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Abstract. We study the semilinear elliptic equation -Au=X\u\q~2u+ß\u\p~2u

in an open bounded domain Í2 c IR^ with Dirichlet boundary conditions; here

l<q<2<p<2*. Using variational methods we show that for X > 0 and

/lEl arbitrary there exists a sequence (vk) of solutions with negative energy

converging to 0 as k —> oo . Moreover, for fi > 0 and X arbitrary there exists

a sequence of solutions with unbounded energy. This answers a question of

Ambrosetti, Brézis and Cerami. The main ingredient is a new critical point

theorem, which guarantees the existence of infinitely many critical values of

an even functional in a bounded range. We can also treat strongly indefinite

functionals and obtain similar results for first-order Hamiltonian systems.

1. Introduction

We consider the semilinear elliptic problem

-Au = k\u\q~2u + p\u\p~2u   in Q,

u — 0 onöQ,

where Q c M.N is an open bounded domain with smooth boundary and 1 < q <

2 < p < 2* := 2N/(N - 2) ; we set 2* = oo if N = 1, 2. In [1] Ambrosetti et
al. showed that for X > 0 small and p > 0 there exist infinitely many solutions
u e H¿(Cl) of (1) with negative energy

h. (u) ■= I / |Vu\2 dx - - ( \u\q dx - £ [ \u\p dx
2 Ja q Jo. P Jtî

and infinitely many solutions with positive energy. The goal of this note is

to show that the restriction on k is not needed. In fact, we shall prove the
following theorem which gives a positive answer to problem (c) of [1].

Theorem 1. Assume that \<q<2<p<2*.
(a) For every p > 0, X e R, problem (1) has a sequence of solutions (uk)

such that 4>x,n(uk) —> °° as k —► oo.
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(b) For every X > 0, p e R, problem (1) has a sequence of solutions (vk)

such that <j>xifi(vk) < 0 and <j>x!fl(vk) -» 0 as k —> oo.

We do not know whether vk —> 0 as k —> oo . This is the case if 0 is the only

solution of ( 1 ) with energy 0. However, the following holds.

Proposition 1. (a) For X e R and p < 0 there are no solutions with positive

energy. Moreover

inf{||«||: u solves (1), <j>x,^(u) > 0} —> oo   as p —► 0+.

(b) For p e R and X < 0 there are no solutions with negative energy. More-

over

sup{||m||: u solves (1), <f)x,ß(u) < 0} —> 0   as A -> 0+.

Theorem 1 remains true if the special nonlinearity in ( 1 ) is replaced by an

odd function f(x, u) which behaves near 0 asymptotically (and uniformly in

x) like X\u\q~2u, X / 0, and which is superquadratic and subcritical near
infinity. In [1] and [7] the existence of solutions with negative energy has also

been proved in the critical case p = 2* provided X > 0 is small enough. It is
not clear whether this remains true for large X because the local Palais-Smale

condition (PS)C fails for large X even if c < 0 ; see [7] for a discussion of this.

Whereas the first statement of Theorem 1 can be proved using well-known

critical point theorems for even functionals (cf. [2, 3, 8]), we shall need a new
critical point theorem in order to obtain the sequence (vk). Since it does

not require more effort, we shall treat more general symmetries than the Z/2-

symmetry in our abstract result and we allow the functional to be strongly in-

definite. This allows us to apply our critical point theorem also to first-order

Hamiltonian systems having a similar type of nonlinearity.

2. The abstract critical point theorem

Let X be a Banach space and <p e CX(X, K). We are interested in multiple

critical points of (p. For this we need a symmetry condition on <p which

contains even functionals as a special case. In order to formulate this we have

to recall a certain class of admissible representations. Let G be a compact Lie

group and V a finite-dimensional orthogonal representation of G. Then V is

said to be admissible if the following Borsuk-Ulam type condition holds.

Every continuous equivariant map h: cf —> Vk where cf is an

(*)        open, bounded and invariant neighbourhood of 0 in Vk+X, k >

1, has a zero in dcf.

Here cf is invariant if gv :- (gvx, ... , gvk+x) e cf for every g e G and

v = (vx, ... , vk+x) e cf. The map h is equivariant if h(gv) = gh(v). The

classical theorem of Borsuk says that V - R with the antipodal representation

of G = Z/2 is admissible. Admissible representations can be classified com-

pletely using an algebraic criterion (see [4, Theorem 3.7]). From the results of
[4] it also follows that admissible representations are precisely those which have

the "dimension property" used by Benci [6].

It is clear that an admissible representation V cannot have nontrivial fixed

points, that is,

VG := {v e V: gv = v for all g e G} = {0}.
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We can now state our conditions on <fi.

(Ax) There exists an admissible representation F of G such that X =

0;6/ X(j) with / = N or / = Z and X(j) = V for every ; e /. The

space X is then a Banach space with isometric linear G-action. The functional

<j>: X —> R is invariant under this action: <f>(gu) = 4>(u) for g e G and ueX.

(A2) For every k > ko there exists Rk > 0 such that (p(u) > 0 for every

« G Xk := ®j>kX(j) with 11*11 = **.
(A3)   bk := infu6Sj: p(w) ->0 as A: -> oo. Here Bk := {u e Xk : ||m|| < Rk}.

(A4) For every k > 1 there exists rk e (0, Rk) and dk < 0 such that

<rH«) < ¿4 for every u e Xk := ®;<fe A^y-) with ||w|| = r* .

(A5) Every sequence u„ e X0_n := ®"=_„ X(j) with 4>(un) < 0 bounded

and (4>\X"n)'(un) -» 0 as « —> oo has a subsequence which converges to a

critical point of </>.
Observe that (A3) and (A4) imply bk < dk < 0.

Theorem 2. If <f> e CX(X, R) satisfies (Ai)-(A5), then for each k>ko,<p has
a critical value ck e[bk , dk], hence c^-»0 as k -> 00.

Proof. We fix n > k > ko and define an almost critical value c£ as follows.

Setting

X"k:=éXU)
j=k

and

B"k:={ueX»k:\\u\\<Rk}

we define

T£ •- {y e ^(Bnk , Xln): y is equivariant, y(u) = uif \\u\\ = Rk)

and

ck := sup min <f>(y(u)).

We shall show that bk < ck < dk < 0 for every n > k. By the quantitative

deformation lemma (see [10]) ck is an almost critical value of (f>\X1n , that is,

there exists a sequence u¡ e X"n with (j)(u¡) -> ck and ((j)\X"n)'(Uj) -> 0 as

!-+oo. Using (A5) we see that ck converges along a subsequence to a critical

value ck e [bk, dk] as n —> 00.

It remains to prove ck e [bk , dk] for every n > k . The inequality ck > bk

is obvious from the definitions. In order to see ck < dk it suffices to show that

for every y eTnk there exists u e B£ satisfying y(u) e Xk and ||y(«)|| = rk .

Given y e Tk we set

cf:={ueB"k:\\y(u)\\<rk}.

The equivariance of y implies y(0) = 0 because 0 is the only fixed point of the

action. Therefore cf is an open invariant neighbourhood of 0 and cf c int B£ .

Let P: Xn_n -> X£+] be the projection along Xk_n and set h := Poy: cf -+ X£+x .

Since XI = F"-*:+1 and X£+l = Vn~k , the admissibility of V gives us a point

uedcf with /z(m) = 0. Clearly this implies \\y(u)\\ = rk and y(u) e Xkn c Xk

as required.   D
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Remark. Theorem 2 can be considered as a dual version of Theorem 2.5 of [3]

or Theorem 3.1 of [5].

3. Proofs

Proof of Theorem 1. We first prove the existence of (vk) and assume X > 0.

We set X :=H¿ (Í2) with

||«||:=Qi|VM|2rfx)     .

Let (ef) be any orthonormal base of X and set X(j) := span(ey). The func-

tional

0(«) := i||M||2 - - / \u\qdx - ^ f \u\p dx
2 q Ja P Ja

= \\\u\\2--q\\u\\qq-^\\u\\pp

is well defined on I for 1 < q < 2 < p < 2*. Since <f> is even, assumption

(Ai) is obviously satisfied with G = Z/2 acting on V — R via the antipodal

map.

In order to see (A2) we set

pk :=   sup   IMU/IMI.
uexk-o

It follows easily from the Rellich embedding theorem that pk -* 0 as k —> oo .

Choose cx > 0 such that ||u||p < ci||m||p. We obtain for u e Xk

ln..n2 _^..qn.Jng       ,..,C1
</>(u)>j\\u\\¿--4\\ur-\fi\-^\\u\

z. (j p

Since p > 2, we have

M-IMr<!lMI21   ' p - 4     '

for ¡Im|| < R, R > 0 small. Now we set Rk := (4Xpqk/q)x^2-q^ so that

\*l = -qplK-
Clearly Rk -» 0, so there exists /co with Rk < R when k > ko. Thus if
« € Affc , Ac > ko , satisfies ||w|| = Rk we have

^(")>4lNI2-^ll"lli = °-

This proves (A2). Next (A3) follows immediately from Rk ->0. Also (A4) is

evident because Xk is finite dimensional, hence all norms on Xk are equiva-

lent. Therefore the term ^ ||m||| dominates near 0. This is precisely the point

where X > 0 enters. Finally, the Palais-Smale condition (A5) can be shown as

in [8] or [10].
The existence of the sequence (uk) follows from the symmetric mountain

pass theorem of [2, 8] or the fountain theorem of [3, 10].   D

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



AN ELLIPTIC EQUATION 3559

Proof of Proposition 1. (a) Fix X, p e R. From <f>'x   (u) = 0 and (px,ß(u) > 0

one obtains easily

(i-;)M2+(r;)""*i0-
Since 1 < q < 2 < p, we see immediately that for p < 0 only u - 0 is a

solution with nonnegative energy. If p > 0, then there are positive constants

cx, c2 with
-Ci||m||2 + ^c2||m||/' > 0,

hence
IMIP~2 > P~lcx/c2 —> oo   as ¿u —> 0+.

(b) Similarly, from <%   (i>) = 0 and 4>x,ß(v) < 0 one obtains

(H) Mr"+(£-;) l* * a
This implies that for X < 0 only « = 0 is a solution with nonpositive energy.

For X > 0 there are positive constants C3, C4 with

C3||m||2 - Ac4||m||9 < 0,

hence

||w||2~9 < Aq/c3 ^0   as X - 041+

4. Hamiltonian systems

We consider the Hamiltonian system with periodic conditions

, U(t) = JVHx>li(u(t)),

U «(0) = m(1),

where Hx ß is defined on E2 by

Hx>M(u) := -\u\« + £\u\»

and 1 <<7<2</?<oc. We denote by / the symplectic matrix (, ~0X ).
Following the Poincaré principle, the solutions of (2) are the critical points of

the functional

<t>>.,ß(u):= ̂(ù, Ju)- j H^M(u(t))dt

defined on the Sobolev space X := HX/2(T, R2), where T := R/Z. The bracket

is the duality bracket between //_1/2(T, R2) and X .

Theorem 3. Assume that 1 < q <2 < p <oo.

(a) For every p > 0, X e R, problem (2) has a sequence of solutions (uk)

such that <j>x,ß(uk) —*■ 00 as k -* 00.

(b) For every X > 0, p e R, problem (2) has a sequence of solutions (vk)

such that (ßx,ß(vk) < 0 and (¡>x,ß(vk) —* 0 as k -» 00.

Proof. Part (a) is a particular case of Theorem 4.1 in [5]. We prove part (b) by

using Theorem 2. We assume X > 0 and set X(j) := span(e2^'y • (¿)). Each

function u e X has a Fourier expansion
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and

Y,\J\-\û(j)\2<oo.
;'ez

On X we choose the inner product

(u, v) := 2n £ \j\ ■ û(j)Hj) + û(0)ë(0)
j€Z

and the corresponding norm ||w|| :— y/(u, u). On each X(j) we consider the

antipodal action of Z/2 so that (Ai) is satisfied.

It is easy to verify (A2) and (A3) as in the proof of Theorem 1. To prove

(A4), we use the orthogonal decomposition X = X+ e Xo e X~ which refers

to the subspaces with j>l,j = 0,j<—\ respectively. On Xk , we have for

|| »|| small enough

<P(u)<\\\u+\\2-^\\u^\2-^\\u\\q + ^\\u\\p

<^IIM+II2-±IIW-II2-AMI«.

We have used the fact that Xk n X+ is finite dimensional.

Since \\u+\\q < C\\\u\\q on Xk n X+ and since q < 2, we obtain finally for
||u|| small enough,

4>(u)<c2\\u\\2q-l-\\u-\\2-^\\u\\q

1
< — 2 li"  II  — ̂3l|w|||

where C3 > 0. We choose rk e (0, Rk ) small enough so that the above inequal-

ity applies for ||w|| = rk . Then, if ||«|| = rk and ||«~|| > rk/4, we have

<p(u) < -r2/32.

If  |w|| = rk and ||w~|| < rk/4, we have

<Ku) < -c3(\W+ + f\ - \\u-\\g)q < -c3(rk/2)q.

Hence assumption (A4) is satisfied.

If p ^ 0, the proof of the Palais-Smale condition can be found in [10]. If
p = 0, the argument is similar.   D

Remark. Theorem 3 remains true if we consider the Hamiltonian

Hx,,(u) = a(t)(^p\u\« + ^\u\p^

where ae?(T,l) is positive.
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