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ABSTRACT
Latent Dirichlet Allocation (LDA) is a fully generative ap-
proach to language modelling which overcomes the inconsis-
tent generative semantics of Probabilistic Latent Semantic
Indexing (PLSI). This paper shows that PLSI is a maximum
a posteriori estimated LDA model under a uniform Dirichlet
prior, therefore the perceived shortcomings of PLSI can be
resolved and elucidated within the LDA framework.

Categories and Subject Descriptors
I.2.7 [Artificial Intelligence]: Natural Language Process-
ing—Language Models; H.3.3 [Information Storage and
Retrieval]: Information Search and Retrieval—Retrieval
Models

General Terms
Algorithms
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1. INTRODUCTION
Language Modelling (LM), as a statistically principled

approach to information retrieval (IR), employs the con-
ditional probability of a query (q) given a document (d)
P (q|d), as a means of relevance ranking [4]. One particular
approach to LM based IR is PLSI [2]. PLSI decomposes
the joint probability of observing a term w and document
d with the use of a latent variable k such that w ⊥ d | k
and P (w,d) =

P
k P (w|k)P (k|d). PLSI has been shown to

be a low perplexity language model and outperforms latent
semantic indexing in terms of precision-recall on a number
of small document collections [2]. However, the generative
semantics of PLSI are not fully consistent which leads to
problems in assigning probability to previously unobserved
documents [1]. LDA [1] is also a probabilistic LM which pos-
sesses consistent generative semantics and overcomes some
of the perceived shortcomings of PLSI. However, the follow-
ing section will show that PLSI emerges directly as a specific
instance of LDA so the claimed shortcomings of PLSI can
be understood within the LDA framework.
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2. LDA AND PLSI EQUIVALENCE
A language model M based on a corpus D with vocab-

ulary V is represented by LDA as follows. For corpus D
a k-dimensional parameter � is fixed. In generating docu-
ment d a K-dimensional variable � is drawn from the Dirich-
let distribution D(�|�). The parameters P (w|θk) denoting
the probability of the term w given the k’th element of the
Dirichlet variable � are then linearly combined to obtain
the multinomial distribution P (w|�) from which a term w
is drawn. Sampling from P (w|�) is repeated for each term
in the document. Denoting the |V|×K parameters P (w|θk)
as the matrix P and the number of times that term w ap-
pears in the document as cd,w then the probability assigned
to the document d under the LDA model with parameters
� and P is given as

P (d|�,P) =

Z
4

d�D(�|�)
Y
w∈d

(
KX

k=1

P (w|θk)θk

)cd,w

where the integral is defined over the support of the Dirichlet
distribution. Exact inference for LDA is not possible, so
approximate variational methods have been developed in [1]
for the purposes of inference and parameter estimation.

However, another approach to approximate inference and
estimation for LDA models is the maximum a posteriori es-
timator which obtains the value of the variable � that max-
imizes the posterior distribution given the document d and
obviates the necessity to obtain the value of the posterior,
so in the case of LDA, for each document we require to solve

�MAP
d = argmax

� log{P (�|d,P,�)}

Once the estimate �MAP
d for every document in D has been

obtained the parameters P and � can be estimated by max-
imum likelihood (ML) estimation. If the Dirichlet distribu-
tion defines a uniform density across the simplex i.e. � = 1,
where 1 denotes a K-dimensional vector of ones, then the
MAP estimator is identical to the ML estimator and so

�MAP
d = �ML

d = argmax
� log{P (d|�,P)}

= argmax
�

X
w∈d

cd,w log

(
KX

k=1

P (w|k)θk

)



Once �ML
d is obtained the ML estimate for P (w|k) requires

PML = argmax
P

X
d∈D

log{P (d|�ML
d ,P)}

= argmax
P

X
d∈D

X
w∈d

cd,w log

(
KX

k=1

P (w|k)θML
d,k

)
where θML

d,k is the k’th element of the ML estimated Dirichlet
variable for document d. As the Dirichlet variables satisfy
the constraints θk ≥ 0, ∀ k and

P
k θk = 1 these can be

viewed as the P (k|d) parameters in PLSI.
As such the interleaving of the two ML estimation proce-

dures above will recover exactly the ML estimator for PLSI
[2]. Therefore PLSI is a MAP / ML estimator of an LDA
document model under a uniform Dirichlet prior. View-
ing PLSI as MAP LDA under a uniform prior the heuristic
folding-in of queries or new documents can in fact be seen
to be the principled MAP / ML estimation of the Dirich-
let variable for the query/document. Whilst LDA has been
shown experimentally to provide a lower perplexity language
model than PLSI this can now be seen to be as an outcome
of the approximate estimation method employed, indeed in
[3] Expectation Propagation is shown to be more accurate
than the variational approach developed in [1].

3. IR WITH LDA AND PLSI
The relevance of a document to a given query under such

a model can be measured as the likelihood that the query is
generated given a particular document and the parameter-
ized model [4]. Formally this can be posed as the posterior
probability of the query given the document and the lan-
guage model adopted.

P (q|d) =
Y
q∈q

P (q|d)cq,q

What is required is P (q|d) which follows from the LDA rep-
resentation asZ

4
P (q|�)P (�|d)d� =

Z
4

(
KX

k=1

P (q|k)θk

)
P (�|d)d�

which can be seen to be dependent on the expectation over
the posterior distribution of the Dirichlet random variable
given the document i.e.

KX
k=1

P (q|k)

Z
4

θkP (�|d)d� =

KX
k=1

P (q|k)EP (�|d) {θk,d}

The required expectation is problematic due to the posterior
being intractable, however if it is assumed that the posterior
is approximately symmetric with one dominant mode then
EP (�|d) {θk} ≈ θMAP

kd . These MAP estimates for each docu-
ment have already been approximated as part of the model
parameter optimization process and so

KX
k=1

P (q|k)EP (�|d) {θkd} ≈
KX

k=1

P (q|k)θMAP
k,d

Therefore the probability of generating query q from docu-
ment d under the LDA language model can be approximated
by

P (q|d) ≈
Y
q∈q

(
KX

k=1

P (q|k)θMAP
k,d

)cq,q

For the case where a uniform Dirichlet prior is imposed on
the LDA model then as shown above we exactly recover
PLSI and θMAP

k,d = θML
k,d ≡ P (k|d).

P (q|d) ≈
Y
q∈q

(
KX

k=1

P (q|k)P (k|d)

)cq,q

The log of the above probabilistic measure can be considered
as a form of cross-entropy

P
q cq,q log P (q|d) or entropic co-

sine similarity measure somewhat reminiscent of the PLSI-U
similarity measure employed to good effect in terms of IR
performance in [2].

An alternative LDA based similarity measure is the a pos-
teriori probability of the document given the query P (d|q) =Q

w∈d P (w|q)cd,w where now

P (w|q) =

KX
k=1

P (w|k)EP (�|q) {θkq} ≈
KX

k=1

P (w|k)θMAP
k,q

which leads to the following expression for the required con-
ditional probability

P (d|q) ≈
Y
w∈d

(
KX

k=1

P (w|k)θMAP
k,q

)cd,w

The θMAP
k,q for the query requires to be estimated using a

MAP estimator and as before for a uniform Dirichlet prior
the LDA model is exactly PLSI so θMAP

k,q ≡ P (k|q). As
above taking the log we obtain

P
w cd,w log P (w|q). The

required estimation of the posterior expected value of the
Dirchlet variable given the query can now be understood
as the ’heuristic’ method of query ’folding-in’ as originally
proposed in the PLSI model [2].

4. CONCLUSIONS
This paper has clarified the relationship between PLSI

and LDA. PLSI in fact is a MAP / ML estimated LDA
model under a uniform Dirichlet distribution and issues sur-
rounding ’heuristic’ folding-in and likelihood computation
are now resolved due to the LDA interpretation of the PLSI
parameters presented.
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