Electronic Journal of Graph Theory and Applications

On an edge partition and root graphs of some classes of line graphs

K. Pravas ${ }^{\text {a }}$, A. Vijayakumar ${ }^{\text {b }}$
${ }^{a}$ Department of Mathematics, K. K. T. M. Government College, Pullut-680663, India.
${ }^{b}$ Department of Mathematics, Cochin University of Science and Technology, Cochin-682022, India.
pravask@gmail.com, vijay@cusat.ac.in

Abstract

The Gallai and the anti-Gallai graphs of a graph G are complementary pairs of spanning subgraphs of the line graph of G. In this paper we find some structural relations between these graph classes by finding a partition of the edge set of the line graph of a graph G into the edge sets of the Gallai and anti-Gallai graphs of G. Based on this, an optimal algorithm to find the root graph of a line graph is obtained. Moreover, root graphs of diameter-maximal, distance-hereditary, Ptolemaic and chordal graphs are also discussed.

1. Introduction

The line graph $L(G)$ of a graph G has as its vertices the edges of G, and any two vertices are adjacent in $L(G)$ if the corresponding edges are incident in G. The Gallai graph $\operatorname{Gal}(G)[10,15]$ of a graph G has as its vertices the edges of G, and any two vertices are adjacent in $\operatorname{Gal}(G)$ if the corresponding edges are incident in G, but do not span a triangle in G. The anti-Gallai graph $\operatorname{anti} G a l(G)[13]$ of a graph G has as its vertices the edges of G, and any two vertices of G are adjacent in $\operatorname{antiGal}(G)$ if the corresponding edges are incident in G and lie on a triangle in G.

In [13] it is shown that the four color theorem can be equivalently stated in terms of anti-Gallai graphs. The problems of determining the clique number and the chromatic number of $G a l(G)$ are

Received: 8 July 2016, Revised: 14 January 2017, Accepted: 26 February 2017.

NP-Complete[13]. In [3] it is shown that there are infinitely many pairs of non-isomorphic graphs of the same order having isomorphic Gallai graphs and anti-Gallai graphs. In [2] it is shown that the complexity of recognizing anti-Gallai graphs is NP-complete.

A graph H is forbidden in a graph family \mathcal{G}, if H is not an induced subgraph of any $G \in \mathcal{G}$. For any finite graph H, there exist a finite family of forbidden subgraphs for the Gallai graphs and the anti-Gallai graphs to be H-free [3]. However, both Gallai graphs and anti-Gallai graphs cannot be characterized using forbidden subgraphs [13].

The Gallai and the anti-Gallai graphs are spanning subgraphs of line graphs. In fact, they are complement to each other in $L(G)$. Therefore a natural question arises: is it possible to identify the edges of $\operatorname{Gal}(G)$ and $\operatorname{antiGal}(G)$ from $L(G)$? A positive answer to this is given in this paper by introducing an algorithm to partition the edge set of a line graph into the edges of Gallai and antiGallai graphs, using the adjacency properties of common neighbors of the edges of a line graph in a hanging [8].

A graph G is a root graph of the line graph H if $L(G) \cong H$. The root graph of a line graph is unique, except for the triangle and $K_{1,3}$ [16]. In this paper, using the edge-partition, an algorithm is obtained to find the root graph of a line graph. Also, the root graphs of diameter-maximal, distance-hereditary, Ptolemaic and chordal graphs are obtained.

Let $H=(V, E)$ be a graph with vertex set $V=V(H)$ and edge set $E=E(H)$. Let $N(v)$ denote the set of all vertices adjacent to v and $N_{M}(v)=M \cap N(v)$, where $M \subseteq V$. The edge joining u and v is denoted by $u v$. The common neighbors of $u v$ is $N(u) \cap N(v)$ and $N(u v)=$ $N(u) \cup N(v)$. The subgraph induced by $\left\{v_{1}, v_{2}, \ldots, v_{k}\right\} \subseteq V$ is denoted by $<v_{1}, v_{2}, \ldots, v_{k}>$. A clique is a complete subgraph of a graph. An edge clique cover of H is a family of cliques $\mathcal{E}=\left\{q_{1}, q_{2}, \ldots, q_{k}\right\}$ such that each edge of H is in at least one of $E\left(q_{1}\right), E\left(q_{2}\right), \ldots E\left(q_{k}\right)$.

A path on n vertices P_{n} is the graph with vertex set $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and $v_{i} v_{i+1}$ for $i=1,2, \ldots, n-$ 1 are the only edges. The distance between two vertices u and v, denoted by $d(u, v)$, is the length of a shortest $u-v$ path in H. The diameter of H, denoted by $d(H)$, is the maximum length of a shortest path in H.

The join of two graphs G_{1} and G_{2}, denoted by $G_{1} \vee G_{2}$, is the graph with vertex set $V\left(G_{1}\right) \cup$ $V\left(G_{2}\right)$ and $E\left(G_{1} \vee G_{2}\right)=E\left(G_{1}\right) \cup E\left(G_{2}\right) \cup\left\{u v: u \in V\left(G_{1}\right)\right.$ and $\left.v \in V\left(G_{2}\right)\right\}$.

All graphs mentioned in this paper are simple and connected, unless otherwise specified. Also, all other basic concepts and notations not mentioned in this paper are from [4].

2. Adjacency properties of edges of $L(G)$

The hanging [8] of a graph $H=(V, E)$, with $|V|=n$ and $|E|=m$, by a vertex z is the function $h_{z}(x)$ that assigns to each vertex x of H the value $d(z, x)$. The i-th level of H in a hanging h_{z} is defined as $L_{i}=\left\{x \in H: h_{z}(x)=i\right\}$. A hanging can be obtained using a breadth first search(BFS) [1], which has a time complexity of $O(m+n)$.

For a vertex v in L_{i}, a supporter of v is a vertex in L_{i-1}, which is adjacent to v. A vertex in L_{i} is an ending vertex if it has no neighbors in L_{i+1}. An arbitrary supporter of v is denoted by $S(v)$. It is clear that any vertex v in the level L_{i} for $i \geq 1$ has at least one supporter.

We use the following, well known, forbidden subgraph characterization of a line graph.

Theorem 2.1. [6] A graph H is a line graph if and only if the nine graphs in Fig 1 are forbidden subgraphs for H.

Figure 1. Forbidden Subgraphs of line graph

Theorem 2.2. Consider a hanging of a line graph H by an arbitrary vertex in H and let uv denote the edge joining u and v in the same level L_{i}. Then, the following statements hold

1. All common neighbors of uv in L_{i-1} are adjacent to each other.
2. All common neighbors of uv in L_{i+1} are adjacent to each other.
3. If uv has no common neighbor in L_{i-1}, then all the common neighbors of uv in L_{i} which are adjacent to all other neighbors of uv are adjacent to each other.
4. There is at most one common neighbor of uv in L_{i}, which is adjacent to all the neighbors of $u v$ but not adjacent to the common neighbors of $u v$ in L_{i-1} and L_{i}.

Proof.

1. Let x and x^{\prime} be two (distinct) common neighbors of an edge $u v$ in L_{i-1}, then $i \geq 2$. Assume that x and x^{\prime} are not adjacent. Now, if x and x^{\prime} have a common neighbor w in L_{i-2}, then
$<w, x, x^{\prime}, u, v>\cong F_{2}$ in Fig 1 which contradicts the fact that H is a line graph. So, let w and w^{\prime} be any two vertices in L_{i-2} adjacent to x and x^{\prime} respectively. Then $<w, w^{\prime}, x, x^{\prime}, u, v>\cong$ F_{7} or F_{4} according as, w and w^{\prime} are adjacent or not.
2. Let w and x be two common neighbors of an edge $u v$ in L_{i+1}. Assume that x and w are not adjacent. Now, if z is a supporter of u in L_{i-1}, then $\langle z, u, w, x\rangle \cong K_{1,3}$, which is a contradiction.
3. Let $u v$ has no common neighbor in the level L_{i-1} and hence $i \geq 2$. Let x and w be two common neighbors of $u v$ in L_{i} which are adjacent to all the neighbors of $u v$. Assume that x and w are not adjacent. Now u and v cannot have a common supporter. So let z_{1} and z_{2} be two supporters of u and v respectively. Since z_{1} and z_{2} are neighbors of $u v$, both x and w are adjacent to them. Now, the vertices z_{1}, x, w and $S\left(z_{1}\right)$ induce a $K_{1,3}$ which is a contradiction.
4. Assume that x and w are two nonadjacent common neighbors of $u v$ in L_{i} which are not adjacent to the common neighbors of $u v$ but adjacent to all the other neighbors of $u v$ in L_{i-1} and L_{i}. So, it is clear that $i \geq 2$. Let z be a common neighbor of $u v$ in L_{i-1}. Now u must have at least one neighbor in L_{i-1} other than the common neighbors of $u v$ in L_{i-1}, for otherwise, the vertices u, x, w and z induce a $K_{1,3}$ which is a contradiction. Similar is the case for the vertex v. So let z_{1} and z_{2} be two neighbors (but not common neighbors) of u and v in L_{i-1} respectively. But, we have, $\left\langle S\left(z_{1}\right), z_{1}, x, w\right\rangle \cong K_{1,3}$, which is also a contradiction.

Remark 2.1. In fact the above theorem is applicable to a larger class of graphs than line graphs as only some of the forbidden sub graphs of line graphs are used in the proof.

3. Anti-Gallai triangles in $L(G)$

Let $u v w$ be a triangle in $L(G)$ and let \bar{u}, \bar{v} and \bar{w} be the edges in G representing the vertices u, v and w respectively in $L(G)$. If the edges \bar{u}, \bar{v} and \bar{w} induce a triangle in G then the triangle $u v w$ in $L(G)$ is referred to as an anti-Gallai triangle. All the triangles in $\operatorname{antiGal}(G)$ need not be an anti-Gallai triangle and the number of anti-Gallai triangles in $L(G)$ is equal to the number of triangles in G. Since each edge of an anti-Gallai graph belongs to some anti-Gallai triangle, the set of all anti-Gallai triangles in $L(G)$ induces $\operatorname{antiGal}(G)$.
Remark 3.1. When a triangle $u v w$ in $L(G)$ is not an anti-Gallai triangle, the edges \bar{u}, \bar{v} and \bar{w} in G have a vertex in common.

Lemma 3.1. Consider a line graph $H \not \not K_{3}$. If a triangle uvw in H is an anti-Gallai triangle, then for all $x \in V(H) \backslash\{u, v, w\}$, one of the following holds.
a) $<u, v, w, x>\cong K_{4}-e$
b) $\langle u, v, w, x>$ is disconnected.

Proof. Let G be the graph such that $L(G) \cong H$ and assume that the triangle $u v w$ is an anti-Gallai triangle in H. Then the edges \bar{u}, \bar{v} and \bar{w} in G induce a triangle in G. Now corresponding to any vertex x in H, there is an edge \bar{x} in G. If \bar{x} is adjacent to the triangle $\bar{u} \bar{v} \bar{w}$, then \bar{x} is adjacent to exactly two of the edges of $\bar{u} \bar{v} \bar{w}$ and hence $\langle u, v, w, x\rangle \cong K_{4}-e$ in H. If \bar{x} is not adjacent to the triangle $\bar{u} \bar{v} \bar{w}$, then $\langle u, v, w, x>$ is disconnected.

Lemma 3.2. If a triangle uvw is not an anti-Gallai triangle in a line graph $H \cong L(G)$, then there is at most one common neighbor z for an edge of uvw in H such that $\langle u, v, w, z\rangle \cong K_{4}-e$.

Proof. Let \bar{u}, \bar{v} and \bar{w} be the edges in G, representing the vertices u, v and w respectively in H. Let z be such that $\langle u, v, w, z\rangle \cong K_{4}-e$ in $L(G)$ and let it be a common neighbor of $u v$. Then the edge \bar{z} in G is adjacent to both the edges \bar{u} and \bar{v} and not adjacent to \bar{w}. clearly \bar{u}, \bar{v} and \bar{z} induce a triangle in G and hence $u v z$ is an anti-Gallai triangle in $L(G)$. Now assume that z^{\prime} is a vertex different from z such that it is a common neighbor of $u v$ and $\left\langle u, v, w, z^{\prime}\right\rangle \cong K_{4}-e$. Then the vertices z and z^{\prime} cannot be adjacent, otherwise $\left\langle u, v, z, z^{\prime}\right\rangle \cong K_{4}$ and by Lemma 3.1 it will contradict the fact that u, v, z is an anti-Gallai triangle. But, we have, $\left\langle u, w, z, z^{\prime}\right\rangle \cong K_{1,3}$ and hence H cannot be a line graph by Theorem 2.1.

Theorem 3.1. Consider a line graph $H \not \equiv K_{3}, K_{4}-e, C_{4} \vee K_{1}$ and $C_{4} \vee 2 K_{1}$. A triangle uvw in H is an anti-Gallai triangle if and only if $\langle u, v, w, x\rangle \cong K_{4}-e$ or disconnected for all $x \in V(H) \backslash\{u, v, w\}$.

Proof. Let G be the graph such that $L(G) \cong H$. The necessary part of the theorem follows from Lemma 3.1.

Conversely, assume that $u v w$ is a triangle in H such that $\langle u, v, w, x\rangle \cong K_{4}-e$ or disconnected for all $x \in V(H)$ and that $u v w$ is not an anti-Gallai triangle. Then the edges \bar{u}, \bar{v} and \bar{w} induce a $K_{1,3}$ in G. Note that any vertex which induces a $K_{4}-e$ with the triangle $u v w$ is adjacent to exactly two vertices among u, v and w. Now, since H is connected and not a K_{3}, there is a vertex x adjacent to the triangle $u v w$. Assume that x is adjacent to u and w. Then in G, \bar{u}, \bar{v} and \bar{x} induce a triangle so that $u w x$ is an anti-Gallai triangle. Since $H \nsupseteq K_{4}-e$ and also connected, there is a vertex y adjacent to at least one of the vertices u, v, w and x. If there is no vertex adjacent to the triangle $u v w$, then it must be adjacent to x alone, which is a contradiction to the fact that $u w x$ is anti-Gallai triangle. So let y be adjacent to $u v w$. By Lemma $3.2 y$ cannot be adjacent to u and w. So let y be adjacent to v and w. Now we have $v w y$ is also an anti-Gallai triangle. But, since $H \not \equiv C_{4} \vee K_{1}$ and connected, using the same arguments as before, we have a vertex z adjacent to the triangle $u v w$ again. The only possibility then is that z is adjacent to the vertices u and v. Now we show that there are no more vertices possible in H. If not, let p be a vertex in H different from u, v, w, x, y and z. But, by Lemma 3.2, the vertex p cannot be adjacent to $u v w$. Now if p is adjacent to x, it must be adjacent to u or w as $u w x$ is an anti-Gallai triangle, which again is not possible. Similarly, p cannot be adjacent to y and z. Hence no such vertex p can be adjacent to any of the vertices u, v, w, x, y and z. So such a vertex does not exist in H, as H is a connected graph. Now we have $H \cong<u, v, w, x, y, z>\cong C_{4} \vee 2 K_{1}$, which is a contradiction.

We observe that it is possible to suitably re-label the edges in the root graph of $C_{4} \vee K_{1}$ so that no triangles in $C_{4} \vee K_{1}$ can be claimed to be an anti-Gallai triangle, see Figure 2. It can be seen

Figure 2. Two possible labellings of $K_{4}-e$ and its line graph $C_{4} \vee K_{1}$
that $K_{4}-e$ and $C_{4} \vee 2 K_{1}$ also have this property. Theorem 3.1 shows that these three graphs are the only exceptions (the graph K_{3} is excluded as it is a trivial case with 3 vertices). Hence, the graphs $K_{4}-e, C_{4} \vee K_{1}$ and $C_{4} \vee 2 K_{1}$ are excluded in the following discussions.

Definition 1. A triangle in a hanging of a line graph is an $L \triangle(M \triangle, R \triangle)$ if it is an anti-Gallai triangle and it is induced by two vertices in one level and one vertex from the lower (same, higher) level of the ordering.

We can see that any anti-Gallai triangle is either an $L \triangle, M \triangle$ or $R \triangle$ in a hanging of $L(G)$

Figure 3. A graph and the hanging of its line graph by vertex f. The dotted lines show an $L \triangle f g h, R \triangle h i j$ and an $M \triangle a b c$

Theorem 3.2. Let uv be an edge in any level of a hanging of $H \cong L(G)$ by an arbitrary vertex in H, then

1. uv cannot be an edge of an $L \triangle$ in any level L_{i} for $i>1$.
2. $u v$ cannot be an edge of an $M \triangle$ in L_{1}.
3. If $u v$ is an edge in an $M \triangle$ then uv cannot be an edge of an $L \triangle$.
4. If $u v$ is an edge in an $M \triangle$ then uv cannot be an edge of an $R \triangle$.
5. If $u v$ is an edge in an $L \triangle$ then uv cannot be an edge of an $R \triangle$.
6. uv can be an edge of at most one $L \triangle$ or $R \triangle$ or $M \triangle$.

Proof.

On an edge partition and root graphs of some classes of line graphs

1. Let $u v$ be an edge in an L_{i} for $i>1$ and let it belong to an $L \triangle u v x$, where $x \in L_{i-1}$. Let w be the vertex in L_{i-2} which is adjacent to x. Then $\langle w, x, u, v\rangle$ induces a subgraph which is neither a $K_{4}-e$ nor disconnected, which is a contradiction.
2. Let $u v x$ be an $M \triangle$ in L_{1} and z be the vertex, from where the hanging of H being considered. Then $d(z) \geq 3$ and $<z, x, u, v>$ induce a K_{4} and hence $u v x$ cannot be an anti-Gallai triangle, which is a contradiction.
3. Let $u v$ be an edge in $L \Delta$ then $u v$ is in L_{1} by (1) and hence $u v$ cannot be an edge of an $M \Delta$ by (2).
From (3) and Theorem 3.1, it follows that anti-Gallai triangles of a graph cannot share an edge in a line graph. Hence the proof of (4) to (6) follows.

Now, Lemma 3.3 follows.
Lemma 3.3. Exactly one triangle of a $K_{4}-e$ in a line graph is an anti-Gallai triangle.
From Theorems 2.2 and 3.1, we have the following propositions.
Proposition 3.1. The edge $u v$ is in an $L \triangle$, with both its ends in the same level of a hanging of a line graph if and only if it satisfies the following conditions

1. Each vertex in L_{1} is either adjacent to u or v but not to both.
2. Each neighbor of uv in L_{2} is a common neighbor of $u v$.

Proposition 3.2. The edge $u v$ is in an $M \triangle$ in a hanging of a line graph if and only if it satisfies the following conditions

1. The edge uv has a common neighbor x in L_{i} which is not adjacent to the other common neighbors of uv in L_{i-1} and L_{i}.
2. Either u or v is adjacent to each neighbor of x.
3. Each non neighbor of x is either a common neighbor of uv or not a neighbor of uv.

Proposition 3.3. The edge $u v$ is in an $R \triangle$ with both its ends in the $i^{\text {th }}$ level of a hanging of a line graph if and only if it satisfies the following conditions

1. The edge uv has exactly one common neighbor x in L_{i+1}.
2. The vertex x is an ending vertex.
3. Either u or v is adjacent to each neighbor of x.
4. Each non neighbor of x in $L_{i-1} \cup L_{i}$ is either a common neighbor of uv or not a neighbor of $u v$.

4. Partitioning the edges of a line graph

We now provide an algorithm to partition the edge set of a line graph into edge sets of its Gallai and anti-Gallai graphs. The following three tests checks whether an edge $u v \in L_{i}$ belongs to an $L \triangle, M \triangle$ or $R \triangle$.

Algorithm 1. $L \triangle$ test

1. If $i \neq 1$ go to step 7 .
2. Find $N(u)$ and $N(v)$.
3. If $N_{L_{i}}(u) \cup N_{L_{i}}(v) \neq L_{i}$ then go to step 7 .
4. If $N_{L_{i}}(u) \cap N_{L_{i}}(v) \neq \emptyset$ then go to step 7 .
5. If $N_{L_{i+1}}(u) \neq N_{L_{i+1}}(v)$ then go to step 7 .
6. Triangle $u v z$ is an $L \triangle$.
7. The edge $u v$ is not in $L \triangle$.

Algorithm 2. $M \triangle$ test

1. If $i=1$ go to step 9 .
2. Find the set C of common neighbors w_{j} of $u v$ in L_{i}. If $C=\emptyset$, go to step 9 .
3. Find the set B of common neighbors x_{j} of $u v$ in L_{i-1} and L_{i+1}.
4. For each $x_{j} \in B$, delete the members of the set $N_{C}\left(x_{j}\right)$ from C. If $C=\emptyset$ go to step 9 .
5. For each w_{j}, if $\left|N_{C}\left[w_{j}\right]\right|>1$, delete the members of the set $N_{C}\left[w_{j}\right]$. If $|C| \neq 1$ go to step 9 .
6. Find the set $N(u v)$ in H.
7. If $\left|N_{C}\left(y_{j}\right)\right|=1$, for each $y_{j} \in N(u v) \backslash(B \cup C)$, go to step 8 . Else go to step 9 .
8. Triangle $u v x$ is an $M \triangle$.
9. The edge $u v$ is not in $M \triangle$.

Algorithm 3. $R \triangle$ test

1. Find the set C_{R} of common neighbors of $u v$ in L_{i+1}.
2. If $\left|C_{R}\right| \neq 1$ go to step 7 . Else choose the common neighbor of $u v$ in L_{i+1} as x.
3. If the vertex x is not an ending vertex, go to step 7 .
4. Either u or v is adjacent to each neighbor of x. Else go to step 7 .
5. Each non neighbor of x is either a common neighbor of $u v$ or not a neighbor of $u v$. Else go to step 7.
6. Triangle $u v x$ is an $R \triangle$.
7. The edge $u v$ is not in $R \triangle$.

Given a line graph $H \cong L(G)$, obtain a hanging h_{z} by an arbitrary vertex z. Consider all the edges starting from a vertex u in L_{1}. For each edge of the form $u v$ for some $v \in L_{1}$, apply tests 1,2 and 3 one by one. Choose another edge whenever an anti-Gallai triangle is found or when all the tests fail. When all the edges in a level are considered, go to the next level and repeat the procedure. This algorithm ends when all the edges in the last level of the hanging are considered and uses a time complexity of $O(\mathrm{~m})$

We now observe that in a line graph $L(G)$, any edge that is in the edge set of $\operatorname{antiGal}(G)$ belongs to some anti-Gallai triangle. Hence the set of all the edges of the anti-Gallai triangles gives the edge set of $\operatorname{anti} \operatorname{Gal}(G)$ and the remaining edges of the $L(G)$ corresponds to the edge set of $\operatorname{Gal}(G)$.

5. An algorithm to find the root graph of a line graph

An optimal algorithm to recognize a line graph and out put its root graph can be seen in [14], the time complexity of which is $O(n)+m$. Using the above edge partition, an algorithm, which uses a time complexity of $O(m)+O(n)$, is provided to find the root graph of a line graph H . The same algorithm can be used as a recognition algorithm for line graphs. For this, applying the above three tests for the edges in an arbitrary graph, we call a triangle type I if it belongs to the category of anti-Gallai triangles and type II otherwise.

Algorithm 4. Root graph of a line graph

Consider a connected graph $H=(V, E)$ with $|V|=n,|E|=m$ and its hanging h_{z}, by an arbitrary vertex z.

Let $M=\{z, u\}$, where u is a neighbor of z. Let G be a path on three vertices with $V(G)=$ $\{\{z\},\{z, u\},\{u\}\}$ and $E(G)=\{(\{z\},\{z, u\}),(\{z, u\},\{u\})\}$. Here the labels of vertices of G are represented as sets which can be re-labeled, in the steps of the following algorithm, using set operations.

1. Choose a vertex v from $V(H) \backslash M$ with $N_{M}(v) \neq \emptyset$.
2. If v induces a clique in $N_{M}(v)$ and does not induce a type I triangle go to step 3 . Else go to step 4.
3. Make $V(G)=V(G) \cup\{v\}$, and join $\{\mathrm{v}\}$ with a vertex $C \in V(G)$, where $C=N_{M}(v)$, and make $M=M \cup\{v\}$ and $C=C \cup\{v\}$. If no such vertex C exists, go to step 4 .
4. Find two vertices A and B in $V(G)$ such that $A \cup B=N_{M}(v)$ and make $M=M \cup\{v\}$, $A=A \cup\{v\}$ and $B=B \cup\{v\}$. Go to step 1 .

The algorithm ends whenever $M=V(H)$ or there does not exist C or A and B as required. Here the graph G represents the root graph of the line graph H and in the latter case it can be concluded that the graph H is not a line graph of any graph.

The correctness of the algorithm can be verified with the help of the following theorem due to Krausz [12].

Theorem 5.1. A graph H is a line graph if and only if it has an edge clique cover \mathcal{E} such that both the following conditions hold:

1. Every vertex of H is in exactly two members of \mathcal{E}.
2. Every edge of H is in exactly one member of \mathcal{E}.

Since the vertex labels of G are represented as sets, a vertex in $\langle M\rangle$ is an element of some vertex label(set), of G. Here the elements of each vertex label in $V(G)$ induce a clique in $<M>$ of H, since x, y are in a vertex label of G if and only if x and y are adjacent in $<M>$ of H. Now from the construction of G, each vertex of $\langle M\rangle$ is an element of exactly two vertex labels of G and also any adjacent vertices in $\langle M\rangle$ belong to a vertex label of G. Now $V(G)$ gives an edge clique cover of $\langle M\rangle$ which satisfies the two conditions given in Krausz's theorem. Hence the algorithm obtains a graph G with $L(G) \cong H$ if and only if $M=V(H)$.

We now provide the difference between our algorithm and the algorithm in [14].
Given a graph H, the algorithm in [14] assumes that H is a line graph and defines a graph G such that H is necessarily the line graph of G. A comparison of $L(G)$ and H is then made to check whether the given graph is actually a line graph. The algorithm starts with two adjacent basic nodes, labeled 1-2 and 2-3, and labels the vertices in H, on the go, depending on their adjacency. The algorithm proceeds to determine all connections in G corresponding to a clique, containing the basic nodes in H, simultaneously finding an anti-Gallai triangle $\{1-2,2-3,1-3\}$, if it exists. In each step, the cliques sharing the vertices, which are already worked out, are considered and the algorithm finally outputs a labeled graph G.

In our algorithm, the types of triangles are found using the first three algorithms, the time complexity of which is calculated as follows. We can see that a hanging of the graph H can be obtained in $O(m+n)$ steps. In each of the algorithms 1,2 and 3 only a subset of $E(H)$ are considered (as edges between the levels are not included) and the algorithm 4, which assumes that algorithms 1, 2 and 3 are already done, finishes in $O(n)$ steps. Hence using these algorithms the root graph of a line graph can be obtained in $O(m)+O(n)$ steps. It can be noted, as a consequence of Theorem 3.1, that irrespective of the starting set M of nodes, any pre-labeled line graph H with more than four vertices gives a uniquely labeled root graph G.

6. Root graphs of diameter-maximal line graphs

A graph G is diameter-maximal [7], if for any edge $e \in E(\bar{G}), d(G+e)<d(G)$.

Theorem 6.1. [7] A connected graph G is diameter-maximal if and only if

1. G has a unique pair of vertices u and v such that $d(u, v)=d(G)$.
2. The set of nodes at distance k from u induce a complete sub graph.
3. Every node at distance k from u is adjacent to every node at distance $k+1$ from u.

Lemma 6.1. Let G be a diameter-maximal line graph and u, v be two vertices of G with $d(u, v)=$ $d(G)$. Let $L^{*}=\left(\left|L_{0}\right|,\left|L_{1}\right|, \ldots,\left|L_{d}\right|\right)$ be the sequence generated from the hanging h_{u}. Then, $\left|L_{i}\right| \leq 2$ for $i=0,1, \ldots, d$.

Proof. Clearly $\left|L_{0}\right|=\left|L_{d}\right|=1$ in L^{*}. If possible, let u, v and w be three vertices in L_{i} for some i for $0<i<d$. By Theorem 6.1, $\langle u, v, w\rangle \cong K_{3}$ and there exist vertices x in L_{i-1} and y in L_{i+1} such that u, v and w are adjacent to both x and y. But, then, $\langle x, u, v, w, y\rangle \cong F_{3}$ which is a contradiction.

A sequence S is forbidden in L^{*} if the consecutive terms of S do not appear consecutively in L^{*}.

Theorem 6.2. For every $d \geq 3$, there exists three diameter-maximal line graphs with diameter d.
Proof. First, we show that the sequence $\left(a_{1}, a_{2}, 2, a_{3}, a_{4}\right)$, where $a_{i} \in\{1,2\}$, is forbidden in L^{*}. For, assuming the contrary, let $\left|L_{i}\right|=2$ for some $i, 2 \leq i \leq d-2$, and $L_{i}=\left\{v_{1}, v_{2}\right\}$. Let v_{3}, v_{4}, v_{5} and v_{6} be arbitrary vertices in L_{j}, for $j=i-2, i-1, i+1$ and $i+2$ respectively. But $\left.<v_{1}, \ldots, v_{6}\right\rangle \cong F_{4}$ which is a contradiction.

Applying the same argument, we see that the sequences $\left(a_{1}, a_{2}, 2,2\right),\left(2,2, a_{1}, a_{2}\right)$ and $(2,2,2)$ are also forbidden in L^{*}, so that the integer 2 appears at most twice in L^{*} and hence either (i) $\left|L_{1}\right|=\left|L_{d-1}\right|=2$, (ii) $\left|L_{1}\right|=2$ or $(i i i)$ all the entries of L^{*} are 1 . Note that the case when L^{*} has $\left|L_{d-1}\right|=2$ is not considered, as it is similar to $(i i)$. Hence there are only three possible sequences of L^{*} when $d \geq 3$. As the three sequences are different and the pair (u, v) in Theorem 6.1 is unique, there exist exactly three diameter-maximal line graphs.

Corollary 6.1. The root graphs of diameter-maximal line graphs with diameter d are of the form G in Table 1.

Diameter of $L(G)$	$d=1$	$d=2$	$d \geq 3$
G	$\bigcirc-\bigcirc$		

Table 1. Graph G, for Corollary 6.1

7. Root graphs of DHL graphs

A graph G is distance-hereditary if for any connected induced subgraph $H, d_{H}(u, v)=d_{G}(u, v)$, for any $u, v \in V(H)$. A detailed study can be seen in [5]. A graph G is chordal if every cycle of length at least four in G has an edge(chord) joining two non-adjacent vertices of the cycle [4]. A graph is Ptolemaic if it is both distance-hereditary and chordal [11].

In this section, the family of root graphs of distance-hereditary line (DHL) graphs is obtained. The root graphs of chordal and Ptolemaic graphs are also discussed.

Theorem 7.1. [5] Let G be a connected graph. Then G is distance-hereditary if and only if the graphs of Fig 4 and the cycles C_{n} with $n \geq 5$ are forbidden subgraphs of G.

Figure 4. The graphs for Theorem 7.1: house, domino and gem graphs

Theorem 7.2. [11] Let G be a graph. The following conditions are equivalent

1. G is a Ptolemaic graph
2. G is distance-hereditary and chordal
3. G is chordal and does not contain an induced gem

A vertex v is simplicial if $N(v)$ is a clique. The ordering $\left\{v_{1}, \ldots, v_{n}\right\}$ of the vertices of H is a perfect elimination ordering if, for all $i \in\{1, \ldots n\}$, the vertex v_{i} is simplicial in $H_{i}=<$ $v_{i}, \ldots, v_{n}>$.

Theorem 7.3. [9]Let G be a graph. The following statements are equivalent:

1. G is a chordal graph.
2. G has a perfect elimination ordering. Moreover, any simplicial vertex can start a perfect elimination ordering.

Theorem 7.4. In a DHL graph if a vertex is adjacent to at least one vertex in a C_{4} then it must be adjacent to all the vertices of that C_{4} and to no other vertices in the graph.

Proof. Let H be a DHL graph which contains a C_{4} and let a vertex u be adjacent to at least one vertex of the C_{4}. If u is adjacent to exactly one vertex of C_{4} then a $K_{1,3}$ is formed in H, which is a contradiction. Let u be adjacent to exactly two vertices of C_{4}. Then either a house, when u is adjacent to two adjacent vertices of C_{4}, or a $K_{1,3}$, when u adjacent to two non-adjacent vertices of
C_{4} is formed, which is also a contradiction. Since an F_{2} is obtained when u is adjacent to three vertices of a C_{4}, u must be adjacent to all the four vertices of the C_{4}.

Next we show that two adjacent vertices can not be made adjacent to a C_{4} in H. For, otherwise each of the two vertices must be adjacent to all the vertices of C_{4} and hence induces $C_{4} \vee K_{2}$. But a copy of F_{3} is induced in $C_{4} \vee K_{2}$, which is a contradiction. If only one vertex of two adjacent vertices is adjacent to C_{4}, a $K_{1,3}$ is induced in H which is also a contradiction.

Corollary 7.1. A DHL graph contains at most one C_{4}.
Corollary 7.2. The root graphs of DHL graphs which contain a C_{4} are $K_{4}, K_{4}-e$ and C_{4}.
Proof. The proof is complete as we see from Corollary 7.1 that the only DHL graphs which contain a C_{4} are $C_{4} \vee 2 K_{1}, C_{4} \vee K_{1}$ and itself.

As there are only three DHL graphs containing a C_{4}, we restrict our discussion in the following sections to DHL graphs not containing C_{4} 's.

If H is a DHL graph containing no anti-Gallai triangle then its root graph contains no triangles. Also, a DHL graph is C_{n}-free, $n \geq 5$. Now, together with Corollary 7.2, we have the following result.

Theorem 7.5. Let $H \not \equiv C_{4}$ be a DHL graph not containing an anti-Gallai triangle, then H is a line graph of a tree.

Lemma 7.1. An anti-Gallai triangle in a DHL graph has a vertex of degree two.
Proof. Let $u v x$ be an anti-Gallai triangle in a DHL graph $H \not \approx K_{3}$. Then $u v x$ is in some $K_{4}-e$ in H. Let $u v y$ be a triangle such that $u, x, y, w \cong K_{4}-e$. We now show that degree of the vertex x is two. Consider h_{x}, we just need to show that L_{1} contains no vertices other than u and v. For, let w be a vertex in L_{1}. Then $w x$ is an edge and, by Theorem 3.1, either u or v is adjacent to w. Then y cannot be adjacent to w as $N(w) \cap\{u, v, x, y\}$ together with w induce $C_{4} \vee K_{1}$. But, $<u, v, w, x, y>$ is a gem, a contradiction.

By lemma 7.1, it now follows that each triangle in the root graph of a DHL graph is attached to the graph by sharing at the most one vertex. Let \mathcal{T} be the family of trees. Let \mathcal{T}_{\triangle} be the family of graphs obtained by attaching some triangles to some vertices in a tree T, for each $T \in \mathcal{T}$.

Theorem 7.6. A graph G is a root graph of a C_{4}-free $D H L$ graph if and only if $G \in \mathcal{T}_{\Delta}$.
Proof. The proof is by induction on the number of edges in a $T \in \mathcal{T}_{\triangle}$. It can be verified that the root graphs of distance-hereditary graphs of size ≤ 3 are in \mathcal{T}_{\triangle} and hence the theorem is true for all $m \leq 3$.

Let $T \in \mathcal{T}_{\triangle}$ has m edges and T is a root graph of a DHL graph. Let T^{\prime} be a graph in \mathcal{T}_{Δ} with $E\left(T^{\prime}\right)=E\left(T^{\prime}\right) \cup\{e\}$. Since T^{\prime} must be connected, there can be two cases: either (i) the edge e is added as a pendent edge to T or (ii) the edge e is formed by joining two vertices in T.

Let l_{e} be the vertex in $L\left(T^{\prime}\right)$ corresponding to the edge e in T^{\prime}. In case (i), since e is a pendant edge in T^{\prime}, l_{e} is simplicial in $L\left(T^{\prime}\right)$. We can now show that $L\left(T^{\prime}\right)$ is gem-free. If possible let a gem
is there in $L\left(T^{\prime}\right)$. Since $L(T)$ is distance-hereditary and C_{4}-free, it is chordal. By Theorem 7.2 $L(T)$ is gem-free, l_{e} must be a vertex in the induced gem. But, $N\left(l_{e}\right)$ is complete so that l_{e} is one of the degree two vertices in the gem. Now l_{e} is in a $K_{4}-e$. By Lemma 7.1, one of the two triangles in the $K_{4}-e$ must be an anti-Gallai triangle. But the triangle containing l_{e} cannot be so, as e is a pendant edge in T^{\prime}. But the other triangle has no vertex of degree 2 in the induced gem. This is a contradiction, by Lemma 7.1, to the assumption that $L\left(T^{\prime}\right)$ contains a gem.

In case(ii), as T is connected, adding an edge e joining two vertices of T makes a cycle in T^{\prime}. But $T \in \mathcal{T}_{\triangle}$ is C_{n}-free, $n \geq 4$, and contains no $K_{4}-e$. Hence e joins two pendant vertices of T, forming a triangle and has end vertices of degree two. Therefore in $L\left(T^{\prime}\right)$, the corresponding vertex l_{e} is in an anti-Gallai triangle and has degree two. It now follows that l_{e} is simplicial. If $L\left(T^{\prime}\right)$ contains a gem, l_{e} must be one of the degree two vertices in the induced gem. But in this case the anti-Gallai triangle containing l_{e} do not satisfy Theorem 3.1 with the other vertex of degree two in the induced gem, which is again a contradiction.

In both the cases we have a one-vertex extension $L\left(T^{\prime}\right)$ of a gem-free chordal graph $L(T)$ and hence $L\left(T^{\prime}\right)$ is a DHL graph.

Corollary 7.3. A graph $L(G)$ is Ptolemaic if and only if $G \in \mathcal{T}_{\Delta}$
Corollary 7.4. Let $\mathcal{T}_{\triangle}^{c}$ be the family of graphs obtained by attaching some triangles to some vertices in a tree T and identifying each edge of T by an edge of at most one triangle, for each $T \in \mathcal{T}$. Then $L(G)$ is a chordal graph if and only if $G \in \mathcal{T}_{\triangle}^{c}$

Acknowledgment: The authors thank the referee for some suggestions towards the improvement of the paper.

References

[1] A.V. Aho, J.E. Hopcroft and J.D. Ullman, The design and analysis of computer algorithms, Addison Wesley, (1976).
[2] P. Anand, et al., On the hardness of recognizing triangular line graphs, Discrete Math. 312 (2012), 2627-2638.
[3] L.S. Aparna, S.B. Rao and A. Vijayakumar, Gallai and anti-Gallai graphs of a graph, Math. Bohem. 132 (2007), 43-54.
[4] R. Balakrishnan and K. Ranganathan, A Textbook of Graph Theory, second edition, Heidelberg: Springer (2012).
[5] H.J. Bandelt and H.M. Mulder, Distance-hereditary graphs, J. Combin. Theory Ser. B 41 (1986), 182-208.
[6] L.W. Beineke, On derived graphs and digraphs, Beitrage zur Graphentheorie, Leipzig (1968), 17-23.
[7] F. Buckley and F. Harary, Distance in Graphs, Addison-Wesley, Redwood City, CA (1990).
[8] A. D'Atri and M. Moscarini, Distance hereditary graphs, Steiner trees, and connected domination, SIAM J. Comput. 17 (1988), 521-538.
[9] D.R. Fulkerson and O.A. Gross, Incidence matrices and interval graphs, Pacific J. Math. 15 (1965), 835-855.
[10] T. Gallai, Transitiv Orientierbare Graphen, Acta math. Acad. Sci. Hung. 18 (1967), 25-66.
[11] E. Howorka, A characterization of distance-hereditary graphs, Quart. J. Math. Oxford. Ser. 28 (1977), 417-420.
[12] J. Krausz, Démonstration nouvelle d'une théorème de Whitney sur les réseaux, Mat. Fiz. Lapok 50 (1943), 75-85.
[13] V.B. Le, Gallai graphs and anti-Gallai graphs, Discrete Math. 159 (1996), 179-189.
[14] P.G.H. Lehot, An optimal algorithm to detect a line graph and output its root graph, J. ACM 21 (1974), 569-575.
[15] L. Sun, Two classes of perfect graphs, J. Combin. Theory Ser. B 53 (1991), 273-292.
[16] H. Whitney, Congruent graphs and the connectivity of graphs, Amer. J. Math. 54 (1932), 150-168.

