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ABSTRACT

An anmalytical-numerical procedure for obtaining stress intensity factor solutions for an arbitrarily oriented
crack in a long, thin circular cylindrical shell is presented. The method of analysis involves obtaining a
series solution to the governing shell equation in terms of Mathieu and modified Mathieu functions by the
method of separation of variahles and satisfying the crack surface boundary conditions numerically using
collocation. The solution is then transformed from elliptic coordinates to polar coordinates with crack tip as
the origin through a Taylor series expansion and membrane and bending stress intensity factors are
computed. Numerical results are presented and discussed for the pressure loading case,

1. Introduction

The determination of elastic stress intensity factors for an arbitrarily oriented crack in
a long, thin, isotropic circular cylindrical shell loaded by axial tension, internal
pressure, and torsional moment can be found in {1]. A perturbation analysis was
carried out and ciosed form expressions were obtained for mode I and mode Il
components of membrane and bending stress intensity factors. These stress intensity
factor solutions are valid over the complete range of the crack angle a and are quite
accurate for small values of the curvature parameter 8. However, in practice, we do
encounter a number of situations where B8 falls far outside the valid range of the
perturbation analysis. Previous work on symmetrically oriented cracks by Murthy et
al. [2] has clearly shown that as B increases, perturbation solutions become increas-
ingly conservative and resuit in gross over estimate of stress intensity factors,
Therefore, there is a need to develop a method of analysis using which one can
generale accurate stress intensity factors over a wide range of g.

A survey of literature on shells with cracks {2, 3] reveals that while axial and
circumferential cracks in a cylindrical shell have been investigated quite extensively,
work on an arbitrarily oriented crack is not so complete. The first attempt on the
problem of an arbitrarily oriented crack in a cylindrical shell is due to Folias [4] but
the stress intensity factors obtained are approximate. Analysis of a pressurised shell
of revolution with a stress free crack that makes an arbitrary angle with a line of
curvature of the middle surface has been carried out by Simmonds et al. [5]. First
order corrections due to curvature to the mode I and mode II components of
membrane stress intensity factor for a cracked plate were determined analytically. Tt
is to be noted that this is only a partial solution to the problem, since it has been
assumed that the predominant stresses are given by the membrane theory. It is
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expected that the evaluation of bending stress intensity factors was given up due to
the difficult algebra involved. Some experimental studies of fracture of circular tubes
with angled cracks in torsion are reported in [6].

From the foregoing review, it is evident that the earler procedures placed
restriction on one or both of the parameters B and «. So we notice a need for a
method which eliminates both these restrictions and permits analysis of practical
problems. This in fact, is the purpose of the present work.

The objective of this paper is to present an analytical-numerical procedure for the
computation of elastic stress intensity factors for an arbitrarily oriented crack in a
circular cylindrical shell without placing any restriction on B. For the purpose of
analysis, the shell is assumed to extend to infinity on either side of the crack. The
material is assumed to be homogeneous, isotropic and linear elastic. Solution to the
governing differential equation for the shell is obtained in the form of an infinite series
in terms of Mathieu and modified Mathieu functions by the method of separation of
variables. The crack surface boundary conditions are satisfied numerically with the
aid of a digital computer using collocation. The solution which is completely deter-
mined, is then transformed by a Taylor series expansion from elliptic to polar
coordinates with crack tip as the origin and membrane and bending stress intensity
factors are determined. Numerical results are presented and discussed for loading by
internal pressure.

2. General formulation

The configurations and loading conditions for which the present analysis is applicable
are shown in Fig. 1. Before going into the details of the analytical-numerical pro- ;
cedure, we discuss briefly the general formulation which forms the basis for the .
analysis.

2.1. Non-dimensionalization

It is convenient to work with dimensionless physical quantities. Table 1 indicates the
non-dimensionalizing procedure used. In this table the symbol & denotes a reference
stress, E is the Young’s modulus of elasticity, ¢ is the shell wall thickness and » is the ;
Poisson’s ratio. o is taken as uniform axial stress (axial tension), as uniform circum- “
ferential stress (internal pressure}, and as uniform shear stress (torsional moment) in
the shell in the absence of a crack.

2.2. System of coordinates

All the coordinate systems defined refer to the shell middle surface and are shown i
Fig. 2. Coordinates with the dimension of length are non-dimensionalized with respect]
to a, the half crack length.

Two non-dimensional rectangular coordinate systems (x,y) and (X,Y) are
defined with crack centre as the origin. The x and X axes are oriented along the shell
axis and crack respectively. These two coordinate systems are connected by the linea#
relations:

x=Xcosa+Y sina,

y=—Xsinae+Y cosa,

where o represents the angle of inclination of the crack to the shell axis (Fig. 1). -
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CASE 1. UNIFORM AXIAL TENSION

CASE 2 . UNIFORM HYDROSTATIC
PRESSURE

CASE 3 TORSIONAL MOMENT

Figure 1. Configurations and loading conditions considered for analysis.
An elliptic coordinate system (£, n) is defined as follows:
X =coshé&cosm, (3)
Y =sinh £sinm, (4)

where the curves of £ = constant and m = constant form an orthogonal system of
confocal ellipses and hyperbolas with the common foci being the points (X = 1, Y =
0). The boundary of a straight crack is represented by £=0.

We further define non-dimensional polar coordinates (r, 8) with a crack tip as the
origin. These are related to (X, Y) by the following relations:

X=1+rcosh (5
Y=rsind _ (6)
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TABLE 1

Non-dimensionalising procedure
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Nondimensional Non-dimensionalising
quantity Symbol used factor
Coordinates X Y, x, K a
Stress function ¢ ota’
Normal
displacement w aa’|12(1— )1 Bt
Stresses Ty Ty Ten

Try Tia Tro a

Fra (Fyy Try

oOX, Oy, TXY
Membrane forces Ne Ny Ny

N, Ny Ny ol
Bending moments R/I;, Rddn, ;f;gn a1 — o7y

Ty B i

Transverse
shear and
Kirchoft shear Q. Qo Qe Oy 2 2012
forces Q Qs Q. O ot fall2(l—e%)"
Stress intensity _
factors K™ KiP, KPP KR oVa
Laplacian
Operator v lfa?
M= CONSTANT
Y ¢
’ \
€ = CONSTANT -
CRACK,£=0
P x
_F 7 «
: 20 > X
. )
/
p

X -AXIS PARALLEL
TO SHELL AXIS

Figure 2. System of coordinates.

\
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2.3. Governing shell equation

We define a ‘“‘residual problem” as the problem of determining a stress field which, if
superposed on the known state of stress in the shell in absence of the crack, gives the
actual state of stress in the shell with the crack. Evidently, this stress field should
arise from a system of self-equilibrating edge loads on the crack surface. In analysing
the residual problem, these edge loads are determined from the condition that the
crack surface should be stress-free in the final solution, and we take that part of the
solution to governing shell equations, the stresses and displacements due to which
vanish at infinity.

The governing differential equations used here are derived from the general
shallow, thin shell equations given by Vlasov [7]. These can be reduced to a single,
homogeneous equalion for a dimensionless complex function F = W —

v =0, )
where
B 12t - ) (8)

2 2
vi= (;xz e ) in rectangular coordinates,

. L gt aty. . .

V= (ag ) in elliptic coordinates,

K = [(cosh 2¢& — cos 2m)/2]"" is a non-dimensional scale factor for elliptic
coordinates,

and R is the radius of the shell.
2.4. Solutions to the governing shell equation

We now seek solutions to the governing equation (7) keeping the following criteria in
mind:
i) periodicity of the solution in n,
ii} symmetry considerations, and
iii) the condition that stresses and displacements vanish as £ >,
We can write [8] the complete solution for (7) as follows:

= w

F= 3 (A +iB)F.+ Y (C,+iD)F} (9)

n=0,1,23,... n=1,23,...
where

Fz = cos[(1 +i)B(cos a cosh £ cos

+ sin « sinh & sin n)]Me'(¢, q)cey(n, @) (10)

Fajer = sin[(1+ )B(cos & cosh £ cos 1
+ sin @ sinh £ sin 7)I1Me% (&, @)ceyin, q) (11)

F%; = cos[(1+)B(cos a cosh £ cos
+ sin a sinh £ sin 5))Ne¥ (¢, g)sex(n, @) (12)

Fii. = sin[(1 +i)B{cos a cosh £ cos 1
+ sin a sinh £ sin 7))NebL (£ @)sera(n, q) (13)
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Figure 3. Stress resultants.

A, B., C, and D, are arbitrary real constants, notations followed for the Mathieu
functions se,(1, q), ce.(n, @) and modified Mathieu functions Me'’(¢, q), Ne''(¢, g)
are identical with those of McLachlan [9], and g is a purely imaginary parameter
given by

q=ig*2 (14)

The non-dimensional stress resultants (Fig. 3) in elliptic coordinates can be
expressed in terms of F[2}. Non-dimensional membrane and bending stresses can be
obtained from these stress resultants using the relations given in [2].

3. Method of analysis — an outline

Solution to the governing shell equation is taken in the form of an infinite series as
given in (9). The series is truncated to a specified number of terms and the arbitrary
constants are evaluated by satisfying the crack surface boundary conditions using a
collocation procedure. The next step is to transform the solution which is now
completely determined, from elliptic to polar coordinates with a crack tip as the origin
so as to recover the singular stresses in a convenient form. In the perturbation
analysis presented in [1], such a transformation was carried out, term by term in the
expanded form of W and ¢. This method, if it is to be applied in the present approach,
requires highly complicated logic in programming on the computer. The difficulty is
overcome here by developing a method which involves expressing the soiution
through a Taylor series expansion around a crack tip and truncating it beyond terms
which produce non-singular stresses. Computation of stress intensity factors then
becomes a fairly simple process.

With the use of the conventional collocation procedure of satisfying the crack
surface boundary conditiens, it is found that convergence in results, in terms of stress
intensity factors, is not satisfactory for certain cases. The difficulty is overcome by
using a hybrid-collocation procedure. What we are doing is, in effect, equivalent to (i)
satisfying the overall boundary conditions using the collocation procedure, and (ii)
taking particular care of the singular stresses in the boundary conditions using power
series expansions in the radial coordinate.
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4. Computation of special functions

Effectiveness of the method of analysis outlined above depends to a large extent on
the accuracy with which the Mathieu and modified Mathieu functions are evaluated
numerically.

Methods of determination of characteristic numbers denoted by p in the Mathieu
equation [9] are fairly well established for real values of q. A major difficulty in
evaluating the Mathieu functions here arises from the fact that g, in the present
problem is purely imaginary for which metheds of computing p are not readily
available. Power series expansions for p in terms of g, for g real or complex are
available [9] but these extend only to a limited number of terms. Evidently these
expansions are inaccurate for large values of §.

The power series expansions for p given by McLachlan [9] were obtained by
taking the solution to the Mathieu equation as well as the characteristic numbers as
power series in g. The condition of periodicity of the solution was then enforced in
each term in its power series representation and this led to a progressive evaluation of
successive terms in the power series for p in terms of q. In the present work, this
analytical procedure was computerized by a matrix formulation and the power series
for p is generated without any restriction on the number of terms. _

For the computation of Mathieu functions, Fourier series expansions are used [9].
For the modified Mathieu functions the Bessel function product series, which is far
more convergent than others, is used [9]. The characteristic coefficients which appear
in the above series are determined from the well known recurrence formulae [9].
Derivatives of Mathieu and modified Mathicu functions are obtained by term wise
differentiation of the series which is known to be valid [9].

5. Analysis of a cylindrical shell with an arbitrarily oriented crack
3.1, Boundary conditions

The residual problem in this case is defined by the following boundary conditions.

(Np)eoo= —(fi sina + f,cos” a + fasin 2a), (15
(Negdeco = (f1— f2) sin & cos a + f1cos 2a, (16)
(Mg)e=o=0 (17)
(Qe=o=10 (18)

where the kirchoff shear ég is given by

. 1 M,

Qﬁ - Qf + K a,n
f1, fz and f; are dimensionless load parameters the non-dimensionalising factor being
at. fi=1, f=0, f3= 0 for loading by axial tension, f; =0, f= 1, f3 = 0 for loading by
internal pressure, and f, =0, fo=0, f; =1 for loading by torsional moment.

5.2. Numerical procedure

" The series solution (9) is truncated to a specified number of terms. The arbitrary real
~ constants are determined from the criterion that the boundary conditions (15)-(18) be
-~ satisfied exactly at a specified number of points on the crack surface. If the number of
~ points chosen is NP, the collocation points are located at 1 = 2mr, 39 37, and
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(NP — Dt where Mivt = 7/NP. For NP collocation points, NP terms are chosen in
the series solution resulting in 4 * NP equations for 4 + NP unknowns. In the present
work, the entire analytical process involved in generating and solving the linear
algebraic equations for the unknown constants was computerised. The computation
was started by taking the first ten terms in the series soiution initiaily and increasing
the number of terms in steps of two. The computation was terminated if less than
0.1% deviation was noticed in the stress intensity factors from two successive
approximations.

3.3. Transformation to polar coordinates

With the arbitrary constants determined, the solution is completely known in elliptic
coordinates. This solution is to be transformed to polar coordinates with a crack tip as
the origin in order to recover the singular stresses and to evaluate the stress intensity
factors. As we are interested here in the immediate vicinity of the crack tip, we carry
out the transformation for r <€ 1. Also, as terms involving r* and higher powers of r in
W and ¢ give rise to non-singular stresses, such terms are ignored. Accordingly, the
trigonometric functions in (10)~(13) are expanded with the help of (3)-(6) as

cbs[(l + 1)B(cos a cosh £ cos y + sin a sinh £ sin 7))

= A1 = Agpt 7 €OS B — pypar sin 8 + 0(rD) (19)
sin[(1+ {)B(cos & cosh & cos n + sin « sinh £ sin 1]

= p1+ Apar sin @ + A Aor cos 6 + 0(r2) (20)

where

Ar=cos[(1+ )8 cos a] 20
Ar=(1+1i)B cos a (22}
1 =sin[(1+1)8 cos «] (23)
p2=(1+0)B sina (24)

It now remains to transform the Mathieu and modified Mathieu functions in
(10)-(13) to polar coordinates. It is to be noted that we need this transformation not
over the entire domain, but only in the immediate vicinity of the crack tip and that in
this zone, both the elliptic coordinates ¢ and 7 are nearly zero. Since £ =0 and 5 =0
in the region of interest, we carry out Taylor series expansions of the Mathieu and
modified Mathieu functions around the crack tip defined by £ = =0:

2
cen(n. @) = ceu0, )+ ce (0, ) + 7 ce;(0, q)
3
+;?—Ace}{ 0, g) + 0(n*) (25)
sen(n, @)= sea(0, @) + 2L s¢.,(0 LR
n (M, (0, (0, )+ 5e,(0, q)
A 2x
7]3
+ay sen (0, 9)+0(n" (26)
2
Mey(£, @) = Men(0, )+ £ Mei(0, )+ £ Mey0, g)

3
+£- Me(0, q)+ 00 @)
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Neu(& @)= Ney(0, @)+ & Nel(o, q)+g Ne'(0, q)

Ea "
+3 Ne 0, q) + (£Y (28)
where
£=0n" cos%fﬁ—\l/i r cos'%e+0(r2) (29)
n =2 sm%—6—\/_r sin3?9+0(r2) 30

( ) and ( ) denote differentiation with respect to m and £ respectively. Superscript
(1) is omitted in Me, (&, ¢} and Ne, (¢ q) for the sake of brevity. Terms involving
fourth and higher powers of £ and m are dropped in (25)-(28) as £ and 7 given by
(29)-(30) are of order r'?. From the Fourier series expansions for the Mathieu
functions {9}, it follows that

ce(0, q) = ce, (0, g} = seq (0, q) = 5¢,(0,q) =0 (31)
From the properties of Mathieu and modified Mathieu functions, it can be shown that

Me, (0, g)ce, (0, q) + Mei(0, g)ce, (0, q) =0 (32)

Using (19)-(32), the general term in the series solution defined by (10)-(13) can be
expressed in terms of (r, §) as follows:

Fyi = 0 iMey(0, g)cex(0, q)

+ VA Mey (0, g)cey (0, g)1r'™ cos%

+ [A Me5;(0, g)cez;(0, q)
= Ay Mey(0, g)cey(0, g)]r cos 8

+[ 515 (Meti 0. a)cex (0. 4) + Mes 0. )ees 0, @)

A , , 8
— fj—%—‘ Mes(0, q)eez(0, @)1 cos -

[ y \/f{Me"'(o @cex(0, @) — Me 50, q)ces(0, g1}

2\/ = Mey(0, g)cexl0, q)

A ) 5 39
- \2/%’ Me3;{0, gice(0, @)lr*” cos S

+ [— pin2Mey (0, g)cey {0, g)]r sin 0

+ [— % Mesi(0, g)ees (0, 1r” sin 6/2

. 38
+[—&'¥Me’- 0, q)cey(0, ]rmsm—
V3 2i(0, q)cey( q) >

+0(r?) (33)
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F21‘+1 =

F§j=

iMen; (0, g)cey. (0, q)

+1V20 M3 (0, g)ce0. )l cos

+ [ Med (0, g)eezn(0, q)
+ AhaMey (0, gices (0, g)]r cos 8
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[2 ={Meia(0, q)eey. (0, g) + Meb (0, g)ces;s (0, q)}

Ak &
‘*‘722'M€ 5100, q)cesa(0, Q)J e 55

+ [6—”\‘?5 MeT (0, g)ceyna(0, g) — Mey, (0, g)cesn(0, )}

2\/2 Meb, (0, g)cesna (0, q)

ATA , 30
+ ﬁ Mebi (0, @)cey (0, q) (r? cos ?

+[AipaMey; (0, glces;, (0, g)]r sin 0

A , .0
+ [\'/—%2 Mey;. (0, g)ces(0,q)]r* sin -

A , . 3¢
+ [vlp‘i—l Mezjw 1(0, q)C€2j+]((]. q)]rm s1n ?
+0(rh

[V2A:Ney(0, q)sex(0, g)lr'? sin %

+ A Nez(0, gise(0, g)lr sin g

+[2\/* Ney(0, q)ses (0, q)

"\}’i‘ Nex(0. 4)se30. q)

+3 \/5 Ne(0, g)sex(0, @) sin%
+ [——)‘1: Nesy(0, @)fses(0, a) + ses (0, q)}
6V2 ! e

o hap
\/E

Ney(0, q)sex(0, q)

. . 30
_N 0, q)se{0, } Y2 gin —
2\/2 €3 ( Q) 50, g) | r 2

WLip . 2 o
+ | — =" Ne;;(0, e5(0, }r cos —
[ \/5 2]( Q)S 2]’( Q) o1 2

. 36
+E2 Ney (0, a)sei0, )| cos 2 o)
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F%; = [V2uNey (0, q)sexa0, @)lr'” sin%

+ [ Ne 0, g)sesi (0, g)]r sin 8
+ [2_#\5 Neynl0, g)sesi0, q)

- %/"—_; Neyji(0, )sez; (0, q)
+ 3505 Netoi0, a)sesy o0, )Ir™ sin %

[ s Ne 0. lses 0. @) + s, @)
AlA .
+T}T§ Newyi(0. g)sen(0, q)

B " - o 38
+ — Nesi (0, q)ses(0, ]r sin —
NG 5i+1(0, g)se+1(0, q) 5

A . —, @
+ [ \‘/%2 Nesj (0, g)ser (0, q)]r”‘ cos 3

AfL . 30
+ [f ﬁ Neyj (0, g)ses(0, q)]r"’2 cos -

+0(r?) (36)

Evaluation of Fa, Fy.y, F; and F-fm from the foregoing equations is fairly simple
from the computational point of view, because the modified Mathieu functions and
their derivatives at & = 0 are already evaluated during the process of satisfying the
boundary conditions. Mathieu functions and their derivatives at 2 ={ are easily
evaluated from their Fourier series expansions. Solution for the complex stress-
displacement function F is obtained in polar coordinates by substituting Eqns.
(33)=(36) in (9) and carrying out the summation. This is done on the computer as the
arbitrary constants A,, B,, C, and D, are already evaluated. Separating the real and
imaginary parts, we get the stress function ¢(r, 8) and normal displacement W(r, 8) in
the form:

o 0
& = Do+ Dyr'?cos = + Doy cos § + Gyrcos 5

2 2
+® ¥ cos % +®sr'? sin % + Dgr sin 8 + D,r’? Si“%
+ o sin 22 +0(r) (37
W = Wy+ Wir'? cos g— + War cos 8 + Wir™ cos % + W' cos 379
+ Wsr'? sin % + Wer sin § + Wor*? sin g— + Wer' sin §2ﬁ +0(r%) (38)

where (IJ]:, W; (j = 0 to 8) are obtained as numerical values from the computer.
Non-dimensional stress resultants and stresses in polar coordinates can be
determined from (37)—(38) using the relations given in [2].
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A simple check on the computer values of &, W, (j = 0 to 8) is to confirm that the
following crack surface boundary conditions reformulated in polar coordinates are
satisfied:

Ng=—(f1sin’ a + facos® a + fisin 2a),
N =(fi— fu) sin « cos a + f3cos 2a,
M,=0,

Qs = Qs + ag;'“ =0,alongd =+ 7.

using (37)-(38) to satisfy the foregoing boundary conditions and satisfying the resul-

ting equations term by term in the power series in r'2 we get
D, =0 39
DOifd, =3 (40)
b =0 (41)
baPy =1 {42)
W, =0 ‘ (43}
Wi W, =3(v — D)7+ ) (44)
W:=0 (45)
Wi/ Wy =3¢ — D/(5+31) (46)

5.4. Determination of stress intensity factors

Following the convention for flat plates, we define mode I and mode II com-
ponents of membrane and bending stress intensity factors as follows:

(m) _ _ Ksm] 0
e (r 8 = 0) = KL 4 00 @7
\V2r
)
or, 0 = 0= KL 1 o) (48)
vV 2r
m}
Pr, 6 = 0)= 52_r+ 0(r°) (49)
K(b)
®(r, 8 = 0) = 2=+ 0(r0 50
T (r ) NGr (r0) (50)

where the superscripts (m) and (b) refer to membrane and bending stresses and the
subscripts I and II refer to mode I and mode Il components. It may be recalled that
the stress intensity factors K{™, K, K{, K{ are non-dimensionalised with respect
to oVa. Using (37)-(38), these stress intensity factors are obtained as simple
algebraic expressions:

K{™=3(d3+ D)/2V2 (51)
K =~ (0, + 30g)/2V2 (52)
K =3[3(1— o) Wy~ (5 + 30) Wal/[24(1 — vD)]"? (53)
K& =3y ~ D[W;+ 3We]/[24(1 — vD]? (54)
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Distribution of singular stresses in the vicinity of the crack tip in terms of these stress
intensity factors is then obtained in the usual form [1, 8.

5.5. Computational errors and convergence

The test of convergence during computations was applied on the total stress intensity
factor K{ or K'V given by

K(lml) — K%m] + K([b}
K0 = KiP+ K

Numerical results showed satisfactory convergence in general except for some
combinations of 8 and a. We thus find that the collocation procedure, in spite of its
proven effectiveness in satisfying the overall boundary conditions, cannot handle the
mathematical limiting process in the vicinity of crack tips for such cases. Obviously
modifications would be necessary in our numerical procedure for these combinations
of B and a. We shall now study this aspect.

We look back at (39)—(46) which are obtained by reformulating the crack surface
boundary conditions in polar coordinates. These equations serve also as a useful
check on mathematical formulation of the problem, the correctness of computer
programming, and computational errors such as round-off etc. Numerical results show
that convergence is assured whenever these equations are clearly satisfied. Con-
vergence is not satisfactory when (39)-(46) are not satisfied. So, one concludes that
the mathematical formulation and computer programming are faultless, but the
computational errors over power the solution in certain cases. The values of 8 and «
for which this happens is obviously not unique but depends on computer limitations
and programming details.

A closer look at the origin of (39)-(46) shows that they actually represent
boundary conditions on singular stresses in the vicinity of the crack tip. Therefore,
these can be enforced as additional conditions to be satisfied during the evaluation of
the arbitrary constants. that means, if the first NT terms are considered in the series
solution (9) resulting in 4 * NT unknowns, eight of the 4 #* NT equations required are
derived from (39)—(46) while the remaining (4 *NT-8) equations are derived by
satisfying the boundary conditions (15)-(18) at (NT-2) collocation points. Hence, the
technique we use is in a sense, of a hybrid type and is found to result in excellent
convergence over the range 8 and « considered.

5.6. Discussion of results

The distribution patterns of the membrane and bending stresses in the vicinity of the
crack tip obtained in the present analysis [8] are identical with the perturbation
' solution given in [1] and the plate solutions for the cases of extension [10] and bending
[11]. We therefore conclude that, irrespective of the size and orientation of the crack,
the distribution patterns of the membrane and bending stresses in the vicinity of the
- crack tip for the cylindrical shell are identical with those found in plates both with
regard to the inverse square root singularity in r and angular distribution in the @
coordinate. Curvature has only the effect of increasing the intensity of the singular
' stresses. This is in agreement with conclusions drawn in earlier works on symmetric-
ally oriented cracks.

. Results from the present analysis suggest that the angular distribution of mem-
brane stresses is independent of the Poisson’s ratio whereas this is not true of bending
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stresses. Analysis of a pressurized cylindrical shell with an axial crack by Krenk [12}
and with a circumferential crack by Delale and Erdogan [13] from Reissner’s theory
shows that the order of singularity of membrane and bending stresses near the crack
tip agrees with predictions from classical shallow thin shell theory but the angular
distribution of bending stresses is independent of » and is exactly identical with the
one for membrane stresses. One could therefore expect that similar investigation of
the present problem by a tenth order shell theory might lead to the same conclusion.

In view of the range of problems covered in the analysis and also as the number
of parameters involved is large, non-dimensional stress intensity factors are presented
and discussed only for the pressure loading case. But the computer program
developed can be readily used to generate the results for the other two loading cases.

It is clear from the general formulation that the problem for the loading case
considered is completely defined by the three- non-dimensional parameters g and e,
and v. Numerical calculations in this paper were performed on an IBM 370/155
computer using double precision arithmetic. Resuits were obtained for » = 0.3, in
terms of 8 and « in the ranges 0 <8 =< 1.2 and 0 < a < 90°.

Comparison with earlier theoretical solutions. For a pressurised cylindrical shell with
an axial crack, we shall first compare results from the present analytical-numerical
procedure with those from [2]. Table 2 gives a comparison of mode I membrane and
bending stress intensity factors for « =0 and 0= g8 =< 1.2. As the comparison shows,
the boundary collocation procedure employed in the present analysis and the Fourier
series formulation used by Murthy et al. [2] give identical resuits. Incidentally, this
comparison has also served to provide useful check against errors in programming the
present method of analysis on the computer. Figures 4 and 5 show the variation of
mode I membrane and bending stress intensity factors with the curvature parameter
B. The figures also show the perturbation solutions taken from [1] but we will defer
discussion on this to a later stage. Variation of K{™ is parabolic for small values of B
and approximately linear for higher values of 8. K{ increases with B, reaches a
maximum value and starts decreasing with further increase in 8. These trends in the
behaviour of K{™ and K{’ are in agreement with the earlier works.

Comparison with perturbation solutions. We shall now compare results from the
present analytical-numerical method with those from the perturbation analysis
presented in [1]. Table 3 gives a comparison of stress intensity factors K{™, K%, K™

TABLE II
Comparison of results from the present analysis with earlier solutions
Configuration and loading: Pressurised cylindrical shell with an axial ¢rack.

[a=0,v=013]
Mode I Membrane SIF K™ Meode I Bending SIF K
Curvature Present Present
Parameter g8 analysis Ref. [2] analysis Ref. {2]
0.0 1.0 1.0 0.0 0.0
0.2 1.07 1.07 0.101 0.101
0.4 1.245 1.245 0.219 0.219
0.6 1.476 1.476 0.305 0.305
0.8 1.737 1.737 0.354 0.354
1.0 2.011 2.011 0.371 0.371

1.2 2,288 2.288 (.358 0.358
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Figure 4. Mode I Membrane SIF for an axial crack in a pressurised cylindrical shell plotted as a function

of 8.

(b}

MODE 1 BENDING SIF KI

04

0-3

Q-2

v=0-
- 03 PRESENT ANALYSIS -
—— —— PERTURBATION
— ANALYSIS
”~ ~
- 7 N .
/, \\
‘4
7~ AN
1 1 \\ 1 1 1
0-2 0-4 06 08 1-0

CURVATURE PARAMETER B

Figure 5. Mode I bending SIF for an axial crack in a pressurised cylindrical shell plotted as a function 8.

and K obtained by the two methods for 8 = 0.2 and 0 = a <90°. As the comparison
shows, the perturbation analysis does prove to be almost exact for this value of B.
Incidentally, this comparison has also provided a check against errors in lengthy
algebraic work carried out in the perturbation analysis. A comparison of perturbation
solutions with the present analytical-numerical results over a wide range of g for
a =0 is shown in Figs. 4 and 5. It is seen that as B increases, the difference in
membrane stress intensity factor is not large but the error in perturbation solution
arises mainly from the bending stress intensity factor. It is also evident from Fig. 5
that K will reverse sign but the value of 8 at which this happens is far higher than
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that predicted by the perturbation analysis. Thus, the perturbation solution gives an
erroneous prediction of the critical shell surface on which fracture is initiated under
static loads beyond a certain value of B. A similar comparison of perturbation
solutions and analytical-numerical results for all other values of a shows that the
perturbation solution can be considered to be valid for g upto 0.5 if errors upto 5%
could be admitted. '
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Figure 6. Mode [ membrane SIF for an arbitrarily oriented crack in a pressurised cylindrical shell plotted as
a function of 3.
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function of §.
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Parametric study. A parametric study of the stress intensity factors with respect to a
and B for » = 0.3 is shown in Figs. 6 to 9. It can be seen that )

(i) The peak value of the mode I membrane stress intensity factor K™ is always
reached at o = 0 and its magnitude increases with .

(i) Mode I bending stress intensity factor K{” becomes quite significant for
higher values of §.

(iii) The magnitude of the mede 1l membrane stress intensity factor also in-
creases with 8 for all values of o (other than 0° and 90° for which it is zero).
However, as B increases, the departure from the plate solution is not large. Similar
observations are valid for the mode II bending stress intensity factor K.
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Figure 8. Mode II membrane SIF for an arbitrarily oriented crack in a pressurised eylindrical shell plotted
as a function of g.
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6. Concluding remarks

In this paper, we have presented an analytical-numerical procedure for the deter-
mination of membrane and bending stress intensity factors for an arbitrarily oriented
crack in a cylindrical shell. The work is a logical extension of the perturbation
analysis to cover a wide practical range of the parameters involved. Mathematical
formulation and computationat details neceded for this analysis are also given.
Numerical results are presented for the pressure loading case to show the evidence to
- the conclusion that the proposed method of analysis has satisfactory convergence and
accuracy over a wide range of the parameters involved.

The method of analysis presented in this paper should be of special interest in the
light of techniques used earlier for such problems. Crack problems in shells have been
treated in the past mainly by integral equation methods whereas, here, the problem is
solved from the differential equation approach of particular interest should be the
hybrid-collocation technique used for satisfying the crack surface boundary con-
ditions and the Taylor series expansion used to transform the solution from elliptic to
polar coordinates.
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