

 UIT ภиש

Sheu
National Kao-Hsiung Marine University, Taiwan, Republic of China

ON A MUSHY CELL TRACKING METHOD
FOR SIMULATING GALLIUM MELTING

comparison with other methods, the mushy cell tracking algorithm has the following
distinguishing features [5]. boundary conditions at the interface between the mushy, solid, and liquid cells. In
comparison with other methods, the mushy cell tracking algorithm has the following [22]. Thanks to this embedded feature, one can easily and accurately evaluate the
boundary conditions at the interface between the mushy, solid, and liquid cells. In considering curvature and normal velocity effects in the dendritic solidification algorithm is the specification of constant melting or freezing temperature without various fields can be found in $[5,6]$. The distinguished characteristic of the present energy balance principles. A detailed description of the method and its application to tational mushy cell, for the current two-phase problem is governed by the mass and diffusion process. The movement of the interface, which is referred to as the compuof the liquid-phase region is governed by the conditionally stable convection region is governed by the stable diffusion process, while the transport phenomenon the mushy cell placed in between. The transport phenomenon in the solid-phase computational domain is separated into solid-phase and liquid-phase regions, with tigating these two benchmark tests, the gallium melting problem is investigated. The ithm [5, 6] is applied to simulate 1 D solidification and 2D tin melting. After invesof mass, momentum, and energy along with the tracking of the moving interface are
required. In this study, the cell-by-cell thermally driven mushy cell tracking algorof liquid and melting of solid, the working equations for describing the conservations
 detailed review of these methods enthalpy-based $[10,11]$ and moving $=$ particle [12] methods. Shyy [7] has given a employed for solving free/moving-boundary problems can be classified into the varying interfaces has gradually become feasible. In the literature, the methods [9,14$]$. With the advent of high-speed computers, numerical capturing of the timefor this class of problems are only available for very few cases with simple geometry Free-and moving-boundary problems are normally difficult to analyze because of the system of equations governing the behavior of the thermofluid flow field moving interface itself is considered as a part of the solution process for solving time and space scales. In addition, geometric complexities, such as multibody config-
urations and bodies with complex shapes, can further complicate the analysis. The

$\stackrel{\text { を }}{\stackrel{8}{6}}$

N

$$
\begin{gathered}
\underline{\nabla} \bullet \underline{U}=0 \quad \text { in } \Omega_{L} \\
\rho_{L}\left[\frac{\partial \underline{U}}{\partial t}+\underline{\nabla} \bullet(\underline{U U})\right]=-\underline{\nabla} P+\underline{\nabla} \bullet \underline{\tau}-\rho_{L} \underline{g} \beta_{T}\left(T-T_{\mathrm{ref}}\right) \\
\rho_{L} C_{P}\left[\frac{\partial T}{\partial t}+\underline{\nabla} \bullet(\underline{U} T)\right]=\underline{\nabla} \bullet k_{L} \underline{\nabla} T \quad \text { in } \Omega_{L} \\
\rho_{S} C_{P} \frac{\partial T}{\partial t}=\underline{\nabla} \bullet k_{S} \underline{\nabla} T \quad \text { in } \Omega_{S}
\end{gathered}
$$

（liquid zone），where $\Omega_{s} \cup \Omega_{m} \cup \Omega_{L}=\Omega$ ．The flow and energy conservation equations
are expressed as dividing it into three distinct domains，Ω_{s}（solid zone），Ω_{m}（mushy zone），and Ω_{L} cap．This classical problem considers the energy conservation in the domain Ω by this problem was first published by Stefan［14］to study the thickness of the polar ice

SNOIL甘กסヨ פNIXYOM 飞
 with an aim of clarifying the afore－mentioned controversial problem．

 problem will be reexamined in this study using the mushy cell tracking algorithm melting problem and tried to resolve some previously known controversies．This and numerically［2－4］．Hannoun et al．［4］gave an excellent review of the gallium

 ation of convection effect $[1-4,11,13,15,16]$ will be investigated．The first problem ation of convection［14］and the melting of tin in a rectangular cavity with consider－ To validate the present algorithm，both the 1－D solidification without consider－ the field variables are solved in a phase－by－phase and cell－by－cell manner． The mushy cells separate the domain into liquid and solid zones．Consequently， sІІə๐ pinb！！Io p！！os

 cing any source term involving the volume－averaged $\langle F\rangle_{m}$ explicitly． The field variables for both liquid and solid phases are solved without introdu－
 treated as a porous medium with a fairly high resistance to the flow. . No flow is allowed to proceed between the mushy cells. Actually, the mushy cell is Here, the following two important assumptions will be made
control volume, Ω_{m} is the fixed control volume, and \underline{q} is the conduction heat flux In the above equations, \underline{W}_{m} is the control-surface velocity, which is zero for a fixed

$\bar{V} p \bullet \bar{b}{ }^{{ }^{{ }^{\prime}} \delta \mathrm{O}} \oint=\bar{V} p \bullet\left({ }^{u^{\prime}} \bar{M}-\Omega\right) H^{d}{ }^{{ }^{\mu_{\%}} \delta} \oint+\mathrm{V} p H^{d}{ }^{{ }^{\mu_{0}}} \int \frac{1 \varrho}{\varrho}$

 the nonmoving framework using the control-volume method. The equations for

 the computational time and memory requirements can be excessive. However, both

 normal derivatives of T in the liquid and solid regions, respectively. \underline{W} is the velocity the outward normal vector of the moving front, and $\underline{\nabla} T_{L} \bullet \underline{n}$ and $\underline{\nabla} T_{s} \bullet \underline{n}$ denote the In the above equation, ΔH denotes the latent heat of solidification. The vector \underline{n} is
senting the solidification process,
the Stefan condition [14] should be valid at the solid/liquid interface for truly repre mushy cell. When the moving-particle method is used to trace the front propagation equation is needed in order to account for the energy balance at the interface of the solid heat conduction. To describe the movement of the mushy cell, one additional tion, the equation for the thermal energy can be reduced to one similar to that for วәлиоэ ұน eration \underline{g}, temperature T, dynamic viscosity μ, thermal conductivity k, and the ther-
mal expansion coefficient β_{T}. In Eq. (1), \underline{U} is the fluid velocity and P is the pressure. Other physical properties involved are the density ρ, specific heat C_{P}, gravity accel The subscripts s, L, and m denote the solid, liquid, and mushy states, respectively
moving-interface restriction. The internal boundary condition is specified as
should be noted that the current study is investigated under the isothermal

the corrected velocities becomes exactly equal to the right－hand side of Eq．（10）．

 mushy and liquid cells．The velocity at this interface is initially estimated to be the It is worth noting that Eq．（10）is the constraint prescribed at the interface of the
It is noted that $\langle\rho\rangle_{\Omega_{m}}$ is a time－dependent property，since $\langle F\rangle_{m}$ varies with the time．
Thus，Eq．（7）can be written as

$$
\text { (6) } \quad \mathrm{V} p_{H} \int^{w_{V}} \frac{\left\|^{w^{*}}\right\|}{\mathrm{I}} \equiv{ }^{{ }^{m}}\langle\boldsymbol{A}\rangle
$$

defined to be the volumetric integration of the local solid fraction F and is given as between the mushy and liquid cells．The volume－averaged solid fraction $\langle F\rangle_{m}$ is ated at the face center shown in Figure 1．$\underline{U}_{m L}$ is the convective velocity at the face In the above equations，$\underline{A}_{m L}$ is the outward normal vector from the cell Ω_{m} and is
directed toward the neighboring liquid cell．The associated enthalpy $H_{m L}$ is evalu－

$$
\left({ }^{\left({ }^{u}\right.} \bar{V} \bullet{ }^{T} L \bar{\Delta}^{T} y\right) 马+\left({ }^{s w_{\bar{V}}} \bullet{ }^{s} L \bar{\Delta}^{s} y\right) 马=
$$

$\begin{array}{r} \left\\|\Omega_{m}\right\\|\left\{\begin{array}{c} {\left[\rho_{s} C_{s} T_{m} \frac{\partial\langle F\rangle_{m}}{\partial t}-\rho_{L}\left(C_{s} T_{m}+\Delta H\right) \frac{\partial\langle F\rangle_{m}}{\partial t}\right]} \\ -\left(C_{s} T_{m}+\Delta H\right)\left(\rho_{s} \frac{\partial\langle F\rangle_{m}}{\partial t}-\rho_{L} \frac{\partial\langle F\rangle_{m}}{\partial t}\right) \end{array}\right\} \\ =\sum\left(K_{s}\left\langle\underline{\nabla} T_{s}\right\rangle \bullet \underline{A}_{m s}\right)+\sum\left(K_{L}\left\langle\underline{\nabla} T_{L}\right\rangle \bullet \underline{A}_{m L}\right) \end{array}$	
or	
$-\left\\|\Omega_{m}\right\\|\left(\rho_{s} \Delta H\right) \frac{\partial\langle F\rangle_{m}}{\partial t}=\sum\left(K_{s}\left\langle\underline{\nabla} T_{s}\right\rangle \bullet \underline{A}_{m s}\right)+\sum\left(K_{L}\left\langle\underline{\nabla} T_{L}\right\rangle \bullet \underline{A}_{m L}\right)$	(14)
Further manipulation of Eq. (14) results in	
$\left\\|\Omega_{m}\right\\| \frac{\partial\langle F\rangle_{m}}{\partial t}=\sum\left(\frac{-K_{s}\left\langle\underline{\nabla} T_{s}\right\rangle \bullet \underline{A}_{m s}}{\rho_{s} \Delta H}\right)+\sum\left(\frac{-K_{L}\left\langle\underline{\nabla}_{T_{L}}\right\rangle \bullet \underline{A}_{m L}}{\rho_{s} \Delta H}\right)$	
or	
$\left\\|\Omega_{m}\right\\| \frac{\partial\langle F\rangle_{m}}{\partial t}=\sum_{f_{i=L, s}}\left(\frac{-K_{i}}{\rho_{s} \Delta H}\left\langle\underline{\nabla} T_{i}\right\rangle \bullet \underline{A}_{f}\right)$	(15)

$\left.\begin{array}{l}\qquad\left\|\Omega_{m}\right\|\left(\frac{\partial}{\partial t}\langle\rho H\rangle_{\Omega_{m}}-H_{m L} \frac{\partial}{\partial t}\langle\rho\rangle_{\Omega_{m}}\right) \\ \quad=\sum\left(k_{s}\left\langle\underline{\nabla} T_{s}\right\rangle \bullet \underline{A}_{m s}\right)+\sum\left(k_{L}\left\langle\underline{\nabla} T_{L}\right\rangle \bullet \underline{A}_{m L}\right)\end{array}\right\} \begin{aligned} & \text { The volume-averaged properties }\langle\rho H\rangle_{\Omega_{m}} \text { and }\langle\rho\rangle_{\Omega_{m}} \text { seen above are given as follows: } \\ & \langle\rho H\rangle_{\Omega_{m}}=\underbrace{\langle F\rangle_{m}\left(\rho_{s} C_{s} T_{m}\right)}_{\text {Enthalpy of solid part }}+\underbrace{\left(1-\langle F\rangle_{m}\right) \rho_{L}\left(C_{s} T_{m}+\Delta H\right)}_{\text {Enthalpy of liquid part }} \\ & \langle\rho\rangle_{\Omega_{m}}=\langle F\rangle_{m} \rho_{s}+\left(1-\langle F\rangle_{m}\right) \rho_{L}\end{aligned}$
its temperature becomes the same as T_{m}. Combining Eqs. (8), (10), and (11), we have of the mushy and liquid (or solid) cells. In other words, once the mushy cell is formed, These specifications will provide the essential boundary condition at the interface leads to $H_{m L}=C_{s} T_{m}+\Delta H$. For convenience, it can be assumed that $T_{m s}=T_{m}$.
It should be noted that the interface temperature $T_{m L}$ is set as T_{m} in Eq. (11), which
$H_{s} \equiv C_{s} T_{s} \quad \Omega_{s} \cup \partial \Omega_{m s}$
condition relating to the enthalpy of solid or liquid is commonly required, The interface velocity thus obtained serves as the boundary condition for the flow
simulation in the liquid region.
Figure 2. Illustration of the mushy cell advancing
\square Newly solidified cell
 method to get the essential temperature boundary conditions at the interface
between mushy and liquid or solid phases [6]. well-known Stefan condition shown in Eq. (4) by the moving-control-volume
 the newly solidified mushy cells. Thus, the mushy cells can be advanced in a cellmushy cells can be easily identified by examining the neighbors (in liquid state) of cell-by-cell manner to update $\langle F\rangle_{m}$ for every mushy cell. The candidates for the where $T_{m L}$ is the temperature between the mushy and liquid cells. It is worth noting
that the advancing length of the moving front is limited by the length of a cell in a

C-

addition, the associated essential boundary conditions are as follows:
 mushy cell. This minimum time step is determined by scrutinizing every mushy cell As stated in Part I of $[5,6]$, the main reason for choosing the mushy cell track-
ing equation is the minimum time step which is applicable to update $\langle F\rangle_{m}$ for every mentioned assumptions

where Γ is the transport coefficient such as the viscosity μ and the ratio $\alpha_{L}=k_{L} / C_{L}$

aOHュヨW 7ชОIyヨWกN ‘є

риәәеโре омұ әчұ јо sәи!

\section*{әәучм

(0z) $\quad{ }^{f} \bar{V} \cdot{ }^{f}\langle L \bar{\Delta}\rangle^{!} \times \infty \equiv{ }^{f} G$

based on the Gauss divergence theorem:
gradients are evaluated explicitly.
The transport flux D_{f} due to heat conduction through face e_{f} is derived below

 upwind cell to the center of the face. The value of Φ^{n+1} is obtained from an upwind
 order temporal accuracy the domain Ω_{0}. In Eq. (18), the Euler time-stepping method is used to render first-

$$
\delta t+\sum_{f} \mathcal{J}_{f} \Psi_{f}=\sum_{f}
$$

in the following equation:
value of Φ_{f} at the cell face could be calculated from the following formula dients can be devised by virtue of the divergence theorem, a hyper-order-accurate dependent on the cell shape. If a shape-independent formulation [23] for the cell graCVFEM method [18] employed the shape function, and another approach used the eral gradient reconstruction strategies have been proposed [24-26]. Among them, the obtained directly from the Taylor series expansion. To overcome this difficulty, sev-
 The mass flow rate J_{f} is defined to be larger than zero for the fluid leaving $\Omega_{0} . D_{f}$
represents the diffusion transport through the face "face ${ }_{f}$ ". $\left\|\Omega_{0}\right\|$ is the volume of

included in S_{0}, and B_{0} is the coefficient containing the contributions from the

 Here, $\left\|\Omega_{0}\right\|$ is the volume of Ω_{0}. The notation nb denotes the number of neighboring

$(\downarrow z)$

 pur К К from the center of the cell Ω_{0} to the centroid of the boundary face. For the case with where T_{2} is evaluated at the center of the boundary face and vector $\underline{02}$ is measured

$$
\text { Figure } 2 \text { can be written as }
$$

to that at an interior face using Eq. (21). The flux D_{2} on a boundary schematic in temperature, respectively. The boundary diffusion flux can then be treated similarly the mushy and liquid and solid cells is specified by the constant melting or freezing center of the boundary. When solving Eq. (22), the interface temperature between The diffusion fluxes at the boundaries are also included in S_{0}, and T is applied at the contains the super-linear term, such as the secondary diffusion flux terms in Eq. (21) Here, the summation is made over all the neighbors " nb " of Ω_{0}. The source term S_{0}

${ }^{1+u} L\left({ }^{0} \boldsymbol{g}+\frac{\underline{\text { g }}}{\left\|{ }^{0} \boldsymbol{\sigma}\right\| \boldsymbol{d}}\right)$

 the motion-free condition able T at the cell centers can be derived in the solid phase or liquid phase under

 neighboring cell of Ω_{0} shown in Figure 3. The first term in Eq. (21) is of the firstthe distance vector measured from the center of Ω_{0} to the center of Ω_{1}, which is the

Integration of Eq. (26) over the control volume Ω_{0} results in the following equation:

the thermal buoyancy force, and the stress tensor components are not included in
the standard diffusion term: In each momentum equation, the source term contains the pressure gradient,
the thermal buoyancy force, and the stress tensor components are not included in
 coefficient in the discrete momentum equation for the cell Ω_{0} shown in Eq. (25),
$\langle\bar{\nabla} P\rangle_{f}$ is the averaged pressure gradient evaluated at the cell face "face f," and 01 where \underline{U}^{*} is the velocity field that satisfies the momentum conservation law. B_{0} is the
 (cz)

шіңиәшои шоцу шиә ио!̣юәлюо

 drawbacks, a scheme [17, 23, 27] similar to that of Rhie and Chow [28] will be used the mass flow rate J_{f}, which is obtained by averaging the cell center velocities, is
prone to oscillatory modes and checkerboard pressure patterns. To overcome these Since the pressure and the velocity components are stored at the cell centers,
the mass flow rate J_{f}, which is obtained by averaging the cell center velocities, is superscript k denotes the $k_{\mathrm{t}}^{\text {th }}$ sub-time step in the n time step
convection and diffusion fluxes in the liquid phase considering the convection effect.
The superscript k denotes the $k_{\mathrm{t}}^{\text {th }}$ sub-time step in the n time step.
For every single sub-time step $(\delta t)_{s}$:

1. Define spatially the liquid phase, the mushy zone, and the solid phase. The mini-
mum time step δt is then determined from the mushy cell tracking equation. The
value of $\langle F\rangle_{m}$ can be then updated for each mushy cell.
2. Solve for the heat conduction equation in the solid phase with the time step δt
and the governing equations in the liquid phase using the SIMPLE algorithm
to determine the velocity, pressure, and temperature. To stabilize the calculation,
δt is decomposed into several sub-time steps, i.e., $\delta t=\sum_{s}(\delta t)_{s}$. In the mushy cell
tracking equation, the velocity is controlled by the diffusion contribution. Since a
cell-by-cell approach is used to move the front by virtue of the characteristic cell
length h, $(\delta t)_{\text {ref }}=0.3\left(h^{2} \rho_{L} C_{L} / k_{L}\right)$ is currently selected as a constraint on $(\delta t)_{s}$,
which is the sub-time step of the minimum time step δt. It is noted that
$h^{2} \rho_{L} C_{L} / k_{L}$ has the unit of time and is therefore considered as the local cell's time

scale. Thus, the sub-time step $(\delta t)_{s}$ is chosen as \begin{tabular}{l}
$\delta t=k(\delta t)_{\text {ref }}+(\delta t)_{k+1} \quad 0<(\delta t)_{k+1}<(\delta t)_{\text {ref }}$

\quad

for $\delta t<(\delta t)_{\text {ref }}$
\end{tabular}

taining the convection effect for solidification are summarized as follows. known boundary velocity. The solution procedures based on the liquid phase conthen the Neumann-type boundary condition [8], Eq. (28), is employed along with the corrector step is repeated until convergence. If the boundary pressure is not known, solver, both velocity and pressure fields can be updated using Eq. (29). The entire for solving the momentum and the discretized temperature equations with convec-
tion. Once the solution of Eq. (32) is obtained through the preconditioned CG metric and positive definite. The preconditioned BiCGSTAB method is selected the pressure-correction coefficient matrix equation, since it is classified to be sym employed in the present study. The preconditioned CG method is used to solve The above system of equations will be solved using a preconditioned conjugate
gradient method. Two algorithms of the conjugate gradient (CG) type [19] are
 where the superscript k represents the predictor step or the previous corrector step
After discretization and integration of Eq. (31) over the control volume Ω_{0}, the fol
lowing discrete equation can be obtained:
Figure 4. Schematic of the physical domain and the specified boundary conditions for the one-region
problem.

 to clarify whether the solution is physically correct. problem will be studied systematically using the present mushy cell tracking method s!ч, ио!̣n coarse-grid solution obtained from the lower-order scheme agrees better with the ancy is associated with the myth of grid-converged solution in the sense that the
 рә!pnıs su!p

4. NUMERICAL EXAMPLES

Repeat this procedure until the values of pressure, temperature, and velocity (c) Use the updated velocity vector to solve for the temperature
(d) Go to step (a). magnitudes, which satisfy the mass conservation law.
Use the updated velocity vector to solve for the temp

are shown in Figure 4 . Three orthogonal and quadrilateral meshes with 100×10,
200×20, and 300×30 resolutions are selected for the current numerical simulation.
Under $\rho_{s}=\rho_{L}=1, k_{s}=k_{L}=1$, and $C_{s}=C_{L}=1$, the latent heat ΔH will be used
Figure 5. Comparison of the simulated and analytical interface locations for the investigated 1-D, one
region solidification problem $(\mathrm{St}=2.85)$. Figure 5. Comparison of the simulated and analytical interfa

		00tti $0={ }^{\text {P? }}$ S	
IZ0000	$90200{ }^{\circ}$	S $\angle 100^{\circ} 0$	$\varepsilon \times 00 \varepsilon$
てع000	60800°	857000	$0 \Sigma \times 00 \sim$
¢9000	†1900 0	OIS000	$0 \mathrm{I} \times 00 \mathrm{I}$
$(\varsigma=7 S)^{3}$	$(582 \mathrm{~T}=1)^{3}$	$\left(L^{0} 0=7\right)^{3}$	чSว N
SMOYs L əınธึ!			
јо sәпןел вии!			

SIMULATION OF GALLIUM MELTING

Figure 10. Boundary conditions and computational meshes for simulating gallium melting: (a) unstruc
tured/coarse meshes; (b) structured/fine meshes.

ONILTAK LNIITVУ HO NOLLVTONIS

value of $T=28.3^{\circ} \mathrm{C}$. The physical properties used in the current calculations are
tabulated in Table $3[4,20]$. $T=38.0^{\circ} \mathrm{C}$, while the right wall temperature remains unchanged with the initial set at $T=28.3^{\circ} \mathrm{C}$. The temperature at the left wall is increased instantly to are sketched in Figure 10. Initially, the temperature in the solid gallium block is present numerical model. The geometric configuration and boundary condition experimental results of Gau and Viskanta [1] is chosen for the verification of the studied experimentally [1] and numerically $[2-4,11,13,15,16]$. The widely cited

Gallium melting in a rectangular cavity heated from the side wall has been

with those given in [4], as shown in Figure 8 and Figure 9 results regarding the moving front location and the liquid fraction compare all well adiabatic. The melting temperature of tin is assumed to be 505 K . The computed
 The melting of tin in a square cavity will be investigated arares are 508 K and
data [4] listed in Table 2. The left and right wall temperatures

4.2. Melting of Tin

Symbol	ρ	k	C_{p}	μ	T_{m}	$\rho g \beta$	β	H
Units	$\mathrm{kg} / \mathrm{m}^{3}$	$\mathrm{w} / \mathrm{m} \mathrm{K}$	$\mathrm{J} / \mathrm{kgK}$	NS / m	${ }^{\circ} \mathrm{C}$	$\mathrm{kg} / \mathrm{m}^{3} \mathrm{~m} / \mathrm{S}^{2} 1 / \mathrm{K}$	$1 / \mathrm{K}$	J / kg
Solid	6,095	33.5	395.15	0	7.0	1.173×10^{-4}	8×10^{4}	
Liquid	6,095	33.5	395.15	1.8×10^{-3}	29.78			

meshes generated around the interface region are very important, since they will

 tization schemes and grid resolutions, to study this problem. They found that the

 lateral meshes are used. Comparison of the currently predicted interface with other flow field and interface dynamics, $80 \times 60,90 \times 70$, and 100×71 orthogonal, quadri
 11] shown in Figure 11. solutions in the coarse meshes near the interface region can yield better prediction affect the simulated results, as noted by Hannoun et al. [4]. The resulting predicated

Finite-Volume Computational Models for Two-Dimensional Diffusion Equations,
Numer. Heat Transfer B, vol. 40, pp. 367-390, 2001 .
 S. R. Mathur and J. Y. Murthy, A Pressure-Based Method for Unstructured Meshes,
Numer. Heat Transfer B, vol. 31, pp. 195-215, 1997 . Y. J. Jan, Thermally Driven Mushy Cell Tracking Algorithm for Dendritic Solidification
Numer. Heat Transfer, B, accepted, 2007 .
 C. Y. Li, S. V. Garimella, and J. F. Simpson, Fixed-Grid Front-Tracking Algorithm for
Solidification Problems-Part I: Method and Validation, Numer. Heat Transfer B, vol. 43 666I 's9ZI-LZZI dd ‘tt 'IOA'su马 Finite Element Method for Directional Solidification Processes, Int. J. Numer. Meth Y. Saad, Iterative Methods for Sparse Linear Systems, PWS Publishing, Boston, 1996.
R. Sampath and N. Zabaras, An Object-Oriented Implementation of a Front Tracking Dimensional Fluid Flow and Heat Transfer, Numer. Heat Transfer, vol. 6, pp. 245-261
1983.

 F. Stella and M. Giangi, Melting of a Pure Metal on a Vertical Wall: Numerical Simula-
tion, Numer. Heat Transfer A, vol. 38, pp. 193-208, 2000 . M. N. Ozisik, Heat Conduction, Wiley, New York, 1980.
F. Stella and M. Giangi, Melting of a Pure Metal on a Ver Element Method for Melting and Solidification Problems_Part II: Verification and
Application, Numer. Heat Transfer B, vol. 39, pp. 127-149, 2001.
 the Sharp Interface Limit on the Fixed Grids, J. Comput. Phys., vol. 153, pp. 535-574
1999. H. S. Udaykumar, R. Mittal, and W. Shyy, Computation of Solid-Liquid Phase Fronts in

 S. Kim, S. Anghaie, and G. Chen, A Fixed-Grid Two-Phase Numerical Model for Con

 Complex Transport Phenomena, Cambridge University Press, Cambridge, UK, 1921 W. Shyy, S. S. Thakur, H. Ouyang, J. Liu, and E. Blosch, Computational Techniques for
Complex Transport Phenomena, Cambridge University Press, Cambridge, UK, 1997. with Moving Boundaries, Taylor \& Francis, Washington, DC, 1996.

 N. Hannoun, V. Alexiades, and T. Z. Mai, Resolving the Controversy over Tin and

s the term $(a)^{2} 2 / 3$, the accurate front profile $S(t)$ can be approximated as below after
some simple calculations. signify the importance of the sensible heat relative to the latent heat. If we keep
 The Stefan number is defined as $\mathrm{St} \equiv-\left(T_{\text {surf }}-T_{m}\right) C_{s} / \Delta H$ and its value is obtained

$$
T_{\text {surf }}-T_{m}=-\frac{2(\Delta H) a^{2}}{C_{s}}\left(1+\frac{2}{3} a^{2}+\frac{4}{15} a^{4}+\cdots\right)
$$

A further simplification of $T_{\text {surf }}-T_{m}$ can render
 By substituting Eq. (A6) into the equation given by $T_{\text {surf }}-T_{m}=C_{1}$ erf (a), we are
led to derive $T_{\text {surf }}-T_{m}=-(\Delta H) a \sqrt{\pi}\left(e^{a^{2}}\right) \operatorname{erf}(a) / C_{s}$.
To further illustrate the time-varying front feature, the Taylor series approxi-
mation is applied to $a e^{a^{2}} \operatorname{erf}(a)$, thus resulting in

$\left({ }_{z} z^{\partial}\right) \frac{s \text { ว }}{\Downarrow / p(H \nabla)}-=$ Э

we can have

$$
\begin{aligned}
& 374 \\
& \text { Since }(\partial T / \partial t)_{x=S(t)} \text { and }(\partial T / \partial x)_{x=S(t)} \text { can be respectively expressed as } \\
& \left(\frac{\partial T}{\partial t}\right)_{x=S(t)}=\frac{C_{1} S(t)}{\sqrt{4 \alpha_{s} \pi t^{3}}} e^{-S(t)^{2} / 4 \alpha_{s} t}
\end{aligned}
$$

