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ON A N ELLIPTIC EQUATION OF
p-KIRCHHOFF T Y P E VIA VARIATIONAL METHODS

FRANCISCO JULIO S.A. CORREA AND GIOVANY M. FIGUEIREDO

This paper is concerned with the existence of positive solutions to the class of nonlocal
boundary value problems of the p-Kirchhoff type

\Vu\p dx j] Ap« = / ( i , u ) i n Q, u = 0on 3fl

and

-\M(f |Vu|pda: j \ Apu = /(x,u) + A|u|s-2uin fi, u = 0 on

where fi is a bounded smooth domain of RN, l<p<N, s^p* = {pN)/(N — p)
and M and / are continuous functions.

1. INTRODUCTION

The purpose of this article is to investigate the existence of positive solutions to the
class of nonlocal boundary value problems of the p-Kirchhoff type

] ^ = /(*, u) in n

u = 0 on d£l

and

f [ ] ' " \ u = f(x, u) + A|«|-a« in 0
u = 0 on 9f2,

where, through this work, fi C RN is a bounded smooth domain, / : Q x R+ —> R and
M : R+ -> R+ are continuous functions that satisfy conditions which will be stated later,
Apu is the p-Laplacian operator, that is,

ft ^ o

Received 2nd May, 2006

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/06 SA2.00+0.00.

263

https://doi.org/10.1017/S000497270003570X Published online by Cambridge University Press

https://doi.org/10.1017/S000497270003570X


264 J.S.A. Correa and G.M. Figueiredo [2]

and |f.|| is the usual norm in W0
1>p(ft) given by

/

Ja
The main goal of this paper is establishing conditions on M and / under which

problem (P) and (P)\ possess positive solutions.
Problem (P) and (P)\ are called nonlocal because of the presence of the term

M(||u||p) which implies that the equations in (P) and {P)x are no longer pointwise
identities. This provokes some mathematical difficulties which makes the study of such
a problem particulary interesting. This problme has a physical motivation. The oper-
ator M(||u||1') Apu, with p = 2, appears in the Kirchhoff equation, which arises in
nonlinear vibrations, namely

f ua - M(||u||2)AU = /(ar.u) in f ix (0,T)
(1.1) < u = 0ondtox (0,r)

[ ti(*,0) = «o(x) , ««(*, 0) = ui(x).

Hence, problem (P) and {P)\, in case p = 2, are the stationary counterpart of the
above evolution equation.

Such a hyperbolic equation is a general version of the Kirchhoff equation

E L

presented by Kirchhoff [8]. This equation extends the classical d'Alembert's wave equa-
tion by considering the effects of the changes in the length of the strings during the vi-
brations. The parameters in equation (1.2) have the following meanings: L is the length
of the string, h is the area of cross-section, E is the Young modulus of the material, p is
the mass density and Po is the initial tension.

Problem (1.1) began to attract the attention of several researchers mainly after the
work of Lions [9], where a functional analysis approach was proposed to attack it.

The reader may consult [1, 2, 4, 10, 13] and the references therein, for more
informations on (P) and (P)\, in case p = 2.

Motivated by papers [2, 5] and by some ideas developed in [3, 6], we prove the
existence of positive solutions to (P) and (P)A- However, in this work, we use a different
approach to those explored in [2, 5, 3], because here we are working with the p-Laplacian
operator. Some estimates for this type of operator can not be obtained using the same
kind of ideas explored for the case p=2. For example, results involving uniform a priori
estimate of the Gidas and Spruck type [7] does not hold for the p-Laplacian. To overcome
these difficulties, we use comparison between minimax levels of energy.

This paper is organised as follows: in Section 2, we show the existence of positive
solutions for the equation (P). In Section 3, we show the existence of positive solutions
for the equation (P)A.
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[3] Existence of solutions 265

2. T H E SUBCRITICAL C A S E

In this section we assume that / : Q x R + - > R i s a continuous function and satisfies
the subcritical growth conditions

for all x e ft and for al l* € R, where p<q<p* = (pN)/(N - p).
We say that u 6 W0

1>p(ft) is a weak solution of the problem (P) if it satisfies

MI*)]"-1 /"|Vur2VUV^- /"/(x, 11)0 =J Jn Jn

for all <f> G Wo
llP(ft).

We shall look for solutions of (P) by finding critical points of the C1-functional
/ : Wo

llP(ft) ->• R given by

I(u) = -M(||u||p) - f F(x,u)dx
P Jn

ft ft
where M(t)= / [M{s)]p-lds and F(x, t) = / f{x,s)ds.

Jo Jo

M(NIP) / |Vu|p~2VuV0- / f{x,u)(j>,J Jn Jn

Jo
Note that

for all <£ 6 ^^"(ft).
In order to use critical point theory we first derive results related to the Palais-Smale

compactness condition.
We say that a sequence («„) is a Palais-Smale sequence for the functional / if

7(un) -> c and ||/;(un)|| -> 0 in {W^(tt))'

If every Palais-Smale sequence of I has a strongly convergent subsequence, then one
says that / satisfies the Palais-Smale condition ((PS) for short).

Through this paper, we assume that M is a continuous function and satisfies:

(Mi) M(t) > mo > 0 for alH € R+.

We have the following lemma:

LEMMA 2 . 1 . Assume that conditions (/i) and (Mi) hold. Then, any bounded
Palais-Smale sequence of I has a strongly convergent subsequence.
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PROOF: Let (un) be a bounded Palais-Smale sequence for / . Thus, passing to a
subsequence if necessary, we have

and there exists u 6 Wo
llP(ft) such that un ->• u weakly in Wo

llP(f2). From (/j), the
Lebesgue Dominated Convergence Theorem and the Sobolev Imbedding, we see that

/ f{x,un)u-+ I f{x,u)u and / J{x,un)%in^ [ f{x,u)u.
Jn Jn Jn Jn

Let us now consider the sequence

Pn = I'(un)un + I f(x,un)un - I'(un)u - / f(x,un)u.
Jn Jn

We have that Pn -*• 0 and

Pn =

Moreover, from (2.1), we get M(||un||
>>) -* M(tQ) and from the weak convergence,

we have

Hence,

Consequently,

Ml) + Pn= [^(IKII")]""1 f <|Vunr
2V«n - |Vur2VU, Vun - Vu).

Using the standard inequality in RN given by

(\xr2x - \y\"-2y, x-y)> Cp\x - y\" if p > 2

or

where (.,.) is the Euclidian inner product in RN (see appendix or [12]) and from (Mi),
we obtain

M l ) + Pn 7> mp
0-

lCp I \Vun - Vu|".
Jn

Thus, we conclude that \\un - u\\ -> 0 in W^iQ). D

Now, let us show a basic existence result as a motivation to our main theorem. Here,
we use the version due to Willem for the Mountain Pass Theorem (see [15, p. 12]).
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[5] Existence of solutions 267

LEMMA 2 . 2 . Let X be a Banach space, 7 € Cy(X,R) with 7(0) = 0. Suppose
that:

(#x) There exists a, r > 0 such that 7(u) ^ a > 0 for all u € X with \\u\\ = r

(/f2) There exists eeX such that \\e\\ > r and I(e) < 0.

Then there exists a sequence (un) C X such that

I(un) —>• c and / '(«„) —> 0 in X '

where
0 < c = inf max /(7ft))

and
r={ 7 €C( [0 , lU) : 7(0) = 0,7(1) = e}.

THEOREM 2 . 3 . Assume that (/1) and (Mi) hold. Furthermore, let us suppose
that

(f2) 0 < nF(x, t) < f(x, t)t for allt>0.

for some \i 6 R with p < \i < q. Then, if

(2.2) M(t) Z [M{t)]p~lt for all t> 0,

problem (P) has a positive solution.

P R O O F : Note that 7(0) = 0 and using the condition (2.2), we obtain

/(«) = -M(|H|") - I F(x,u)
P Jn

^MMdHHl^lHI"- f F(x,u).
Pl J Jn

From (/1) and (Mi), there exists r,a > 0 such that 7(u) > a > 0, for all u €
with ||u|| = r. From (/2), there exists u € Wo

llP(n) such that 7(u) < 0. By Lemma 2.2,
we find a Palais-Smale sequence (un) C WoltP(f2), for the functional 7. We claim that
such a sequence (un) is bounded in WQ'P(Q). Indeed, using (fa) and (2.2) again, we have

-J # ( t i B ) i i I ,

l|K||'' +jf [i/(*>UBK - F(i)Un)]

with C > 0. Hence, (un) is bounded in W0
1>p(n) and from lemma 2.1, there exists

u e ^"" ( f i ) such that 7(u) = cM > 0, where

cM = inf max 7(7(t)) and T = {7 € C([0,1]) : 7(0) = 0 and J(7(l)) < o}.
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Using u~ as a test function, the condition (/i) and the maximum principle, we obtain
u > 0. Thus, we conclude the proof of Theorem 2.3. D

REMARK 2.4. As we can see in [2], to the original meaning of M, in the Kirchhoff
equation

it should be an increasing function. Then

—• r
M(u) < / M(u)ds = M(u)u , for all u > 0

Jo
and therefore, condition (2.2) cannot be satisfied.

In what follows, we consider the existence of positive solutions of (P) where M may
be increasing. To this end, we first suppose that M is bounded. More precisely, we
assume that there exists mx ^ TOO and t0 > 0 such that

(2.3) M{t) = ml for all t > t0.

THEOREM 2 . 5 . Suppose that f satisfies (/i) and (/2). Assume, in addition, that
M is a function satisfying (Mi) and (2.3) with

o.V p

Then, problem (P) has a positive solution.

PROOF: We argue as in Theorem 2.3 to show the functional / has a nonzero critical
point. From (Mi) and (2.3), we see that

(2.5) M(t) Z ml~H for all* ^ 0

and

(2.6) M(t) < m f ** + m2 for all t ^ t0

where

= /
to IP"1

[M(s)\

Using standard arguments, we infer that / satisfies

for all u G Wo
lj)(ft), where here and elsewhere we may use the same letter C to indicate

(possibly different) positive constants. If ^ ^ 0 is a nonzero function, we get from (/2)
and (2.6) that

^ - t»C\\<f>\\» + C<0 (t > 0 large).
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[7] Existence of solutions 269

Thus, from Lemma 2.2, there exists a (PS)C sequence (un) C Wo
llP(£2) for / . We claim that

(un) is bounded in Wolj>(Q). Indeed, assume, by contradiction, that, up to a subsequence,
||"n|| -> +oo. Thus M(||un||) = mi, if n is large enough, and by (2.5) and {fa), we have

Using (2.4), we conclude that (un) is bounded in WQ'P{[1), which contradicts ||un||

-¥ +OO. D

Our goal is to extend Theorem 2.5 to a large class of M, including the increasing
linear functions. This is done by using truncation arguments and a priori estimates ob-
tained via relations between minimax levels CM and Co, related to functional Jo associated
to the problem

(Po) < ' rn\

that is,
u) = i [\VU\"--^T f F(x,u).

P Jn rn\ Jn

Next we prove a lemma that establishes a relation between the Wo
llP(fi) norm of the

solutions of problem (P) and M(||u||p).

LEMMA 2 . 6 . Let u be the solution of(P) obtained in Theorem 2.5. Then, there

exist C > 0 and 6 > 0 independent on M, such that

INK C and IHI" ^ M(|H|") 0.

PROOF: If ||u|| < t0, we choose C = t0. If ||u||p ^ t0, we have M (||u||p) = mi and

cM = I(u) - -I'{u)u > ( ^ - ^ ) Hull" + I \-f(x, U)u - F(x, u)].

By (/2) again

(2.7) cM > /(u) - i/'(u)u ^ ( ^ - ^ - ) ||n|r.

Moreover, by (2.3) and (2.6), for all u G Wl j )(n), we obtain

I(u) = -M(||u||p) - / F{x,u) ^ -m^WnW" - f F(x,u) + rT^
P Jn P Jn
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Thus, we conclude that

(2.8) CM^m
p

1-
lc0 + -^T.

By (2.7) and (2.8), we get

By (A)

W
Hence

where » = CC". D

THEOREM 2 . 7 . Suppose that f satisfies (/i)aud (/2). Assume, in addition, that
M satisfies (Mi) and there exists k > 0 such that

(M2) 1 ^

and

where & was given in Lemma 2.5. Tien, problem (P) has a positive solution.

PROOF: Let us define the truncated function

Then, the assumption (M2) imply that Mk satisfies (2.4) with mi = M(k). We can apply
Theorem 2.5 to obtain a solution u* > 0 of the truncated problem

u = 0 on dQ.

From Lemma 2.6, we know that

This implies that if ||u*||'' > A;, so

which contradicts (M3). Therefore, ||«*||J> < A, which shows that u* is, in fact, a positive
solution of the (nontrancated) problem (P). D
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3. C A S E CRITICAL/SUPERCRITICAL

First of all, we have to note that because f(x, t) + A|i|*~2£ has a supercritical growth
we can not use directly the variational techniques, by virtue of the lack of compactness
of the Sobolev immersions. So, we construct a suitable truncation of f(x, t) + A|£|*~2t in
order to use variational methods or, more precisely, the Mountain Pass Theorem. This
truncation was used by Rabinowitz [14] (see [3, 6]).

Let K > 0 be a real number, whose precise value will be fixed later, and consider
the function gK : Q x R —• R given by

{ 0 if i < 0
f(x,t) + Xf-1 if O^t^K
f(x,t) + XK'-n"-1 if t>K.

We study the truncated problem associated to gx

A ^ = gK(x, u) in ftf
1 u = 0 on 9fl.

Such a function enjoys the following conditions:

(9K,I) \gK(x,t)\ ^ (C + XK'-^t"-1

for all x e ft, for all t e R, where C > 0 and p<q<p* = (pN)/(N - p) and

{9K,2l 0 < fiGK{x, t) ^ gK(x, t)t,

/"'for all x 6 fi, for all t > 0 and where Gj?(z,t) = / </jf(z,£)df. Assuming (Mx)
Jo

— (M2) — (M3), by Theorem 2.7, we have a positive solution u\ of {T)\, such that
I\(u\) = c\, where c\ is the Mountain Pass level associated to the functional

JA(uA) = iM(|K||2) - f GK{x,ux)
P Jti

— /"'
which is related to the problem (T)A, where M(t) = / M(s)ds. Furthermore,

Jo

(3.1) h(ux) - h'x(ux)ux > p £ - ffil) ||UA||P
\-9K{X,UX)UX-GK{X,UX)].

To prove the main result of this section, we need the following estimate.

LEMMA 3 . 1 . Ifux is a solution (positive) of problem (T)x, then \\ux\\ ^ C hi all
A ̂  0, where C > 0 is a constant does not depend on A.
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272 J.S.A. Correa and G.M. Figueiredo [10]

PROOF: Since Gtc(x,t) ^ F(x,t) for all x e Q and for all t ^ 0, one has c\ ^ cM,
where CM is the Mountain Pass level related to the functional I. Furthermore

and from (3.1)

= h(ux)

fn [?
From (gK,2), we get

for all A ^ 0. Q

Next, we are going to use the Moser iteration method [11](see [3, 6]).

THEOREM 3 . 2 . Let us suppose that the function M satisfies (Mi)-(M2)-(M3)
and / satisfies (/1M/2). Tien there exists Ao > 0 such that problem (P)\ possesses a
positive solution for each A € [0, Ao].

PROOF: Let u\ be a solution of problem (T)\. We shall show that there is Ko such
that for all K > Ko there exists a corresponding Ao for which

I«A|L-(O) < K for all A € [0,A0].

This is the case one has gx(x, u\) = f(x, u\) + \\u\\'~l and so u\ is a solution of problem
(PA), for all A € [0, Ao].

For the sake of simplicity, we shall use the following notation:

For L > 0, let us define the following functions

u if u ^ L

•I L if u > L,

ZL — « i u and wi = uuf-1

where P > 1 will be fixed later. Let us use zL as a test function, that is,

[MOW)]""1 f |V«r2VuVzL = fgK(x,u)zL1 J Jn Jn
which implies

IMIT1 f t^ lVt i l ' = -P(0 - lJMflMlT1 / v>t\\Vu
Jn Jn

+ IgK{x,u)uu^-l).
Jn
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[11] Existence of solutions 273

Prom the definition of ut, we have

p(/3 - l)Af(||«||')p~1 / « f -3u|Vu|"-2VuVui, ^ 0
Jn

and using (gK,i) and (Mi), we have

that is,

(3.2) f uf-^Wul" < CA,* / u<itf-x\
Jn Jn

where CAi;R: = (C + \K-*)l/m$-1.
On the other hand, from the continuous Sobolev immersions, one gets

KIJ . < Ci f \VwL\" = Cx f\V{uup
L-l)\p.

Jn Jn

Consequently

\WL\P
P. < Cx f uf-^Vul" + CM - 1)" f uf-2)u"\VuL\"

Jn Jn

which gives

(3.3) K|£. ^ C2{F f u^-^Vul".
Jn

From (3.2) and (3.3), we get

Jn

and hence,

K g . < c2p'cx,K f u"-%uu{-lY = c2p>cx,K f u"-"wi.
Jn Jn

We now use Holder inequality, with exponents p*/[q — p] and p*/\p* - (q - p)], to obtain

U~p)/p' / r - , r . . .1 \ [p ' - (?-p) l /p-

where p < (pp*)/(p* - (q — p)) < p*- Considering the continuous Sobolev immersion
Wo

llP(fi) «-• L«(f2), p - 1 ^ g < p*, we obtain
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where a' = 79*I if - (« - P))-
Using Lemma 3.1

(3.5)

Since WL = uuf"1 < vP and supposing that vP € La'(Q), we have from (3.5) that

a \p/p' / r \p/<«*

luui-'rj ZCiPCxjc^vP*') <+oo.
We now apply Fatou's lemma to the variable L to obtain

\fp.\u\fp.
and so

(3.6) M* . =

Furthermore, by considering \ = P*/«*» we have p* = x«* and fixa* = PP''. f°r all y9 > 1
so that u^ e La*(fi). Let us consider two cases:

F I R S T CASE. First we consider P = p*/a* and note that

up G I°*(n).

Hence, from the Sobolev immersions, Lemma 3.1 and relation (3.6), we get

and so

(3.7) lul^o. < Ct(CiCuc)1'*>x
l/x

SECOND CASE. We now consider 0 = (p*/a*)2, and note again that

vP 6 La'(Q).

From inequality in (3.6) we obtain,

which implies

or,
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[13] Existence of solutions 275

An iterative process leads to

Taking limit as m -¥ oo, we obtain

|t*|i-(n> ^ C6(CiCx,K)aix''2C.

oo oo

where o\ = X ) ( X ~ * ) / P
 a Qd 02 = $Z *X~*- IQ order to choose Ao, we consider the inequality

8V'-/4*-'A,7f; X *̂  — O j m H - A A 'J——

from which

Choosing Ao to satisfy the inequality

Ao s

and fixing K such that

we obtain

|«AIL«(O)< K V A 6 [ 0 , A O ] .

and the proof of the theorem is over. 0

APPENDIX

LEMMA 3 . 3 . Let x, y e RN and let (.,.) be the standard inner product in RN.

Then

(\x\"-2x - \yr2y, x-y)* Cp\x - y\" ifp > 2

or

\x- y)
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PROOF: By homogeneity we can assume that \x\ = 1 and \y\ ^ 1. Moreover by
choosing a convenient basis in RN we can assume

x = (1 ,0 ,0 , . . . , 0 ) , y = (j/i,y2,0,...,0) and^/y? + y\ ^ 1.

(i) Case 2 > p > 1. It is clear that the inequality is equivalent to the next one

W (tf + v$)w)y Vl)

But
1 Vl >x

or
1 - . y i >i-n> (P- i ) ( i - y i ) if in < 0,

then

(ii) Case p ^ 2. The inequality is equivalent to prove

- in)
r

Denoting t = \y\/\x\ and 5 = (x,y)/(\x\\y\) then, we must show that the function

is bounded from below. Direct calculation shows that fixed t, -£- = 0 if
as

1 - (f~x + t)s + tp = tP 2 + 1 ( l - 2to +12),
P

we have
2 + 1 ^ 1

P om"i (t + 1)P-2 ^ 2p'

which concludes the proof of lemma. D
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