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In this article we survey the basic results concerning the convergence of Infinite Exponentials; we use
Lambert’s W function to show convergence for the real and complex cases in a more elegant way and
prove several incidental results about Infinite Exponentials. We also show how to extend analytically the
Infinite Exponential function over the complex plane and how to derive exact expansions for finite and infinite
power iterates of the hyperpower function. As a final application we derive several series identities involving
Infinite Exponentials.
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INTRODUCTION

Lambert’s W or ! function has acquired popularity only recently, due to advances in
computational mathematics. Although compositions of this function appear in a dis-
guised form in Barrow [7, p. 153], De Villiers and Robinson [42, p. 14] and Knoebel
[24, p. 235], most of W’s essential properties are presented in Corless et al. [16,
pp. 344–349] and [17, pp. 2–8]. Some of these properties can be used to greatly simplify
the answer to the problem of when infinite exponentials converge.

1. NOTATION

We work with the principal branch of the complex log function, and use
Maurer’s notation for successive power iterates and the infinite iterate (see Knoebel
[24, pp. 239–240]).
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Definition 1.1 For z 2 C n fx 2 R:x � 0g and n 2 N,

nz ¼
z, if n ¼ 1,
z

n�1zð Þ, if n > 1:

�

Definition 1.2 Whenever the following limit exists and is finite,

1z ¼ lim
n!1

nz:

We also use the exponential function g(z) and its iterates:

gðzÞ ¼ cz ð1:1Þ

gðnÞðzÞ ¼
gðzÞ if n=1,
g gðn�1ÞðzÞ
� �

if n>1.

�
ð1:2Þ

nz and gðnÞðzÞ are related: nc ¼ gðnÞð1Þ. We will also use the following function:

Definition 1.3 mðzÞ ¼ zez, z 2 C:

We specify the coefficients of the series for successive power iterates of the exp
function, as am,n.

Definition 1.4

mðezÞ ¼
X1
n¼0

am, nz
n:

Equations with complex exponents throughout this article are always understood to
use the principal branch of complex exponentiation, whenever necessary: cw ¼ ew logðcÞ,
c 6¼ 0, with log being the principal branch of the complex log function.

The real counterparts of all functions in this section will be denoted as having real
arguments x instead of z to avoid any confusion.

Whenever a complex function is multi-valued and a parameter k 2 Z is required to
indicate the branch chosen, the omission of k altogether indicates always the principal
branch of this function (k¼ 0).

The complex unit disk will be denoted by D unless specified otherwise.
For the term analytic function we use the definition found in Churchill and Brown

in [15, p. 46].
The term Infinite Exponential was coined by Barrow in [7, p. 150]. Briefly, it is the

infinite tower z
z
z:::
3
2

1
, with zn 2 R (or zn 2 C), 8n 2 N. In this paper we concern ourselves

with the case where zn¼ z, 8n 2 N. Accordingly zz
...z

(whether real or complex) will be
used interchangeably with z z...

z
ð Þ to denote repeated exponentiation from top to bottom.

In most cases we will denote finite exponentials using Definition 1.1 and infinite expo-
nentials using Definition 1.2.

De Villiers and Robinson in [42, p. 13] introduce the term nth auxiliary equation for
the equations g(n)(z)¼ z. In particular, cz¼ z is referred to as the first auxiliary equation
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and cc
z

¼ z is referred to as the second auxiliary equation, when dealing with infinite
exponentials.

For the terminology about periodic points of functions, normality, Fatou and Julia
sets, we refer the reader to Bergweiler [9, pp. 2–3] and Branner [11, pp. 37–41].

For an introduction to fractals, dynamical systems in general, Mandelbrot and Julia
sets we refer the reader to Peitger and Richter [34, pp. 27–52], Barnsley [6, pp. 248, 303],
and Branner [11, pp. 37–41]. For specific iterative processes and computer implementa-
tions that generate Mandelbrot and Julia sets, Barnsley [6, pp. 251–320] and Becker
and Dörfler [8, pp. 92–145]. For successively more formal definitions, theory, and
terminology behind dynamical systems, Peitgen and Richter [34, pp. 27–46], Barnsley
[6, pp. 302–320], Bergweiler [10, pp. 2–26] and Milnor [30, Sections 3.1–3.5], all of
which contain extensive bibliographies.

2. LAMBERT’S W FUNCTION

Definition 2.1 The complex functionW is the function which solves for z the equation:

mðzÞ ¼ w, w, z 2 C

or alternatively:

Definition 2.2 The complex function W satisfies the functional equation:

WðzÞeWðzÞ ¼ z, z 2 C:

W is multi-valued and as such it has many branches. It is usually denoted as W(k, z),
with k 2 Z specifying the appropriate complex branch chosen. In particular, the prin-
cipal branch of this function corresponding to k¼ 0, Wð0, zÞ will be denoted as W(z)
and the corresponding real valued function will be denoted as W(x).

Some useful properties of W follow. Most of these can be found in [17] and can
be validated numerically with Maple in Redfern [35, p. 305]. We selectively prove
those which are not explicitly proved in [17] or [16].

For k 2 Z, the various branches of W(k, z) are defined using the branch cuts BCk and
counterclockwise continuity (CCC) around the corresponding branch points:

BCk ¼

�1, � e�1
� �

, if k¼ 0

�1, � e�1
� �

[ �e�1, 0
� �

, if k¼ �1

�1, 0ð Þ, otherwise

8><
>: :

Note that the branch point z0 ¼ �e�1 of W(z) is m(z), where z satisfies: dm=dz ¼ 0.
This branch point is shared between W(z) and Wð�1, zÞ.

Let CN ¼ ð�1, �1Þ and consider the set of curves:

Ck ¼
�y cotð yÞ þ yi, y 2 ð2k�, ð2kþ 1Þ�Þ, if k � 0,

�y cotð yÞ þ yi, y 2 ðð2kþ 1Þ�, ð2kþ 2Þ�Þ, if k < 0:

�
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LEMMA 2.3 The image of the branch cut BCk of W(k, z) under W(k, z) is always:

Wðk,BCkÞ ¼
C�1 [ CN, if k =�1
Ck, otherwise

�

Now define the domains Dk as follows:

Dk ¼

region between C1,CN,C0, if k =1
region between C�1,CN,C�2, if k ¼ �1
region between Ck,Ck�1, otherwise

8<
:

The curves Ck and domains Dk are shown in Fig. 1.

LEMMA 2.4 Wðk, zÞ 2 Dk, k 2 Z, z 2 C:

COROLLARY 2.5 WðzÞ 2 D0, z 2 C:

LEMMA 2.6 Wðk,mðzÞÞ ¼ z, k 2 Z, z 2 Dk and mðWðk, zÞÞ ¼ z, k 2 Z, z 2 C:

COROLLARY 2.7 WðmðzÞÞ ¼ z, z 2 D0 and mðWðzÞÞ ¼ z, z 2 C:

From the symmetry of the Cks and Dks follow:

LEMMA 2.8 Wðk, zÞ ¼ Wð�k, zÞ, k 2 Z, z 2 C:

COROLLARY 2.9 WðzÞ ¼ WðzÞ, z 2 C:

Since ð�1, �1� 2 D�1 and ½�1, þ1Þ 2 D0, only the branches corresponding to
k¼ 0 and k ¼ �1 can ever assume real values:

LEMMA 2.10 Wðk, zÞ 2 R ) k 2 f�1, 0g:

LEMMA 2.11 W(x) is real valued, continuous and strictly increasing on the interval
½�e�1, þ1Þ.

LEMMA 2.12 Wð�1, xÞ is real valued, continuous and strictly decreasing on the interval
½�e�1, 0Þ.

FIGURE 1 Bounding curves for the ranges of Wðk; zÞ.
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Lemmas 2.13 and 2.14 follow by considering m(z) and the fact that �e�1 is a shared
branch point between W(z) and Wð�1, zÞ:

LEMMA 2.13 W(e)¼ 1.

LEMMA 2.14 W �e�1
� �

¼ W �1, � e�1
� �

¼ �1:

LEMMA 2.15 D � D0 and @D \ @D0 ¼ f�1g:

Proof It suffices to show �y cotðyÞ þ yi
�� �� > 1 for all y 2 0,�=2ð Þ, which is easily shown

using elementary calculus (Fig. 2). limy!0þ �y cotð yÞ þ yið Þ ¼ �1 2 @D \ @D0 while
z 2 @D \ @D0 ) cosð�� yÞ þ sinð�� yÞi ¼ �y cotð yÞ þ yi ) fsinðyÞ ¼ y, � y cotð yÞ ¼
cosð�� yÞg. From the first equation we get y ¼ k�, k 2 Z. From those only the
y ¼ ð2kþ 1Þ�, k 2 Z satisfy the second equation as a limit, so z ¼ cosðð2kþ 1Þ�Þ þ
sinðð2kþ 1Þ�Þi ¼ �1 and the lemma follows. g

LEMMA 2.16 W(z) is analytic at z0¼ 0 with series expansion:

SðzÞ ¼
X1
n¼1

ð�nÞn�1zn

n!

and radius of convergence: Rs ¼ e�1:

Proof Details about the expansion S(z) as well as various other expansions are given
in [16]. The Ratio Test reveals the radius of convergence.

lim
n!1

anþ1

an

����
���� ¼ lim

n!1
1þ

1

n

� �n�1

z

�����
����� ¼ ezj j < 1,

or equivalently,

zj j < e�1:

FIGURE 2 y cotð yÞ þ yi; y �ð0; �Þ and half unit circle.
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S(z) is actually valid on the entire disk Dw ¼ fz : zj j � e�1g. If zj j ¼ e�1, then

ð�nÞn�1zn

n!

�����
����� ¼ nn�1

enn!
<

nn�1ffiffiffiffiffiffi
2�

p
n nþ1=2ð Þ

¼
1ffiffiffiffiffiffi

2�
p

n3=2,

using Stirling’s approximation, and the series
P1

n¼1 1=
ffiffiffiffiffiffi
2�

p
n3=2 is convergent. g

It also follows that the radius of convergence of S(z) is Rs ¼ e�1, since W(z) has
a branch point at z0 ¼ �e�1.

3. THE CENTRAL LEMMA

Lemma 3.3 is mentioned (without proof) in [16, p. 332], but the author feels it needs
some careful justification, particularly in view of the multi-valued nature of W.

g(z) in (1.1) is intimately tied with infinite exponentials. In general, given c 2 C,
c =2 f0, 1g, if the sequence fgðnÞðzÞgn2N converges, it must converge to a fixed point of
g(z) or equivalently the limit must satisfy the first auxiliary equation,

z ¼ gðzÞ: ð3:1Þ

Equation (3.1) can always be solved analytically via W.

LEMMA 3.1 The fixed points of g(z) are given by h :C�C with:

hðk, cÞ ¼
Wðk, � logðcÞÞ

�logðcÞ
, k 2 Z

Proof z¼ gðzÞ, z¼ cz , ze�z logðcÞ ¼ 1,�z logðcÞe�z logðcÞ ¼� logðcÞ,mð�z logðcÞÞ ¼
� logðcÞ, �z logðcÞ ¼Wðk, � logðcÞÞ, k2Z, by

Definition 2.1 , z ¼ Wðk, � logðcÞÞ=� logðcÞ, k 2 Z, and the lemma follows. g

LEMMA 3.2 If c 2 C n fee
�1

g and k 2 Z n f0g, then h(k, c) is a repeller.

Proof g0 hðk, cÞð Þ ¼ logðcÞ½Wðk, � logðcÞÞ=�logðcÞ� ¼ �Wðk, � logðcÞÞ 2 �Dk, by
Lemma 2.4, so if k 2 Z n f0g, then g0 hðk, cÞð Þ

�� �� > 1, by Lemma 2.15, and the lemma
follows. g

The assumption c 6¼ ee
�1

is crucial. Otherwise g0 hðk, cÞð Þ ¼ �W k, � e�1
� �

¼ 1, for
k ¼ �1. (Lemma 2.14).

Lemmas 3.1 and 3.2 lead to the central lemma of this article.

LEMMA 3.3 Whenever 1c exists finitely, its value is given by:

hðcÞ ¼
Wð�logðcÞÞ

�logðcÞ
:
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4. CONVERGENCE FOR c 2 R

The fact that successive power iterates of
ffiffiffi
2

p
converge to 2 is numerically verified in

Crandall [18, pp. 70, 74] and Israel [23, p. 66], and analytically explained in Spivak
[40, p. 434], Länger [26, p. 77] and Mitchelmore [31, pp. 643–646]. Consider the follow-
ing relation for the positive square root of 2. ð

ffiffiffi
2

p
Þ
2
¼ 2. Replace the exponent with

the equation’s left side to get, ð
ffiffiffi
2

p
Þ
ð
ffiffi
2

p
Þ
2

¼ 2. By repeating the process of this substitu-

tion of the last exponent recursively we obtain finite sequences of n radicals,

ð
ffiffiffi
2

p
Þ
ð
ffiffi
2

p
Þ
���ð
ffiffi
2

p
Þ2

¼ 2, which are valid for all n 2 N. We have good reason to suspect that
informally

1ð
ffiffiffi
2

p
Þ ¼ 2: ð4:1Þ

We shall prove this in Lemma 4.9.

LEMMA 4.1 If x 2 e�1, e
� 	

, then hðxx
�1

Þ ¼ x.

Proof By definition h( y) solves the equation xx
�1

¼ y, so it is a partial local inverse
of the function yðxÞ ¼ xx

�1

. On the indicated interval y(x) is 1–1 and onto the range
of e�1, e

� 	
, and the lemma follows. g

LEMMA 4.2 If x 2 ðe, þ1�, then hðxx
�1

Þ ¼ w 2 ð1, eÞ, with ww�1

¼ xx
�1

.

Proof y(x) is continuous on ð1, þ1Þ, attains a max at x¼ e, and limx!1 yðxÞ ¼ 1;
so there exists a w in ð1, eÞ, such that ww�1

¼ xx
�1

, and the lemma follows from
Lemma 4.1. g

Whenever y 2 ð1, ee
�1

Þ, the two values w , x which satisfy ww�1

¼ xx
�1

¼ y are always
given as fhð�1, yÞ, hð yÞg. If y 2 ð1, ee

�1

Þ, then �e�1 < � lnð yÞ < 0, so fWð�1,
� lnð yÞÞ,Wð� lnð yÞÞg 2 R, by Lemmas 2.11, 2.12, and therefore fhð�1, yÞ, hð yÞg 2 R.
If y ¼ ee

�1

, then hð�1, yÞ ¼ hð yÞ ¼ e, by Lemma 2.14.

Example y ¼ 1:3304¼
:
1:562ð1=1:562Þ ¼

:
6:620ð1=6:620Þ. Such values are given here analyti-

cally by W, but are also found by numerical or other methods in the articles which deal
with solving the equation xy ¼ yx, Bush [12, p. 763], Carmichael [13, pp. 222–226],
[14, pp. 78–83], Franklin [21, p. 137], Moulton [32, pp. 233–237], Sato [36, p. 316],
Slobin [39, pp. 444–447], Archibald [1, p. 141], and Kupitz [22, pp. 96–99]. The
graph of y(x) is also shown in Knoebel [24, p. 236]. Knoebel observes that y(x) is
a partial inverse of h(x), although he does not explicitly define h via W.

Lemmas 4.1 and 4.2 summarized.

LEMMA 4.3

h xx
�1


 �
¼

x, if x 2 ½e�1, e�;
w, w 2 ð1, eÞ : ww�1

¼ xx
�1

, if x 2 ðe, þ1Þ:

�

The interval of convergence for the real case can now be determined from fixed point
iteration. The only potentially attractive fixed point of g(x) is given by Lemma 3.3,
as h(c). Using elementary properties of the functions involved, if g0ðhðcÞÞ

�� �� � 1, then
�Wð� lnðcÞÞ
�� �� � 1. This means Wð� lnðcÞÞ 2 �1, 1½ �, thus m Wð� lnðcÞÞð Þ 2 m �1, 1½ �ð Þ,
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or m Wð� lnðcÞÞð Þ 2 �e�1, e
� 	

, so � lnðcÞ 2 �e�1, e
� 	

, by Definition 2.2, and finally
c 2 ½e�e, ee

�1

�.

LEMMA 4.4 If c ¼ e�e, x0 ¼ ln W lnðcÞ�1
� �

lnðcÞ�1
� �

lnðcÞ�1, and uðxÞ ¼ gð2ÞðxÞ � x, then,

x0 is the only critical point of uðxÞ, in ½0, 1� ð4:2aÞ

x0 ¼ e�1 ð4:2bÞ

uðx0Þ ¼ 0 ð4:2cÞ

du

dx

� �
x0

¼ 0 ð4:2dÞ

du

dx
< 0, x 2 ½0, 1� � fx0g: ð4:2eÞ

Proof du=dx ¼ 0 can be solved analytically using W. If du=dx ¼ 0, then
gð2ÞðxÞgðxÞ lnðcÞ2 ¼ 1, so ey lnðcÞy lnðcÞ¼ lnðcÞ�1. If y¼ cx, then mð y lnðcÞÞ ¼ lnðcÞ�1,
so y lnðcÞ¼ W k, lnðcÞ�1

� �
; therefore y ¼ W k, lnðcÞ�1

� �
lnðcÞ�1, and finally x ¼ ln

W k, lnðcÞ�1
� �

lnðcÞ�1
� �

lnðcÞ�1, k 2 Z. Equation (4.2a) follows immediately from
Lemmas 2.10 and 2.14. Equation (4.2b) follows immediately from Lemma 2.14 and
algebra. Equation (4.2c) then follows trivially from (4.2b). Equation (4.2d) also follows
trivially. For (4.2e) note that lnðcÞ ¼ �e < 0, so, if x < x0 then gðxÞ > e�1, and
gð2ÞðxÞ < e�1, so gð2ÞðxÞgðxÞ lnðcÞ2 < 1, consequently du=dx < 0. For x > x0 the proof
(with inequalities reversed) is similar and the lemma follows. g

LEMMA 4.5 If c 2 fe�e, ee
�1

g, then 1c ¼ hðcÞ.

Proof If c ¼ e�e, the fixed point of the function g(x) is given by Lemma 3.3.
hðcÞ ¼ h e�eð Þ ¼ W � ln e�eð Þð Þ=� ln e�eð Þ ¼ WðeÞ=e ¼ e�1, by Lemma 2.13. Using
Lemma 4.4, continuity of u(x), and the facts: uð0Þ ¼ c > 0, uð1Þ ¼ cc � 1 < 0, it follows
that gð2ÞðxÞ > x, if x 2 ½0, e�1Þ and gð2ÞðxÞ < x, if x 2 ðe�1, 1�. Using the last two inequal-
ities and induction on n, the sequence: an ¼ gðnÞð1Þ, n 2 N satisfies, a2nþ2 < a2n, and
a2nþ3 > a2nþ1, for all n 2 N. The latter show that a2nþ1 and a2n are monotone increasing
and monotone decreasing respectively. Further, since 0 < c ¼ e�e < 1, both sequences
are bounded above by 1 and below by 0. It follows that a2nþ1 and a2n both possess
limits. Since the only single root of u(x) is x0 (otherwise (4.2a) is violated), both
sequences must converge to x0, from which follows that an converges to x0 ¼ e�1.

If c ¼ ee
�1

, the fixed point of the function g(x) is given again by Lemma 3.3.
hðcÞ ¼ hðee

�1

Þ ¼ Wð� lnðee
�1

ÞÞ=� lnðee
�1

Þ ¼ Wð�e�1Þ=�e�1 ¼ e, by Lemma 2.14. By
induction on n the sequence an ¼ gðnÞð1Þ, n 2 N is strictly increasing and bounded
above by e, so it converges to e and the lemma follows. g

Knoebel [24, p. 240], Barrow [7, p. 153], and De Villiers and Robinson [42, pp. 14–15]
arrive at the same result differently, without using the W function.

LEMMA 4.6 If c 2 0, e�eð Þ, then 1c does not exist.

Proof The fixed point h(c) of g(x) from Lemma 3.3 is a repeller. If c 2 0, e�eð Þ,
then WðeÞ < Wð� lnðcÞÞ by Lemma 2.11 and thus 1 < Wð� lnðcÞÞ by Lemma 2.13.
This means 1 < g0ðhðcÞÞ

�� ��, and the lemma follows from fixed point iteration. g
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LEMMA 4.7 If c 2 ðe�e, ee
�1

Þ, then 1c ¼ hðcÞ.

Proof The fixed point h(c) of g(x) from Lemma 3.3 is an attractor. If c 2 ðe�e, ee
�1

Þ,
then �e�1 < �lnðcÞ < e, so Wð�e�1Þ < Wð� lnðcÞÞ < WðeÞ by Lemma 2.11, and
thus g0ðhðcÞÞ

�� �� < 1 by Lemmas 2.13 and 2.14, and the lemma follows from fixed point
iteration. g

LEMMA 4.8 If c 2 ðee
�1

, þ1Þ, then 1c does not exist.

Proof The fixed point h(c) of g(x) from Lemma 3.3 is a repeller. If c 2 ðee
�1

, þ1Þ,
then � lnðcÞ 2 BC0; so Wð� lnðcÞÞ 2 C0 by Lemma 2.3, and therefore g0 hðcÞð Þ

�� �� > 1 by
Lemma 2.15, and the lemma follows from fixed point iteration. g

Lemmas 4.5–4.8 establish the final lemma of this section.

LEMMA 4.9 If c 2 ½e�e, ee
�1

�, then 1c ¼ hðcÞ
Using Lemma 4.9 for c ¼ ee

�1

, c ¼ e�e, and c ¼
ffiffiffi
2

p
,

1 ee
�1


 �
¼ ee

�1

 � ee

�1
� ����

¼ h ee
�1


 �
¼ e

1 e�eð Þ ¼ e�eð Þ
e�eð Þ

���

¼ h e�eð Þ ¼ e�1

1
ffiffiffi
2

p
 �
¼ ð

ffiffiffi
2

p
Þ
ð
ffiffi
2

p
Þ
���

¼ hð21=2Þ ¼ 2

The last equation settles the question posed in the beginning of this section with
Eq. (4.1). That an algebraic infinite exponential converges if and only if its base belongs
to the interval ½e�e, ee

�1

� ¼
:
½0:06598, 1:44466� is also established in Knoebel [24, p. 240],

Mitchelmore [31, p. 645], and Ogilvy [33, p. 556] using other methods, without using
the W function.

Ash [2, pp. 207–208] and Macdonnell [28, pp. 301–303] establish that for k 2 N,
limc!0þ

2kc ¼ 1 and limc!0þ
2kþ1c ¼ 0. Whenever c 2 0, e�eð Þ, fncgn2N is a 2-cycle, by

considering the even and odd subsequences, 2nc and 2nþ1c. The bifurcation which
occurs and its behavior and properties are analyzed in Ash [2, p. 207], De Villiers
and Robinson [42, p. 15] and Macdonnell [28, p. 299]. We note that the two branches
stemming from the bifurcation point fe�e, e�1g can be parametrized as aa=ð1�aÞ

and a1=ð1�aÞ for appropriate positive a (see for example Knoebel [24, p. 237] or Voles
[43, p. 212]). In this case, as shown in Spivak [40, p. 434], Knoebel [24, pp. 241–243],
De Villiers and Robinson [42, p. 13] and Lense [27, p. 501], the two separate limits
a ¼ limn!1

2nþ1c and b ¼ limn!1
2nc satisfy 0 < a < hðcÞ < b < 1 and the second

auxiliary equation system,

a ¼ cc
a

b ¼ ca

( )
: ð4:3Þ

An analytic solution to system (4.3) will be presented in a forthcoming article [22],
in which we will present the difficulties of solving the nth auxiliary equation for the
complex function g(z) using a function similar to W.
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5. CONVERGENCE FOR c 2 C

Let D be the unit disk and consider the map �:C�C, defined as: �ðzÞ ¼
e z=ezð Þ ¼ e�mð�zÞ. The image of D under � is a certain nephroid region N ¼ �ðDÞ. This
region is shown in Fig. 3.

Shell in [38, p. 679], [37, p. 12], and Baker and Rippon in [5, p. 106] show that inside
N we have convergence.

THEOREM 5.1 (Shell) fnð�ðtÞÞgn2N converges to et in some neighborhood of et if tj j < 1 and
can do so only if tj j � 1.

Shell does not address the question of what happens on @D. This is addressed by
Baker and Rippon in [4, p. 502] and settled in [3]:

THEOREM 5.2 (Baker and Rippon) fncgn2N converges for logðcÞ 2 fte�t: tj j < 1, or
tn ¼ 1, for some n 2 Ng and it diverges elsewhere.

t and c are related via W, considering (as usual) the principal branches of the
functions involved. c ¼ �ðtÞ , W � logðcÞð Þ ¼ W mð�tÞð Þ , t ¼ �W � logðcÞð Þ using
Corollary 2.7 and Lemma 2.15. Therefore ��1 ¼ ð�WÞ � ð� logÞ and t ¼ ��1ðcÞ.
In view of the last equation Theorem 5.2 becomes,

THEOREM 5.3 fncgn2N converges if ��1ðcÞ
�� �� < 1 or ��1ðcÞ

� �n
¼ 1, for some n 2 N and it

diverges elsewhere.

LEMMA 5.4 If c 2 C, then the multiplier of the fixed point (c) of g(z) is t ¼ ��1ðcÞ.

Proof g0 hðcÞð Þ ¼ logðcÞ½W � logðcÞð Þ=ð� logðcÞÞ� ¼ �Wð� logðcÞÞ ¼ t, and the lemma
follows. g

Theorem 5.2 then alternatively states that if c ¼ �ðtÞ, then fgðnÞðcÞgn2N converges only
if the modulus of the multiplier t ¼ ��1ðcÞ of the fixed point h(c) of g(z) is less than
one, or if the multiplier is an nth root of unity.

LEMMA 5.5 If tj j < 1 and c ¼ �ðtÞ, then 1c ¼ hðcÞ.

FIGURE 3 f�ðtÞ : t60 ¼ 1g.
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Proof g(z)’s fixed point is h(c) by Lemma 3.3.

hðcÞ ¼
Wð� logðcÞÞ

� logðcÞ
¼

Wð�te�tÞ

�te�t
¼

Wðmð�tÞÞ

�te�t
¼

�t

�te�t
¼ et,

using Lemma 2.15, and Corollary 2.7. The fixed point hðcÞ ¼ et of g(z) is an attractor.
By Lemma 5.4, g0ðhðcÞÞ

�� �� ¼ tj j < 1, which is true by the hypothesis and the lemma
follows from fixed point iteration or Theorem 5.1 and Lemma 3.3. g

LEMMA 5.6 If tj j > 1 and c ¼ �ðtÞ, then 1c does not exist.

Proof The fixed point hðcÞ ¼ et of g(z) is a repeller. By Lemma 5.4, g0ðhðcÞÞ
�� �� ¼ tj j > 1,

which is true by the hypothesis and the lemma follows from fixed point iteration or
Theorem 5.1. g

We note that ‘divergence’ here does not necessarily mean ‘proper divergence’
(i.e., 1c ¼ 1). Rather, it means either proper divergence or periodic cycling.
Periodic points given by Lemma 3.1 have a period 1, so it trivially follows that these
points are automatically solutions of the nth auxiliary equation gðnÞðzÞ ¼ z, n 2 N,
but not all solutions of the latter are given by Lemma 3.1. Such points exist. Shell
in [37, p. 28] makes implicit use of the following for the multiplier t of a point z:

gðnÞ
� �0

ðzÞ ¼ logðcÞ½ �
n
Yn
k¼1

gðkÞðzÞ: ð5:1Þ

Using (5.1) (which can be shown using induction), it is straightforward to numeri-
cally verify that for c ¼ 3� 3i =2N, the points f0, 1, 1c, 2c, 3cg are all periodic points
of gð5ÞðzÞ with primitive period 5, since for any such z0, gð5Þ

� �0
ðz0Þ

��� ��� ¼ 0, meaning that
fgðnÞðz0Þgn2N is a super-attracting 5-cycle.

The fixed point condition fails with tn¼ 1. By Lemma 5.4 g0kðh ckð ÞÞ
�� �� ¼ tkj j ¼ 1,

since all the nth roots tk lie on the unit circle. The fixed point condition also fails on
the boundary @D for periods greater than 1. Using (5.1) and Lemma 5.4
j gðnÞ
� �0

h ckð Þð Þj ¼ logðckÞ
n h ckð Þð Þ

n
¼ logðckÞ

n
�W � log ckð Þð Þð Þ

n=logðckÞ
�� ��n¼ tnk

�� �� ¼ 1, and
this does not give us any further information. What happens on the boundary falls
into two different cases:

tnj j ¼ 1 , ð tj j ¼ 1 and tn ¼ 1Þ or ð tj j ¼ 1 and tn 6¼ 1Þ, n 2 N:

LEMMA 5.7 If tj j ¼ 1, tn¼ 1, and c ¼ �ðtÞ, then 1c ¼ hðcÞ.

Proof Let tk ¼ e 2k�=nð Þi be a complex nth root of unity, k 2 f0, 1, . . . , n� 1g and
consider the functions gkðzÞ ¼ ckð Þ

z, with ck ¼ � tkð Þ. The fixed points of gk(z) are
h ckð Þ, by Lemma 3.3.

h ckð Þ ¼
Wð� logðckÞÞ

� logðckÞ
¼

Wðmð�tkÞÞ

�tke�tk
¼

�tk

�tke�tk
¼ etk

using Lemma 2.15 and Corollary 2.7, and the lemma follows from Theorem 5.2 and
Lemma 3.3. g
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Since �ð@DÞ ¼ @N, the unit circle gets mapped onto the boundary of N under �
of Lemma 5.5 or onto a cardioid, under the map �mð�zÞ ¼ logð�Þ. In particular,
�ð�1Þ ¼ e�e, �ð1Þ ¼ ee

�1

, �ðiÞ ¼
:
1:98933 þ 1:19328i, and �ð�iÞ ¼ �ðiÞ. N is established

and drawn in Thron [41, p. 741], Shell [37, p. 28], and Baker and Rippon [4].
We note (as in Branner [11, p. 40]) that the fixed points h ckð Þ ¼ etk of the functions

gk(z) are rationally indifferent or parabolic. Their multiplier is exactly tk ¼ e2�i�,
� 2 Q, thus they are not linearizable. They are also dense in @D. If we perturb z
away from etk , the iterates of gk(z) will eventually form a p-cycle where
p ¼ n=GCDðn, kÞ. i.e., the sequence fg

ðnÞ
k ðzÞgn2N will eventually stabilize onto the cycle

fg
ðnÞ
k ðc0Þg, n 2 f1, 2, . . . , pg where c0 satisfies the pth auxiliary equation g

ðpÞ
k ðzÞ ¼ z,

but no auxiliary equation g
ðnÞ
k ðzÞ ¼ z, n<p. If we iterate gk(z) unperturbed, the

p-cycle will eventually coalesce into a 1-cycle.
Figure 4 displays the 5-cycle trajectory of the iteration for n¼ 5, k¼ 2, perturbed 3.5

away from etk .

6. FRACTALS RELATED TO INFINITE EXPONENTIALS

The limit of many complex infinite exponentials can now be found by Lemma 3.3,
provided we know that the corresponding infinite exponential converges. What is 1i
(if anything)? Macintyre [29, p. 67] without using W establishes that 1i converges.
On the other hand, using g(z) with c¼ i, by Lemma 5.4 the multiplier of the fixed
point h(i) is t ¼ �W ��i=2ð Þ whose modulus can be evaluated numerically to less
than 1. Note also that i 2 N, so ��1ðiÞ

�� �� < 1 (Fig. 3). Therefore fnign2N by the Central
Lemma 3.3 and fixed point iteration or Theorem 5.1 converges to:

1i ¼ hðiÞ ¼
2iW ��i=2ð Þ

�
¼
:
0:43828þ 0:36059i: ð6:1Þ

It is expected now to ask if infinite exponentiation can produce an interesting fractal.
Indeed, it does produce beauty, since complex numbers are involved and the domain

FIGURE 4 Trajectory for t ¼ eð4�i=5Þ perturbed.
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of convergence of infinite exponentials can be extended to such numbers. Figure 5 is the
parameter space (or Mandelbrot set) for the exponential map gðzÞ ¼ cz, while Fig. 6 is
the Julia set for c¼ i.

The red nephroid bulb in Fig. 5 is the region N given by Baker and Rippon in [3]
and [5] with Theorem 5.1. This is the basin for points of period 1. For points inside
this basin, fnzgn2N always converges to h(z) by the central Lemma 3.3. We note the
connection with Fig. 3. This basin is also sketched in Baker and Rippon using the
map logð�Þ ¼ te�t instead. The rest of the domains are domains for periods greater
than 1. The little yellow circle-like domain just left of domain N, is period 2. The
two green domains on the upper and lower left are period 3. The black pixels in Fig.
5 are unknown areas of connected Fatou components where the machine was unable
to determine whether there was escape for some reason, such as insufficient or low itera-
tions. It is not known whether there are finitely or infinitely many domains of period
k� 3.

Figure 5 was drawn using a Mandelbrot process. We can instead alter the process
to produce Julia sets as well by fixing c and iterating g(z) with z 2 C (see for example
Becker and Dörfler [8, p. 113]).

Figure 6 is the Julia set for c¼ i, J(iz). The main circular feature is the attractor given
by (6.1) which is located at h(i). This point is linearizable by the Kœnings Theorem (see
Branner [11, p. 40]). Its multiplier satisfies tj j < 1 and therefore there is a neighborhood
U of h(i), where gðUÞ � U. If we set �nðzÞ ¼ gðnÞðzÞ=tn, then the holomorphic functions
�n converge in U uniformly on compact subsets to a holomorphic map �. Furthermore
in view of equations (3.1) and (5.1),

�0ðhðiÞÞ ¼ lim
n!1

�0
nðhðiÞÞ

tn
¼ lim

n!1

logðiÞnhðiÞn

tn
¼ 1,

so � provides the required local coordinate change. The secondary circular features
are a continuum of repellers.

FIGURE 5 Parameter map for f ðzÞ ¼ cz.
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Since i 2 N, this particular Julia set contains no periodic points of period n>1. The
basin of attraction (the complement of J(iz), or Fatou set F(iz)) is C n JðizÞ and is shown
in darker shades. F(iz) in this case falls under case (1) in the Sullivan classification
Theorem (see Bergweiler [10, pp. 12–13]). J(iz) is a Cantor bouquet (see for example
Peitgen and Richter [34, p. 33] and Devaney [20, p. 3], [19, pp. 1–4]).

Incidentally, the fractal in Fig. 5 is very similar to the fractal for the iterates of g(z)
when c¼ e (the exp function) shown in Peitgen and Richter [34, p. 34]. In this case,
W again plays a crucial role since the fixed points of g(z) are also given by Lemma
3.1 as ck ¼ �Wðk, � 1Þ, k 2 Z. We note that g(z) has infinitely many fixed points
and no fixed points of g(z) are attractors. g0 ckð Þ

�� �� ¼ eckj j ¼ ckj j ¼ Wðk, � 1Þ
�� �� > 1 by

Lemma 2.3, since for all k 2 Z, Wðk, � 1Þ 2 BCk (see the proof of Lemma 3.2).

7. THE ANALYTIC CONTINUATION OF h

We now extend h to complex z, as follows:

hðk, l, zÞ ¼
�Wðk, � logðl, zÞÞ

� logðl, zÞ
, k, l 2 Z: ð7:1Þ

The definition is unambiguous, provided we specify the branches of W, and log via k
and l, so then all involved functions are single-valued and hðk, l, zÞ is then well-defined.
h(z) has two branch points and two branch cuts. The first branch point is at 0 and the
first branch cut that is the negative real axis (because of the log), and there is a second
branch point at ee

�1

, with a branch cut that is the subset of the positive real axis
from ee

�1

to infinity. To find the second branch point z, we note that since �e�1 is
a branch point of the W, z has to satisfy: �logðzÞ ¼ �e�1, so z ¼ ee

�1

. The value of h

FIGURE 6 JðizÞ.
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there is hðee
�1

Þ ¼ e. A power series for h can now be derived directly using the properties
of W. Specifically, the principal branch of log, is analytic everywhere except on the
negative real axis, including 0, where log is not even defined. The principal branch of
the W, on the other hand, is analytic at 0, with a radius of convergence RS ¼ e�1. We
expect therefore the resultant composition (7.1) to be analytic at least in some region Dh

(which, of course, excludes its two branch cuts, namely: �1, 0ð Þ [ ðee
�1

, þ1Þ).

LEMMA 7.1 h(z) is analytic in DS ¼ fz: logðzÞ
�� �� � e�1g with series expansion:

SðzÞ ¼
X1
n¼1

nlogðzÞð Þ
n�1

n!
:

Proof Set Z ¼ �logðzÞ in the series given in Lemma 2.16 and then divide by
�logðzÞ. The Ratio Test reveals the radius of convergence. limn!1 anþ1=an

�� ��
¼ limn!1 1þ 1=nð Þ

n�1logðzÞ
�� �� ¼ elogðzÞ

�� �� < 1, or equivalently logðzÞ
�� �� < e�1, and

DS ¼ fz: logðzÞg < e�1
�� �� is established. Using Stirling’s approximation when

logðzÞ
�� �� ¼ e�1 (in a similar way as in Lemma 2.16) we obtain the sharper estimate,
DS ¼ fz: logðzÞ

�� �� � e�1g. g

This series is given by Knoebel in [24, p. 244] (quoting papers by Eisenstein and
Wittstein), and Barrow in [7, p. 159], although neither author uses W. For the real
case, Knoebel notes that the series is valid for e�e�1

< x < ee
�1

. We note that h(z)
fails to be analytic past the two points e�e�1

and ee
�1

as predicted by Knoebel. It is
also interesting to note that DS is nothing more than the region of analyticity of the
principal branch of W under the map exp.

A quick application of Lemma 7.1 and Lemma 4.3 gives,

X1
n¼1

nn�1

en�1n!
¼ e

X1
n¼1

n lnð2Þð Þ
n�1

2n�1n!
¼ 2

X1
n¼1

n lnðxÞð Þ
n�1

xn�1n!
¼ h xx

�1

 �

,
lnðxÞ

x

����
���� � e�1

We finish this section with some more properties of h. It is real valued for real values
of z in the interval ½e�e, ee

�1

�, since we have established that on this interval limit 1.2
exists finitely and is given by Lemma 3.3. On the interval 0, e�eð Þ, h(z) simply provides
for the repelling fixed point of Lemma 4.6. We finally note that an application of
Lemma 7.1 for z ¼ ew gives

1ðewÞ ¼ h ewð Þ ¼
Wð�wÞ

�w

which is analytic in the region D0
S ¼ fz: zj j � e�1g, even though all finite iterates are

entire. We take a look at the exact expansions for finite and infinite iterates of ez

and z in Section 9.
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8. THE EXPANSION OF expðz
P1

n¼0 anz
nÞ

LEMMA 8.1 If sðzÞ ¼
P1

n¼0 anz
n and ezsðzÞ ¼

P1

n¼0 bnz
n, then

bn ¼
1, if n ¼ 0,Pn

j¼1 jbn�jaj�1

n
, otherwise

8<
: :

Proof Disregarding issues of convergence, if tðzÞ ¼ ezsðzÞ, then t0ðzÞ ¼ ðzsðzÞÞ0ezsðzÞ ¼P1

n¼0 anz
nþ1

� �0
tðzÞ ¼ tðzÞ

P1

n¼0ðnþ 1Þanz
n, and the lemma follows from equating coeffi-

cients between the corresponding expansions and changing indexes. g

A simple inductive argument on m, shows that am, 0 ¼ 1, for all m 2 N, so in view
of Definition 1.4 and Lemma 8.1 the recursive relationship for the coefficients of the
iterates is now complete.

am, n ¼

1, if n ¼ 0,

1

n!
, if m ¼ 1,Pn
j¼1 jam, n�jam�1, j�1

n
, otherwise

8>>>><
>>>>:

: ð8:1Þ

Equation 8.1 does not reveal any discernible patterns, until one tabulates the values
(Table I).

9. THE RE-EMERGENCE OF W

LEMMA 9.1 If m, n 2 N and m � n, then am, n ¼ an, n.

Proof We use induction on n. It is clear that a1, 1 ¼ 1 and am, 1 ¼ 1, for all m 2 N.
If ak, 1 ¼ 1, then akþ1, 1 ¼

P1
j¼1 jakþ1, 1�jak, j�1 ¼ akþ1, 0ak, 0 ¼ 1 ¼ a1, 1, therefore am, 1 ¼

a1, 1, for all m 2 N.

TABLE I am, n for
m(ez), (m, n) 2 {1, 2, . . . , 6}� {0, 1, . . . , 6}

m:n 0 1 2 3 4 5 6

1 1 1 1

2

1

6

1

24

1

120

1

720

2 1 1 3

2

5

3

41

24

49

30

1057

720

3 1 1 3

2

8

3

101

24

63

10

6607

720

4 1 1 3

2

8

3

125

24

49

5

12847

720

5 1 1 3

2

8

3

125

24

54

5

16087

720

6 1 1 3

2

8

3

125

24

54

5

16807

720
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Now assume am, k ¼ ak, k is true for all m � k. We have to show that if m � kþ 1,
then am, kþ1 ¼ akþ1, kþ1, or equivalently using (8.1),

Pkþ1
j¼1 jam, kþ1�jam�1, j�1

kþ 1
¼

Pkþ1
j¼1 jakþ1, kþ1�jak, j�1

kþ 1
: ð9:1Þ

If m � kþ 1, then m � kþ 1� j, so that by the induction hypothesis,

am, kþ1�j ¼ akþ1�j, kþ1�j: ð9:2Þ

Also, kþ 1 � kþ 1� j, therefore again by the induction hypothesis,

akþ1, kþ1�j ¼ akþ1�j, kþ1�j ð9:3Þ

Equations (9.2) and (9.3) establish,

am, kþ1�j ¼ akþ1, kþ1�j ð9:4Þ

On the other hand, j � kþ 1, and so j � 1 � k and m � kþ 1, so m� 1 � k,
therefore j � 1 � m� 1, thus by the induction hypothesis,

am�1, j�1 ¼ aj�1, j�1 ð9:5Þ

and finally, j � kþ 1, so j � 1 � k, and therefore, by the induction hypothesis,

ak, j�1 ¼ aj�1, j�1: ð9:6Þ

Equations (9.5) and (9.6) establish,

am�1, j�1 ¼ ak, j�1 ð9:7Þ

and (9.1) follows from (9.4) and (9.7). g

Lemma 9.1 shows that as m grows larger, the coefficients eventually ‘stabilize’.
To what though? The answer comes from Lemma 3.3.

COROLLARY 9.2 Wherever 1ðezÞ exists, 1ðezÞ ¼ Wð�zÞ=�z ¼ e�Wð�zÞ.

Therefore, using Lemma 2.16 and the Ratio Test,

COROLLARY 9.3 1ðezÞ is analytic at the origin, with series expansion:

1ðezÞ ¼
X1
n¼0

ðnþ 1Þn

ðnþ 1Þ!
zn

and radius of convergence: Rs ¼ e�1.
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Using the expansion in Lemma 7.1, Lemma 9.1, and Corollary 9.3, we can handle the
expansions for the finite iterates.

COROLLARY 9.4 For m 2 N, mðezÞ is entire, with series expansion:

mðezÞ ¼
Xm
n¼0

ðnþ 1Þn

ðnþ 1Þ!
zn þ

X1
n¼mþ1

am, nz
n

where am,n are given by (8.1).

COROLLARY 9.5 For m 2 N, mz is analytic for z in the domain of log, with series
expansion:

mz ¼
Xm
n¼0

ðnþ 1Þn

ðnþ 1Þ!
logðzÞn þ

X1
n¼mþ1

am, nlogðzÞ
n

where am,n are given by (8.1).

The expansions for mðezÞ are valid for all z 2 C if m is finite, since mðezÞ is always
a composition of entire functions, thus itself entire. If m is infinite, then the expansion
is valid only for z 2 z: zj j � e�1

� 

.

The expansions for mz are valid in C n fx 2 R: x � 0g, if m is finite. If m is infinite,
then the expansion is valid only for z 2 fz: logðzÞ

�� �� � e�1g. The latter domain, restricted
to R, is the domain of convergence for the expansion of 1z given also by Knoebel
[24, p. 244] (Knoebel does not address what happens at the endpoints) and Barrow
[7, p. 159].

10. INCIDENTAL IDENTITIES INVOLVING W

The Corollaries in Section 9 provide for an inexhaustible engine for identities in the
spirit of

R 1

0 xxdx ¼
P1

n¼1 ð�1Þnþ1=nn.

COROLLARY 10.1

Z e�1

0

WðxÞ dx ¼
X1
n¼1

ð�nÞn�1

ðnþ 1Þ!enþ1
¼

1

2
:

Proof
R
WðxÞdx ¼

P1

n¼1 ð�nÞn�1=n!
R
xndx ¼

P1

n¼1 ð�nÞn�1=ðnþ 1Þ!xnþ1, whenever
xj j � e�1 using Lemma 2.16, and the Lemma follows from evaluating the integral at
x ¼ e�1 and at x¼ 0. g

Evaluating the integral of Corollary 10.1 at x ¼ e�1 and at x ¼ �e�1 instead,

COROLLARY 10.2

Z e�1

�e�1

WðxÞ dx ¼ 2
X1
n¼1

ð�2nÞ2n�1

ð2nþ 1Þ!e2nþ1
:
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LEMMA 10.3

Z e�1

0

1ðexÞ dx ¼
X1
n¼0

ðnþ 1Þn�2

n!enþ1
:

Proof

Z
1ðexÞ dx ¼

X1
n¼0

ðnþ 1Þn

ðnþ 1Þ!

Z
xndx ¼

X1
n¼0

ðnþ 1Þn�2

n!
xnþ1,

whenever xj j � e�1 using Corollary 9.3, and the Lemma follows from evaluating the
integral at x ¼ e�1 and at x¼ 0. g

Using Lemma 3.3 and W’s Definition (2.2), we get,

COROLLARY 10.4

Z e�1

0

e�W ð�xÞdx ¼
X1
n¼0

ðnþ 1Þn�2

n!enþ1
:

Evaluating the integral in the proof of Lemma 10.3 at x ¼ e�1 and at x ¼ �e�1

instead, we get:

COROLLARY 10.5

Z e�1

�e�1

e�Wð�xÞdx ¼ 2
X1
n¼0

ð2nþ 1Þ2n�2

ð2nÞ!e2nþ1
:

The corresponding results for 1x are slightly more involved.

LEMMA 10.6

Z ee
�1

e�e�1

1xdx ¼
X1
n¼0

ð�1Þnðnþ 1Þn�1

n!

Z e�1

�e�1

e�ttndt

Proof

Z
1xdx ¼

X1
n¼0

ðnþ 1Þn

ðnþ 1Þ!

Z
ln ðxÞndx,

whenever e�e�1

� x � ee
�1

using Corollary 9.3, and

Z
lnðxÞndx ¼ ð�1Þnxn!

Xn
k¼0

ð�1Þk

k!
ln ðxÞk:
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The last sum equals

�ðnþ 1, � ln ðxÞÞ

xn!
,

therefore Z
1xdx ¼

X1
n¼0

ð�1Þnðnþ 1Þn

ðnþ 1Þ!
�ðnþ 1, � ln ðxÞÞ:

The Lemma follows from evaluating the integral at x ¼ e�e�1

and at x ¼ ee
�1

, and
writing �ðnþ 1, � e�1Þ � �ðnþ 1, e�1Þ ¼

R e�1

�e�1 e
�ttndt. g

Using Lemma 3.3 and W’s definition (2.2), we get:

COROLLARY 10.7

Z ee
�1

e�e�1
e�Wð� lnðxÞÞdx ¼

X1
n¼0

ð�1Þnðnþ 1Þn�1

n!

Z e�1

�e�1

e�ttndt:

Using Corollaries 9.4 and 9.5 we get for the finite cases,

COROLLARY 10.8 For m 2 N, and x 2 R,

Z
mðexÞ dx ¼

Xm
n¼0

ðnþ 1Þn�2

n!
xnþ1 þ

X1
n¼mþ1

am, n

nþ 1
xnþ1

where am, n are given by (8.1).

COROLLARY 10.9 For m 2 N, x>0, and bn ¼ �ðnþ 1, � ln ðxÞÞ,

Z
mxdx ¼

Xm
n¼0

ð�1Þnðnþ 1Þn�1

n!
bn þ

X1
n¼mþ1

ð�1Þnam, nbn

where am, n are given by (8.1).
Corless et al. in [17, p. 2] give the following for the nth derivative of W:

LEMMA 10.10

dnWðxÞ

dxn
¼

e�nWðxÞpnWðxÞ

ð1þWðxÞÞ2n�1

with pn satisfying, p1¼ 1 and pnþ1ðwÞ ¼ �ðnwþ 3n� 1ÞpnðwÞ þ ð1þ wÞp0nðwÞ.

We finish with one example from differentiation which follows from Lemmas 2.16
and 10.10. Many additional identities can be constructed in a similar spirit.

COROLLARY 10.11

X1
n¼1

ð�nÞn�1

ðn� 1Þ!en�1
¼

eWðe�1Þ

1þWðe�1Þ
:
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