ON AN ELLIPTIC EQUATION WITH CONCAVE AND CONVEX NONLINEARITIES

THOMAS BARTSCH AND MICHEL WILLEM

(Communicated by Jeffrey B. Rauch)

ABSTRACT. We study the semilinear elliptic equation $-\Delta u = \lambda |u|^{q-2}u + \mu |u|^{p-2}u$ in an open bounded domain $\Omega \subset \mathbb{R}^N$ with Dirichlet boundary conditions; here $1 < q < 2 < p < 2^*$. Using variational methods we show that for $\lambda > 0$ and $\mu \in \mathbb{R}$ arbitrary there exists a sequence (v_k) of solutions with negative energy converging to 0 as $k \to \infty$. Moreover, for $\mu > 0$ and λ arbitrary there exists a sequence of solutions with unbounded energy. This answers a question of Ambrosetti, Brézis and Cerami. The main ingredient is a new critical point theorem, which guarantees the existence of infinitely many critical values of an even functional in a bounded range. We can also treat strongly indefinite functionals and obtain similar results for first-order Hamiltonian systems.

1. INTRODUCTION

We consider the semilinear elliptic problem

(1)
$$\begin{aligned} -\Delta u &= \lambda |u|^{q-2} u + \mu |u|^{p-2} u \quad \text{in } \Omega, \\ u &= 0 \qquad \qquad \text{on } \partial \Omega, \end{aligned}$$

where $\Omega \subset \mathbb{R}^N$ is an open bounded domain with smooth boundary and $1 < q < 2 < p < 2^* := 2N/(N-2)$; we set $2^* = \infty$ if N = 1, 2. In [1] Ambrosetti et al. showed that for $\lambda > 0$ small and $\mu > 0$ there exist infinitely many solutions $u \in H_0^1(\Omega)$ of (1) with negative energy

$$\phi_{\lambda,\mu}(u) := \frac{1}{2} \int_{\Omega} |\nabla u|^2 \, dx - \frac{\lambda}{q} \int_{\Omega} |u|^q \, dx - \frac{\mu}{p} \int_{\Omega} |u|^p \, dx$$

and infinitely many solutions with positive energy. The goal of this note is to show that the restriction on λ is not needed. In fact, we shall prove the following theorem which gives a positive answer to problem (c) of [1].

Theorem 1. Assume that $1 < q < 2 < p < 2^*$.

(a) For every $\mu > 0$, $\lambda \in \mathbb{R}$, problem (1) has a sequence of solutions (u_k) such that $\phi_{\lambda,\mu}(u_k) \to \infty$ as $k \to \infty$.

©1995 American Mathematical Society

Received by the editors April 21, 1994.

¹⁹⁹¹ Mathematics Subject Classification. Primary 58E05; Secondary 34C25, 35J25.

The first author thanks the members of the Départment de Mathématique of the Université Catholique de Louvain for their invitation and hospitality.

(b) For every $\lambda > 0$, $\mu \in \mathbb{R}$, problem (1) has a sequence of solutions (v_k) such that $\phi_{\lambda,\mu}(v_k) < 0$ and $\phi_{\lambda,\mu}(v_k) \to 0$ as $k \to \infty$.

We do not know whether $v_k \to 0$ as $k \to \infty$. This is the case if 0 is the only solution of (1) with energy 0. However, the following holds.

Proposition 1. (a) For $\lambda \in \mathbb{R}$ and $\mu \leq 0$ there are no solutions with positive energy. Moreover

 $\inf\{||u||: u \text{ solves } (1), \phi_{\lambda,\mu}(u) > 0\} \to \infty \quad as \ \mu \to 0^+.$

(b) For $\mu \in \mathbb{R}$ and $\lambda \leq 0$ there are no solutions with negative energy. Moreover

 $\sup\{\|u\|: u \text{ solves } (1), \phi_{\lambda,\mu}(u) \leq 0\} \to 0 \quad as \ \lambda \to 0^+.$

Theorem 1 remains true if the special nonlinearity in (1) is replaced by an odd function f(x, u) which behaves near 0 asymptotically (and uniformly in x) like $\lambda |u|^{q-2}u$, $\lambda \neq 0$, and which is superquadratic and subcritical near infinity. In [1] and [7] the existence of solutions with negative energy has also been proved in the critical case $p = 2^*$ provided $\lambda > 0$ is small enough. It is not clear whether this remains true for large λ because the local Palais-Smale condition (PS)_c fails for large λ even if c < 0; see [7] for a discussion of this.

Whereas the first statement of Theorem 1 can be proved using well-known critical point theorems for even functionals (cf. [2, 3, 8]), we shall need a new critical point theorem in order to obtain the sequence (v_k) . Since it does not require more effort, we shall treat more general symmetries than the $\mathbb{Z}/2$ -symmetry in our abstract result and we allow the functional to be strongly indefinite. This allows us to apply our critical point theorem also to first-order Hamiltonian systems having a similar type of nonlinearity.

2. The abstract critical point theorem

Let X be a Banach space and $\varphi \in C^1(X, \mathbb{R})$. We are interested in multiple critical points of φ . For this we need a symmetry condition on φ which contains even functionals as a special case. In order to formulate this we have to recall a certain class of admissible representations. Let G be a compact Lie group and V a finite-dimensional orthogonal representation of G. Then V is said to be admissible if the following Borsuk-Ulam type condition holds.

(*) Every continuous equivariant map $h: \overline{\mathcal{O}} \to V^k$ where \mathcal{O} is an open, bounded and invariant neighbourhood of 0 in V^{k+1} , $k \ge 1$, has a zero in $\partial \mathcal{O}$.

Here \mathscr{O} is invariant if $gv := (gv_1, \ldots, gv_{k+1}) \in \mathscr{O}$ for every $g \in G$ and $v = (v_1, \ldots, v_{k+1}) \in \mathscr{O}$. The map h is equivariant if h(gv) = gh(v). The classical theorem of Borsuk says that $V = \mathbb{R}$ with the antipodal representation of $G = \mathbb{Z}/2$ is admissible. Admissible representations can be classified completely using an algebraic criterion (see [4, Theorem 3.7]). From the results of [4] it also follows that admissible representations are precisely those which have the "dimension property" used by Benci [6].

It is clear that an admissible representation V cannot have nontrivial fixed points, that is,

$$V^G := \{v \in V : gv = v \text{ for all } g \in G\} = \{0\}.$$

We can now state our conditions on ϕ .

(A₁) There exists an admissible representation V of G such that $X = \bigoplus_{j \in I} X(j)$ with $I = \mathbb{N}$ or $I = \mathbb{Z}$ and $X(j) \cong V$ for every $j \in I$. The space X is then a Banach space with isometric linear G-action. The functional $\phi: X \to \mathbb{R}$ is invariant under this action: $\phi(gu) = \phi(u)$ for $g \in G$ and $u \in X$.

(A₂) For every $k \ge k_0$ there exists $R_k > 0$ such that $\phi(u) \ge 0$ for every $u \in X_k := \bigoplus_{j>k} X(j)$ with $||u|| = R_k$.

(A₃) $b_k := \inf_{u \in B_k} \varphi(u) \to 0$ as $k \to \infty$. Here $B_k := \{u \in X_k : ||u|| \le R_k\}$.

(A₄) For every $k \ge 1$ there exists $r_k \in (0, R_k)$ and $d_k < 0$ such that $\phi(u) \le d_k$ for every $u \in X^k := \bigoplus_{j \le k} X(j)$ with $||u|| = r_k$.

(A₅) Every sequence $u_n \in X_{-n}^n := \bigoplus_{j=-n}^n X(j)$ with $\phi(u_n) < 0$ bounded and $(\phi | X_{-n}^n)'(u_n) \to 0$ as $n \to \infty$ has a subsequence which converges to a critical point of ϕ .

Observe that (A₃) and (A₄) imply $b_k \le d_k < 0$.

Theorem 2. If $\phi \in C^1(X, \mathbb{R})$ satisfies $(A_1)-(A_5)$, then for each $k \ge k_0$, φ has a critical value $c_k \in [b_k, d_k]$, hence $c_k \to 0$ as $k \to \infty$.

Proof. We fix $n \ge k \ge k_0$ and define an almost critical value c_k^n as follows. Setting

$$X_k^n := \bigoplus_{j=k}^n X(j)$$

and

$$B_k^n := \{u \in X_k^n \colon ||u|| \le R_k\}$$

we define

 $\Gamma_k^n := \{ \gamma \in \mathscr{C}(B_k^n, X_{-n}^n) : \gamma \text{ is equivariant }, \ \gamma(u) = u \text{ if } \|u\| = R_k \}$

and

$$c_k^n := \sup_{\gamma \in \Gamma_k^n} \min_{u \in B_k^n} \phi(\gamma(u)).$$

We shall show that $b_k \leq c_k^n \leq d_k < 0$ for every $n \geq k$. By the quantitative deformation lemma (see [10]) c_k^n is an almost critical value of $\phi | X_{-n}^n$, that is, there exists a sequence $u_i \in X_{-n}^n$ with $\phi(u_i) \to c_k^n$ and $(\phi | X_{-n}^n)'(u_i) \to 0$ as $i \to \infty$. Using (A₅) we see that c_k^n converges along a subsequence to a critical value $c_k \in [b_k, d_k]$ as $n \to \infty$.

It remains to prove $c_k^n \in [b_k, d_k]$ for every $n \ge k$. The inequality $c_k^n \ge b_k$ is obvious from the definitions. In order to see $c_k^n \le d_k$ it suffices to show that for every $\gamma \in \Gamma_k^n$ there exists $u \in B_k^n$ satisfying $\gamma(u) \in X^k$ and $\|\gamma(u)\| = r_k$. Given $\gamma \in \Gamma_k^n$ we set

$$\mathscr{O} := \{ u \in B_k^n \colon \|\gamma(u)\| < r_k \}.$$

The equivariance of γ implies $\gamma(0) = 0$ because 0 is the only fixed point of the action. Therefore \mathscr{O} is an open invariant neighbourhood of 0 and $\overline{\mathscr{O}} \subset \operatorname{int} B_k^n$. Let $P: X_{-n}^n \to X_{k+1}^n$ be the projection along X_{-n}^k and set $h := P \circ \gamma : \overline{\mathscr{O}} \to X_{k+1}^n$. Since $X_k^n \cong V^{n-k+1}$ and $X_{k+1}^n \cong V^{n-k}$, the admissibility of V gives us a point $u \in \partial \mathscr{O}$ with h(u) = 0. Clearly this implies $\|\gamma(u)\| = r_k$ and $\gamma(u) \in X_{-n}^k \subset X^k$ as required. \Box *Remark.* Theorem 2 can be considered as a dual version of Theorem 2.5 of [3] or Theorem 3.1 of [5].

3. Proofs

Proof of Theorem 1. We first prove the existence of (v_k) and assume $\lambda > 0$. We set $X := H_0^1(\Omega)$ with

$$\|u\| := \left(\int_{\Omega} |\nabla u|^2 \, dx\right)^{1/2}$$

Let (e_j) be any orthonormal base of X and set $X(j) := \operatorname{span}(e_j)$. The functional

$$\phi(u) := \frac{1}{2} \|u\|^2 - \frac{\lambda}{q} \int_{\Omega} |u|^q dx - \frac{\mu}{p} \int_{\Omega} |u|^p dx$$
$$= \frac{1}{2} \|u\|^2 - \frac{\lambda}{q} \|u\|_q^q - \frac{\mu}{p} \|u\|_p^p$$

is well defined on X for $1 < q < 2 < p < 2^*$. Since ϕ is even, assumption (A₁) is obviously satisfied with $G = \mathbb{Z}/2$ acting on $V = \mathbb{R}$ via the antipodal map.

In order to see (A_2) we set

$$\mu_k := \sup_{u \in X_k - 0} \|u\|_q / \|u\|.$$

It follows easily from the Rellich embedding theorem that $\mu_k \to 0$ as $k \to \infty$. Choose $c_1 > 0$ such that $||u||_p^p \le c_1 ||u||^p$. We obtain for $u \in X_k$

$$\phi(u) \geq \frac{1}{2} \|u\|^2 - \frac{\lambda}{q} \mu_k^q \|u\|^q - |\mu| \frac{c_1}{p} \|u\|^p.$$

Since p > 2, we have

$$\|\mu\|\frac{c_1}{p}\|u\|^p \le \frac{1}{4}\|u\|^2$$

for $||u|| \le R$, R > 0 small. Now we set $R_k := (4\lambda \mu_k^q/q)^{1/(2-q)}$ so that

$$\frac{1}{4}R_k^2 = \frac{\lambda}{q}\mu_k^q R_k^q.$$

Clearly $R_k \to 0$, so there exists k_0 with $R_k \leq R$ when $k \geq k_0$. Thus if $u \in X_k$, $k \geq k_0$, satisfies $||u|| = R_k$ we have

$$\phi(u) \geq \frac{1}{4} \|u\|^2 - \frac{\lambda}{q} \mu_k^q \|u\|^q = 0.$$

This proves (A_2) . Next (A_3) follows immediately from $R_k \to 0$. Also (A_4) is evident because X^k is finite dimensional, hence all norms on X^k are equivalent. Therefore the term $\frac{-\lambda}{q} ||u||_q^q$ dominates near 0. This is precisely the point where $\lambda > 0$ enters. Finally, the Palais-Smale condition (A_5) can be shown as in [8] or [10].

The existence of the sequence (u_k) follows from the symmetric mountain pass theorem of [2, 8] or the fountain theorem of [3, 10]. \Box

Proof of Proposition 1. (a) Fix $\lambda, \mu \in \mathbb{R}$. From $\phi'_{\lambda,\mu}(u) = 0$ and $\phi_{\lambda,\mu}(u) \ge 0$ one obtains easily

$$\left(\frac{1}{2}-\frac{1}{q}\right)\|u\|^2+\left(\frac{1}{q}-\frac{1}{p}\right)\mu\|u\|_p^p\geq 0.$$

Since 1 < q < 2 < p, we see immediately that for $\mu \le 0$ only u = 0 is a solution with nonnegative energy. If $\mu > 0$, then there are positive constants c_1, c_2 with

$$-c_1 \|u\|^2 + \mu c_2 \|u\|^p \ge 0$$

hence

 $||u||^{p-2} \ge \mu^{-1}c_1/c_2 \to \infty$ as $\mu \to 0^+$.

(b) Similarly, from $\phi'_{\lambda,\mu}(v) = 0$ and $\phi_{\lambda,\mu}(v) \le 0$ one obtains

$$\left(\frac{1}{2}-\frac{1}{p}\right)\|u\|^2+\left(\frac{1}{p}-\frac{1}{q}\right)\lambda\|u\|_q^q\leq 0.$$

This implies that for $\lambda \le 0$ only u = 0 is a solution with nonpositive energy. For $\lambda > 0$ there are positive constants c_3 , c_4 with

$$c_3 \|u\|^2 - \lambda c_4 \|u\|^q \le 0$$

hence

$$||u||^{2-q} \leq \lambda c_4/c_3 \to 0 \text{ as } \lambda \to 0^+. \square$$

4. HAMILTONIAN SYSTEMS

We consider the Hamiltonian system with periodic conditions

(2)
$$\begin{aligned} \dot{u}(t) &= J \nabla H_{\lambda, \mu}(u(t)) \\ u(0) &= u(1) , \end{aligned}$$

where $H_{\lambda,\mu}$ is defined on \mathbb{R}^2 by

$$H_{\lambda,\mu}(u) := \frac{\lambda}{q} |u|^q + \frac{\mu}{p} |u|^p$$

and $1 < q < 2 < p < \infty$. We denote by J the symplectic matrix $\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$. Following the Poincaré principle, the solutions of (2) are the critical points of the functional

$$\phi_{\lambda,\mu}(u) := \frac{1}{2} \langle \dot{u}, Ju \rangle - \int_{\mathbb{T}} H_{\lambda,\mu}(u(t)) du$$

defined on the Sobolev space $X := H^{1/2}(\mathbb{T}, \mathbb{R}^2)$, where $\mathbb{T} := \mathbb{R}/\mathbb{Z}$. The bracket is the duality bracket between $H^{-1/2}(\mathbb{T}, \mathbb{R}^2)$ and X.

Theorem 3. Assume that $1 < q < 2 < p < \infty$.

(a) For every $\mu > 0$, $\lambda \in \mathbb{R}$, problem (2) has a sequence of solutions (u_k) such that $\phi_{\lambda,\mu}(u_k) \to \infty$ as $k \to \infty$.

(b) For every $\lambda > 0$, $\mu \in \mathbb{R}$, problem (2) has a sequence of solutions (v_k) such that $\phi_{\lambda,\mu}(v_k) < 0$ and $\phi_{\lambda,\mu}(v_k) \to 0$ as $k \to \infty$.

Proof. Part (a) is a particular case of Theorem 4.1 in [5]. We prove part (b) by using Theorem 2. We assume $\lambda > 0$ and set $X(j) := \operatorname{span}(e^{2\pi j t J} \cdot \begin{pmatrix} 1 \\ 0 \end{pmatrix})$. Each function $u \in X$ has a Fourier expansion

$$u \sim \sum_{j \in \mathbb{Z}} e^{2\pi j t J} \hat{u}(j)$$

and

$$\sum_{j\in\mathbb{Z}}|j|\cdot|\hat{u}(j)|^2<\infty.$$

On X we choose the inner product

$$(u, v) := 2\pi \sum_{j \in \mathbb{Z}} |j| \cdot \hat{u}(j)\overline{\hat{v}(j)} + \hat{u}(0)\overline{\hat{v}(0)}$$

and the corresponding norm $||u|| := \sqrt{(u, u)}$. On each X(j) we consider the antipodal action of $\mathbb{Z}/2$ so that (A_1) is satisfied.

It is easy to verify (A_2) and (A_3) as in the proof of Theorem 1. To prove (A_4) , we use the orthogonal decomposition $X = X^+ \oplus X^0 \oplus X^-$ which refers to the subspaces with $j \ge 1$, j = 0, $j \le -1$ respectively. On X^k , we have for ||u|| small enough

$$\begin{split} \phi(u) &\leq \frac{1}{2} \|u^{+}\|^{2} - \frac{1}{2} \|u^{-}\|^{2} - \frac{\lambda}{q} \|u\|_{q}^{q} + \frac{|\mu|}{p} \|u\|_{p}^{p} \\ &\leq \frac{1}{2} c \|u^{+}\|_{q}^{2} - \frac{1}{2} \|u^{-}\|^{2} - \frac{\lambda}{2q} \|u\|_{q}^{q}. \end{split}$$

We have used the fact that $X^k \cap X^+$ is finite dimensional.

Since $||u^+||_q \le c_1 ||u||_q$ on $X^k \cap X^+$ and since q < 2, we obtain finally for ||u|| small enough,

$$\phi(u) \le c_2 \|u\|_q^2 - \frac{1}{2} \|u^-\|^2 - \frac{\lambda}{2q} \|u\|_q^q$$
$$\le -\frac{1}{2} \|u^-\|^2 - c_3 \|u\|_q^q$$

where $c_3 > 0$. We choose $r_k \in (0, R_k)$ small enough so that the above inequality applies for $||u|| = r_k$. Then, if $||u|| = r_k$ and $||u^-|| \ge r_k/4$, we have

$$\phi(u) \leq -r_k^2/32.$$

If $||u|| = r_k$ and $||u^-|| \le r_k/4$, we have

$$\phi(u) \leq -c_3(\|u^+ + u^0\|_q - \|u^-\|_q)^q \leq -c_3(r_k/2)^q.$$

Hence assumption (A_4) is satisfied.

If $\mu \neq 0$, the proof of the Palais-Smale condition can be found in [10]. If $\mu = 0$, the argument is similar. \Box

Remark. Theorem 3 remains true if we consider the Hamiltonian

$$H_{\lambda,\mu}(u) = a(t) \left(\frac{\lambda}{q}\mu|u|^{q} + \frac{\mu}{p}|u|^{p}\right)$$

where $a \in \mathscr{C}(\mathbb{T}, \mathbb{R})$ is positive.

ACKNOWLEDGMENT

The existence of a sequence of positive critical values of $\phi_{\lambda,\mu}$ in Theorem 1 was mentioned to us by Miguel Ramos.

3560

AN ELLIPTIC EQUATION

References

- 1. A. Ambrosetti, H.Brézis, and G. Cerami, Combined effects of concave and convex nonlinearities in some elliptic problems, J. Funct. Anal. 122 (1994), 519-543.
- 2. A. Ambrosetti and P. H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal. 14 (1973), 349-381.
- 3. T. Bartsch, Infinitely many solutions of a symmetric Dirichlet problem, Nonlinear Anal. T.M.A. 20 (1993), 1205-1216.
- 4. ____, Topological methods for variational problems with symmetries, Lecture Notes in Math., vol. 1560, Springer, Berlin and Heidelberg, 1993.
- 5. T. Bartsch and M. Willem, Periodic solutions of non-autonomous Hamiltonian systems with symmetries, J. Reine Angew. Math. 451 (1994), 149-159.
- 6. V. Benci, On critical point theory for indefinite functionals in the presence of symmetries, Trans. Amer. Math. Soc. 274 (1982), 533-572.
- 7. J. Garcia Azorero and I. Peral Alonso, Multiplicity of solutions for elliptic problems with critical exponent or with a nonsymmetric term, Trans. Amer. Math. Soc. 323 (1991), 877-895.
- 8. P. H. Rabinowitz, Minimax methods in critical point theory with applications to differential equations, CBMS Regional Conf. Ser. in Math., vol. 65, Amer. Math. Soc., Providence, RI, 1986.
- 9. M. Willem, *Lectures in critical point theory*, Trabalho de Mat. 199, Fundaçao Univ. Brasilia, Brasilia, 1983.
- 10. ____, Un lemme de déformation quantitatif en calcul des variations, Recherches Mathématiques 19, Université Catholique de Louvain, Louvain-la-Neuve, 1992.

Mathematisches Institut, Universität Heidelberg, Im Neuenheimer Feld 288, 69120 Heidelberg, Germany

E-mail address: bartsch@harmless.mathi.uni-heidelberg.de

INSTITUT DE MATHÉMATIQUE PURE ET APPLIQUÉE, UNIVERSITÉ CATHOLIQUE DE LOUVAIN, CHEMIN DU CYCLOTRON 2, 1348 LOUVAIN-LA-NEUVE, BELGIUM *E-mail address*: willem@amm.ucl.ac.be