. However, the ordinary Metropolis - Hastings algorithm and indeed practically any
MCMC suffers from a similar weakness. The number of iterations both in the burn in and
afterwards must be determined experimentally, using some kind of diagnostic test. We feel
convinced that similar empirical methods could be used to determine reasonable sequence lengths
in the case of an AIC. The construction of such methods is beyond the scope of this paper,
however, and we will not persue this problem here.

19


