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Abstract. In this paper we will study an elastic dissipation model for a cantilevered

beam. This problem for a cantilevered beam has been formulated by D. L. Russell as an

open problem in [1, 2], To determine the relationship between the damping rates and the

frequencies we will use a recently developed, adapted form of the method of separation of

variables. It will be shown that the dissipation model for the cantilevered beam will not

always generate damping. Moreover, it will be shown that some solutions can become

unbounded.

1. Introduction. It is possible to use different approaches to describe energy dissi-

pation in oscillating, elastic bodies such as beams (see [1, 2]). Many approaches (such as

molecular theories) are too complicated to use and to analyze in practice. So, as a result,

different phenomenological theories are used and applied in mechanics. Of course, every

theory has its pros and cons. In particular, Russell notes in [1, 2] that it is clear that

"viscous" damping models such as

d2u n du d2 f ^Td2u\

Pdt2+ 1dt+d^2\ d^)='

which produce uniform damping rates, are inadequate if experimentally observed damp-

ing properties are to be incorporated in the model. Kelvin and Voigt noted at the end of

the nineteenth century that damping rates tend to increase with frequency. Incorporated

into the Euler-Bernoulli beam model, their approach yields an equation of the form

d2u d3 ( d2u\ d2 ( d2u\

PW+ ^Pdtd^\ fa2) + fa2\ fa2) =

In [3] Chen and Russell study models of the form

x + Bx + Ax = 0, (1)
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where A is an elasticity operator and B is related in various ways to the positive square

root, A1/2, of A. For beam equations this approach was generalized and developed

further by Russell in [1, 2], More recent results on the nonnegative square root of fourth

order derivative operators are obtained by Yao in [4]. In the last ten years, many other

authors (see for instance [7]—[10]) significantly contributed to a deeper understanding of

problems which can be formulated by system (1).

In [1, 2] Russell introduces a new phenomenological dissipation model for beams, where

the damping is assumed to be proportional to the bending rate of the beam. In fact, the

following equation is considered:

txx "f" ^XXXX = 0?

where u = u(x, t) is the displacement of the beam in vertical direction and <5 is a positive

damping constant. No derivation of the dissipation term utxx is given in [1, 2], However,

it is noted in [1, 2] that this new model has good mathematical properties. For instance,

for initial value problems for simply supported beams, such as

Utt 3lltxx ^xxxx — 0 I 7r, t ^ 0,

u(0, t) - w(7T, t) = uxx{0, t) = uxx(n, t) = 0, t > 0,

u(x, 0) = f(x), ut(x, 0) = g(x), 0<x<ir,

the solution for 0 < 5 < 2 is given by

u(x, t) = ^ ^An sin — S2t^j + Bn cos ^\ — 5'2tJ ̂  sin(nx), (2)

where

An —
4 r ( n2 \ 2 r

 , / ( q(x) + — 5fix) sin(nx) dx. Bn = — f (x) s'm(nx) dx.
n2nV4~^P J0 V 2 JK >) y 7o

Similar formulas can be derived for 5 > 2.

Indeed it can easily be seen that the damping rate in this case increases with the

frequency. Russell [1, 2] and MacCluer [5] observe that the damping operator B in (I)

and the stiffness operator A in (1) often "commute", that is, B shares the eigenmodes

of A, or equivalently the nonnegative square root of the fourth order derivative operator
r\ 4 a2

is — . Unfortunately for a cantilevered beam it turns out that A and B do not

commute. Russell notes that [2, p. 375]: "The apparent necessity of discarding this

model for this reason is a real disappointment ... For the cantilevered beam Russell

shows in [11] that it is not true in general that the energy decreases monotonically, but

it remains in [11] an open problem as to how the energy decreases or increases.

In this paper we will study the following initial value problem for a cantilevered beam:

Utt txx ^xxxx 0) 0 X 7T, t 0,

w(0, t) — ux (0, — uXx (^"'0 — ̂ xxx — 0, (3)

u(x, 0) = f(x), and ut(x, 0) = g{x), 0 < x < n,

where 6 is a positive damping parameter. To find the relationship between the damping

rates and the frequencies we will use the recently developed, adapted form of the method

of separation of variables (see [6]). This paper is organized as follows. In Sec. 2 of this
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paper we will discuss how this adapted version of the method of separation of variables

can be applied to the initial value problem (3) for the cantilevered beam. It will turn

out that we have to consider three different cases: 5 — 2, 5 > 2, and 0 < <5 < 2. These

three cases will be treated in sections 3, 4, and 5 respectively. Finally in Sec. 6 of this

paper some conclusions will be drawn and some remarks will be made.

2. On an adapted version of the method of separation of variables. The

method of separation of variables is the oldest systematic method to find nontrivial

solutions for (linear) partial differential equations. To study waves and vibrations, Daniel

Bernoulli, Euler, and D'Alembert used this method in the middle of the eighteenth

century. The method has been considerably refined and generalized during the last

centuries, and remains a method of great importance and frequent use today. Recently it

has been shown in [6] that the method can be applied to a much larger class of problems

than is generally assumed. After substitution of a separated solution (that is, a solution

of the form X(x)T(t)) into the partial differential equation, dividing by X(x)T(t), and

after differentiating the so-obtained equation sufficiently many times with respect to some

of the independent variables, we can finally reduce the problem to ordinary differential

equations. This adapted version of the method of separation of variables seems to be not

(well-) known in the literature on partial differential equations. In this section we will

show how the adapted method can be applied to the initial value problem (3) for the

cantilevered beam.

First we are looking for a nontrivial solution in the form X{x)T(t) which satisfies

the partial differential equation (PDE) and the boundary conditions. Substituting this

solution form into the PDE, and by dividing the so-obtained equation by X(x)T(t), we

find

t ir x""
t~ rI + Y' ' ^

where ' = and ' = . Generally it is assumed that (4) cannot be separated

because of the mixed term However, by simply differentiating (4) with respect

to x or t (see also [6]), we can separate the variables in (4). For instance, if we differentiate

(4) with respect to t, we obtain

d ff\ X" d (t\
dt[f)~ ~YJt ~~°'

which can easily be separated, yielding

//

X = _/3' (5)

where f3 is a complex valued separation constant. From (5) it follows that X"" =

—f3X" = P2X, and then it can easily be deduced from (4) that T(t) has to satisfy

T + 6/3T + P2T = 0. (6)

Thus, the problem has been reduced to ordinary differential equations. Finally, by sub-

stituting the "separated" solution X(x)T(t) into the boundary conditions, we obtain as
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usual a boundary value problem for X(x):

X" + (3X = 0, 0 < x < 7T,

X(0) = X'(0) = X"(?r) = X'"(tt) = 0, ^

where (3 is a complex valued separation constant. It turns out that the boundary value

problem (7) only has trivial solutions. We will omit these lengthy but elementary cal-

culations. So, differentiation of (4) with respect to t leads for the cantilevered beams

to trivial solutions. For a simply supported beam, however, it will lead to the following

boundary value problem for X(x):

X" + (3X = 0, 0 < x < 7T,

.Y(O) = X"(0) = X{nr) = X"(ir) = 0,

which has nontrivial solutions X(x) = sin(nx) for n = 1,2,3.... These solutions will

finally lead to the solution of the initial value problem for the simply supported beam

as, for instance, given by (2) for 0 < <5 < 2.

We can also differentiate (4) with respect to x to obtain

T d (X"\ d (X""\ n

Tdx\Xj + dx\X ) ~~ '

which can also easily be separated, yielding

\ = A, (8)

where A is a complex valued separation constant. From (8) it follows that T = AT = A2T,

and then it can easily be deduced from (4) that X (x) has to satisfy the following boundary

value problem:

X"" - S\X" + A2X = 0, 0 < x < 7T,
(9)

X(0) = X'(0) = X"(n) = X"'(n) = 0,

where A = Ai + i\2 with Ai and A2 £ M. By considering the characteristic equation

fc4 - 6\k2 + A2 = 0 «=>• (k2 - +^-(4-^2)=0 (10)
2 J 4

for the differential equation in (9), it is obvious that we have to consider three cases:

S = 2, S > 2, and 0 < S < 2. These three cases will be studied in the next three

sections. It will be shown that nontrivial solutions for (9) can be found in all three cases.

From (8) the time-dependent behaviour of a nontrivial solution X(x)T(t) for (3) can be

determined. It is obvious from (8) that arbitrary vibrations of the cantilevered beam can

only be damped out if all eigenvalues A have a negative real part, that is, Ai should be

negative for all vibration modes.

3. The case S = 2. In this section we will study the boundary value problem (9)

with 5 — 2. The characteristic equation for the differential equation in (9) becomes in

this case

(k2 - A)2 = 0, (11)
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where A = Ai + i\2 with Ai and A2 € R. It can be shown elementarily that for A2 = 0,

the boundary value problem (9) has only trivial solutions. For A2 ^ 0, the characteristic

equation (11) has as roots

Ci+iC2, and ~Ci-<2,

where

<1 = \j \ C2 = ]j (i2)

Each root has multiplicity two. Putting fci = Ci + K2, the solution of the differential

equation in (9) can now be written as

X(x) = C\ cosh(fcix) + C2 sinh^ix) + C^x cosh(fci:r) + C4X sinh(fcix), (13)

where C\, C2, C3, and C4 are complex valued constants of integration. By substituting

(13) into the boundary conditions in (9) we obtain a system of four linear, homogeneous

equations for C1, C2, C3, and C4. To have a nontrivial solution the determinant of the

coefficient matrix has to be zero, yielding

sinh2(fci7r) — k\ir2 + 4 = 0. (14)

Taking apart real and imaginary parts in (14) we get a system of two nonlinear equations

for £1 and (2 (note that fci = Ci + 2(2)'-

cosh(27rCi) cos(2ttC2) = ^((2ttCi)2 - (2tt(2)2) - 7,
1 (15)

sinh(27rCi) sin(27rC2) = 27rCi27rC2-

Using the formula manipulation package Maple, numerical approximations of the solu-

tion of (15) can easily be obtained. Using these approximations and (12), the eigenvalues

A = Aj + 1X2 can be approximated. The first six approximations of the eigenvalues A of

the boundary value problem (9) are listed in Table 1.

Nr.

1

2

3
4

5

6

<5 = 2

Ai

0.072471
-1.306096

-4.930357

-10.658699

-18.442296

-28.260886

A2

0.327553

2.005633

4.225684

6.772424

9.470416

12.309142

TABLE 1. Approximations of the first six eigenvalues A = Ai + 1X2

for the case 6 = 2.

The first eigenvalue has a positive real part. From (8) it can readily be seen that

for this eigenvalue there exists a nontrivial solution X(x)T(t) of (3) which becomes

unbounded for increasing times t. So for this first vibration mode there certainly is no

energy dissipation.
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4. The case <5 > 2. In this section we will study the boundary value problem (9)

with S > 2. The characteristic equation for the differential equation in (9) is

fc4 - XSk2 + A2 = 0, (16)

where A = Ai + i\2 with Ai and A2 £ R. It is easy to show that for A2 = 0 the boundary

value problem (9) has only trivial solutions. For A2 7^ 0 it follows from the characteristic

equation (16) that

k2 = A (^- + - \/ S2 — 4^) , or k2 = —=  r-. (17)
\2 2 J (| + 1^2TT4) v ;

Putting a — (| + TjVS2 — 4) it follows from (17) that k2 — Xa or k2 — And so, the

roots of the characteristic equation (16) are

api, —api, pi, and pi,

where pi == £1 + i£2 with

= i+a, and 6 = ^v3+ZLl^i. (18)

For A2 7^ 0 the solution of the differential equation in (9) can now be written as

X(x) = C\ cosh(pix) + C2 sinh(pi.T) + C3 cosh(apix) + C4 sinh(apix), (19)

where C\, C2, C3, and C4 are complex valued constants of integration. By substituting

(19) into the boundary conditions in (9) we obtain a system of four linear, homogeneous

equations for Ci, C2, C3, and C4. To have a nontrivial solution the determinant of the

coefficient matrix has to be zero, yielding

1 + a4 + ^(a — l)2 cosh((a + l)pi7r) — ̂ (a + l)2 cosh((a — l)pi7r) = 0. (20)

Taking apart the real and imaginary parts in (20) we finally obtain a system of two

nonlinear equations for £1 and £2 (note that pi = £1 + ^2)

1 + a4 + ^ (a -1)2 cosh ((a+1) 7r£i) cos ((a+1) 7t£2) - ^ (a+1)2 cosh ((a — 1) 7r£i) cos((a—1) 7t£2) = 0,

— (a — l)2 sinh((a + l)7r£i) sin((a + l)7r£2) — — (a+1)2 sinh((a — l)7r£i) sin((a—l)7r£2) = Q

(21)
Numerical approximations of the solution of (21) can easily be obtained by using the

formula manipulation package Maple. Using these approximations and (18) we can ap-

proximate the eigenvalues A = Ai + i\2- The first six approximations of the eigenvalues

A are listed in Table 2 for some specific values of the parameter S > 2.

From Table 2 it follows that for each specific value <5 > 2 (as listed in Table 2), the

first eigenvalue always has a positive real part. From (8) it can readily be seen that

for these first eigenvalues there exist nontrivial solutions X(x)T(t) of (3) which become

unbounded for increasing times t. So for this first vibration mode there certainly is no

energy dissipation.
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Nr.

1

2

3

4

5

6

<5 = 2.001

Ai

0.071093
-1.266093

-4.779897

-10.334167

-18.384359

-27.403149

A2

0.318035

1.943048

4.122121

6.553759

9.277380

11.889795

(5 = 3

Ai

0.035470
-0.675846

-1.728249

-3.707961

-6.116124

-9.027316

A2

0.058214

0.582716

0.623632

1.393278

1.063614

2.169593

5 = 10

Ai

0.012281
-0.054805

-0.197794

-0.418701

-0.705594

-0.994408

A2

0.019740

0.055348

0.087744

0.130915

0.202380

0.285117

Table 2. Approximations of the first six eigenvalues A = Ai + 1X2

for some specific values of the parameter <5 > 2.

5. The case 0 < 6 < 2. In this section we will study the boundary value problem

(9) with 0 < 5 < 2. The characteristic equation for the differential equation in (9) has

the form (16). It can be shown elementarily that for A2 = 0 the boundary value problem

(9) has only trivial solutions. For A2 ^ 0 it follows from the characteristic equation (16)

that

l2 ,2 Ak ~ ̂  (2 + ' 2 J ' " k = I 1 <22)

Putting a = | + i%/4^"'52, it follows from (22) that k2 = A a, or k2 = And so, the roots

of the characteristic equation (16) are

ap 1, -ap 1, p 1, -p 1,

where p\ = r/i + ir]2 with

n = i_ /vg+Af+A,(2+{)_ /72^-^(2_i)h ^

l]2=l_UyS±E^l{2 + s) + J^S±3±hi2.s)
(23)

As in Sec. 4, the solution of the differential equation in (9) can be written in the form

(19). Again we obtain a system of four linear, homogeneous equations for Ci, C2, C3, and

C4 by substituting (19) into the boundary conditions in (9). To have a nontrivial solution

the determinant of the coefficient matrix has to be zero, yielding (20). The only difference

now with the previous section is that a and p\ are both complex valued. Taking apart

the real and imaginary parts in Eq. (20) we obtain a system of two nonlinear equations
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for ?7i and r/2 (note that pi = rft + ir)2):

(•52 - 2)2

+ (<52/2 - 1)(<5 — 2) cosh (((<5/2 + 1) rji - 772 \/4 - <52/2^ 7r) cos (((<5/2 + 1) 172 + 771 \/4 — 52/2^ 7rj

— 5\/4 — 52(5 — 2)/2 sinh (((<5/2 + 1) 771 — 772 \/4 — 52/2^ 7r^ sin (((5/2 + 1) 772+ 77! \/4 — 52/2^ 7r^

— (<52/2 — 1^ (5 + 2) cosh (((<5/2 — 1) 771 — r]2 v' 4 — (52/2j rrj cos (((5/2 — 1) 772 + 771 \/4 — 52/2^ 7r^

+ <5\/4 — <52(<5 + 2)/2 sinh (((<5/2 — 1)771 — r/2\/4 — <52/2j 7r^ sin (((5/2 — 1)772 4- 771 \/4 — <52/2^ 7r^ — 0,

and

<5\/4 — <52(<52 - 2)

+ <5\/4 — <52(<5 — 2)/2 cosh (((<5/2 + 1) 771 — 772\/4 — <52/2j 71-^ cos (((5/2 + 1) 772 + 771 v^4 — 52/2^ 71^

— (52/2 — 1)(5 — 2) sinh (((5/2 + 1) 771 — 772 \JA — 52/2^ 71^ sin (((5/2 + 1) 772 + 771 \Ji — 52/2^ 71-j

— 5\/4 — 5 (5 + 2) /2 cosh (((5/2 — 1) 771 — 772 \/4 — 52/2^ 7r^ cos (((5/2 — 1) 772 + 771 \/4 — d2/2j 71"^

— (52/2 — 1)(5 + 2) sinh (((5/2 - 1)771 - 772 ̂4 - 52/2^ 71^ sin (((5/2 - 1) 772 + 771 v^4 — 52/2^) 7r) = 0.

(24)

Using the formula manipulation package Maple, numerical approximations of the solu-

tion of (24) can easily be obtained. Using these approximations and (23), the eigenvalues

A = Ai + i\2 can be approximated. The first six approximations of the eigenvalues A

of the boundary value problem (9) are listed in Table 3 for some specific values of the

parameter 0 < S < 2.

Nr.

6 = 0.01

Ai

0.000438
-0.006735

-0.023255

-0.050113

-0.086926

-0.133743

Xo

0.356246

2.232556

6.251193

12.249825

20.249820

30.249707

5 = 1

Ai

0.041226
-0.669480

-2.352370

-5.049603

-13.444049

-19.141120

A 2

0.347651

2.183093

5.821765

11.194332

27.132464

37.699619

1.999

Ai

0.072445
-1.305498

-4.927529

-10.651827

-18.429408

-28.239893

A2

0.327575

2.005905

4.259369

6.780897
9.490139

12.347001

Table 3. Approximations of the first six eigenvalues A = Ai + i\2

for some specific values of the parameter 0 < 5 < 2.

From Table 3 it follows that for each specific value 0 < S < 2 (as listed in Table 3),

the first eigenvalue always has a positive real part. From (8) it can readily be seen that

for these first eigenvalues there exist nontrivial solutions X{x)T{t) of (3) which become

unbounded for increasing times t. So for this first vibration mode there certainly is no

energy dissipation.

6. Conclusion. In this paper a phenomenological dissipation model for a cantilevered

beam has been studied. This new model has been introduced in [1, 2] as a model for a

beam where the damping is assumed to be proportional to the bending rate of the beam.

For the cantilevered beam the relationship between the damping rates and the frequen-

cies has been obtained by using the recently developed, adapted version of the method
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of separation of variables (see [6]). It should be remarked that this relationship also can

be obtained by applying the Laplace transformation method to (3). The boundary value

problem (9) then also is obtained.

It has been shown that this phenomenological model for the cantilevered beam does

not always generate damping. For some significant values of the "damping" parameter

5 is has been shown numerically that the first (that is, the lowest) vibration mode is

unstable. So for this mode there certainly is no energy dissipation. From this point of

view we have to conclude that the elastic dissipation model for the cantilevered beam is

not an adequate dissipation model.
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