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Abstract

We find a non-displaceable Lagrangian torus fiber in a semi-toric system which is
superheavy with respect to a certain symplectic quasi-state. The proof employs both
4-dimensional techniques and those from symplectic field theory. In particular, our
result implies Lagrangian RP 2 is not a stem in CP 2, answering a question of Entov and
Polterovich.

1. Introduction

The primary goal of this paper is to understand a toric degeneration model of CP 2. Our CP 2

model should be considered as a Z2-equivariant version of the one used in [FOOO12] for S2×S2.
However, we take a slightly different point of view, based on symplectic cuts on cotangent
bundles of manifolds with periodic geodesics. This degeneration gives a genuine torus action on
an open part of CP 2, which results in an interesting family of Lagrangian tori. In particular,
such degenerated torus action still gives a moment polytope. For S2 × S2, the polytope reads
PS2×S2 = {(x1, x2) ∈ R2 : x1, x2 > 0, x1 + 2x2 6 2} ⊂ R2 (Figure 1, see [FOOO12]). In the case
of CP 2, one similarly have a toric action on an open set, which gives a moment polytope as in
Figure 2, and can be described as PCP 2 = {(x1, x2) ∈ R2 : x1, x2 > 0, x1 + 4x2 6 4}.

In [FOOO12], Fukaya–Oh–Ohta–Ono considered the Floer theory of smooth fibers in the
toric degeneration model of S2 × S2, proving by bulk deformation that there are uncountably
many non-displaceable fibers in Figure 1. In view of Albers–Frauenfelder’s result [AF08], we
may interpret this result as stating that only non-displaceable torus fibers below the ‘monotone
level’ in the semi-toric system survive the symplectic cut along a level set of T ∗S2. This implies
that the anti-diagonal of S2 × S2 is not a stem (see § 2 for the definition of a stem), answering
a question raised by Entov and Polterovich in [EntP03]. This was also proved independently
by several other authors [EP10, CS10]. In [EP10] it was mentioned that Wehrheim also has an
unpublished note on this problem.

From Fukaya–Oh–Ohta–Ono’s calculation on S2 × S2, we expect the similar picture of CP 2

(Figure 2) also contains uncountably many non-displaceable fibers. This would correspond to
an easy adaption of Albers–Frauenfelder’s result to T ∗RP 2, by considering the Z2-involution
induced by antipodal map on S2.

In this paper we find one smooth non-displaceable monotone torus fiber in the moment
polytope of CP 2 described above, and prove that it is superheavy with respect to some symplectic
quasi-state. In particular, we prove the following theorem.

Theorem 1.1. There is a smooth monotone Lagrangian torus fiber in Figure 2, which is
superheavy with respect to a certain symplectic quasi-state. In particular, it is stably non-
displaceable.
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Figure 1. S2 × S2.
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Figure 2. CP 2.

The limitation to such a monotone fiber is due to the difficulty of using RP 2 as a bulk to
deform our Floer cohomology; compared to the case of [FOOO12], where the bulk is chosen
to be an embedded S2, RP 2 only obtains a non-trivial Z2-class. But our calculation shows it is
essential that we do not use a coefficient ring of characteristic 2 (see § 5); the bulk of RP 2 does
not improve our situation in a straightforward way. The author does not know whether this is
only technical, although this continuous family is still conceivably non-displaceable (they are, at
least, not displaced by any currently known approach). In any case, our computation suffices to
show the following.

Corollary 1.2. RP 2 ⊂ CP 2 is not a stem. (See the definition of stems from [EntP09].)

Proof. By [EntP09, Theorem 1.6], a stem is superheavy with respect to any symplectic quasi-
states (quasi-morphisms). Since we constructed a quasi-state (and a quasi-morphism) such that
our monotone torus is superheavy and the torus is disjoint from RP 2, RP 2 cannot be superheavy
with respect to this particular quasi-state (and quasi-morphism), and thus is not a stem. 2

This answers the question of Entov and Polterovich [EntP06, Question 9.2] regarding the
case of CP 2.

Remark 1.3. It seems possible that our exotic monotone Lagrangian is in fact the Chekanov
torus in CP 2. In particular, they both bound four families of disks of Maslov index 2. It would
be nice if one could identify the two geometrically, provided the guess is true. Nonetheless, even
if such an identification holds, our calculation still gives new information: we would have an
identification of a Chekanov torus with a semi-toric fiber and have showed the superheaviness of
it. Moreover, our approach is adaptable to more complicated toric degeneration, which will be a
topic of upcoming works.

Remark 1.4. Since we work with a monotone Lagrangian torus, our approach does not depend on
the deep virtual techniques developed in [FOOO09]. Even for non-monotone torus fibers in our
semi-toric picture, we could still avoid virtual techniques since we are in the realm of dimension
4, and hence the geometric genericity arguments as in [FOOO12] are sufficient for our purpose.
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The only interesting technical point is that we must use coefficients with characteristic zero, see
further discussions in § 5.

Updates. After more than a year since this work was originally submitted in 2012, there have
been two updates in this direction. First, Renato Vianna also detected certain exotic Lagrangian
tori in CP 2 [Via13]. His tori can be discerned from the one presented here by the families of
holomorphic disks with Maslov number 2 that they bound. It would be interesting to compare
the two different objects. Much more recently, Oakley and Usher constructed a proof in [OU13]
showing that the torus described in the present article is Hamiltonian isotopic to the Chekanov
torus. They also generalized the construction to higher dimensions.

2. Preliminaries

The current section summarizes part of the Lagrangian Floer theory developed by Fukaya–Oh–
Ohta–Ono [FOOO09, FOOO10a, FOOO11a] etc., as well as the theory of symplectic quasi-states
developed by Entov and Polterovich in a series of their works [EntP09, EntP03, EntP06], etc.
The aim of this section is to recall basic notions and main framework results of these theories
for our applications, as well as for the convenience of readers. Therefore, our scope is rather
restricted and will not provide a thorough account of the whole theory. For details and proofs,
one is referred to the above-mentioned works. Many of our discussions of Lagrangian Floer theory
follow the lines of [FOOO12], especially its arXiv version.

2.1 Lagrangian Floer theory via potential function
Let (M,ω) be a smooth symplectic manifold and L ⊂ M a relatively spin Lagrangian. This
means that L is orientable and that the second Stiefel–Whitney class w2(L) is in the image
of the restriction map H2(M,Z2) → H2(L,Z2). We first describe the moduli spaces under
consideration. Let J ∈ Jω, the space of compatible almost complex structures, and β ∈ H2(M,
L;Z). We denote by Mmain

k+1,l(β;M,L; J) the space of J-holomorphic bordered stable maps in
class β with k + 1 boundary marked points and l interior marked points. Here, we require the
boundary marked points to be ordered counter-clockwise. When no confusion is likely to occur,
we will suppress M , L or J .

One of the fundamental results in [FOOO09] shows that one has a Kuranishi structure on
Mmain

k+1,l(β, L) so that the evaluation maps at the ith boundary marked point (jth interior marked
point, respectively)

evi :Mmain
k+1,l(β, L) → L,

and
ev+
j :Mmain

k+1,l(β, L) → M

are weakly submersive (see [FOOO09] for the definition of weakly submersive Kuranishi maps).
For given smooth singular simplices (fi : Pi → L) of L and (gj : Qj → M) of M , one can also
define the fiber product in the sense of Kuranishi structure:

Mmain
k+1,l(β;L; Q,P) :=Mmain

k+1,l(β;L)(ev+1 ,...,ev
+
l ,ev1,...,evk)×(g1,...,gl,f1,...,fk)

( l∏
j=1

Qj ×
k∏
i=1

Pi

)
.

The virtual fundamental chain associated to this moduli space,

ev0 :Mmain
k+1,l(β;L; Q,P) → L

as a singular chain, is defined in [FOOO09] via techniques of virtual perturbations.
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We consider the universal Novikov rings:

Λ =

{ ∞∑
i=1

aiT
λi | ai ∈ C, λi ∈ R, λi 6 λi+1, lim

i→∞
λi =∞

}
,

Λ0 =

{ ∞∑
i=1

aiT
λi | ai ∈ C, λi ∈ R>0, λi 6 λi+1, lim

i→∞
λi =∞

}
.

Here T is a formal variable. Consider a valuation which assigns σT (
∑
aiT

λi) = λ1 and let
σT (0) = +∞. This induces an R-filtration on Λ and Λ0, and thus a non-Archimedean topology.
Note that Λ0 ⊂ Λ, and Λ0 has a maximal ideal Λ+ consisting of elements with λi > 0 for all i.
The absence of e-variable will reduce the grading of Floer cohomology groups to Z2, but this is
irrelevant to our applications.

The heart of Fukaya–Oh–Ohta–Ono’s work is to define a filtered A∞-structure on C∗(L; Λ0)
for a Lagrangian L ⊂ M and define Floer cohomology by deformations of (weak) bounding
cochains. However, we will not mention the explicit constructions here, both because they are
far beyond our scope, and because there are plenty of comprehensive references and surveys
available in the literature. (For an incomplete list: [FOOO09, FOOO10a, FOOO11a, FOOO10b],
etc.) Instead we will adopt a most economic approach towards the applications in mind, by
recalling a package made available by the deep theory; namely, the computations on Lagrangian
Floer cohomology via potential functions.

A potential function POL is a Λ+-valued function defined on the set of weak bounding
cochains of L, denoted as M̂weak(L). For any b ∈ M̂weak(L), one may associate a Floer
cohomology group HF ∗(L, b) for the pair (L, b). We do not define the weak bounding cochains
in general; however, according to [FOOO12, Theorem A.2], by passing to the canonical model,

M̂weak(L) can be identified with H1(L; Λ0)/H1(L; 2π
√
−1Z) for any monotone Lagrangian

submanifolds with minimal Maslov number equal to 2. Hence, in the rest of this paper, M̂weak(L)
will refer to this particular set, and the potential function can be written as

POL : H1(L; Λ0)/H1(L; 2π
√
−1Z) → Λ+. (2.1)

With the monotonicity assumption above, one may compute PO explicitly as in [FOOO12,
Theorems A.1 and A.2]. Choose a basis {ei}ni=1 for H1(L;Z) and represent b =

∑n
i=1 xiei for

b ∈ H1(L; Λ0) and xi ∈ Λ0. Then the potential function is written as

POL(b) =
∑

µ(β)=2

ev∗0([M1(L; J, β)])Tω(β)/2π exp(b(∂β)). (2.2)

Here [∂β] ∈ H1(L;Z), hence b(∂β) ∈ Λ0. Writing in coordinates, the potential function can be
regarded as a function from (Λ0/2π

√
−1Z)n to Λ+. A change of coordinate yi = exi transforms

the function in (2.2) into the form commonly used in the literature (and thus changing the
domain from (Λ0/2π

√
−1Z)n):

POL : (Λ0\Λ+)n → Λ+,

(y1, . . . , yn) 7→
∑

µ(β)=2

ev∗0([M1(L; J, β)])Tω(β)/2π
n∏
i=1

ylii , (2.3)

where ∂β =
∑n

i=1 lie
∗
i , for {e∗i }ni=1 a dual basis in H1(L;Z). The following result manifests the

importance of potential functions.
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Theorem 2.1 [FOOO12, Theorem 2.3]. Let L be a Lagrangian torus in (M,ω). Suppose that

H1(L; Λ0)/H1(L; 2π
√
−1Z) ⊂ M̂weak(L) and b ∈ H1(L; Λ0) is a critical point of the potential

function POL of L. Then we have

HF ∗(L, b) ∼= H∗(L; Λ0).

In particular, L is non-displaceable.

Remark 2.2. Results stated in this section hold valid for Lagrangians satisfying [FOOO12,
Condition 6.1], that is, if any non-empty moduli space of holomorphic disks has Maslov index
>2. For monotone Lagrangians, there is also an alternative approach developed by Biran and
Cornea [BC09] via pearl complexes, which was used in Vianna’s work [Via13] and that of many
others. If one is willing to go further into virtual perturbation theories, it is shown in [FOOO10a]
that the results holds true for toric fibers.

2.2 Symplectic quasi-states and Lagrangian Floer theory
In this section we briefly review the theory of symplectic quasi-states developed by Entov and
Polterovich. A symplectic quasi-state is a functional ζ : C∞(M) → R satisfying the following
axioms for H,K ∈ C∞(M) and λ ∈ R:

(i) (Normalization). ζ(1) = 1;

(ii) (Monotonicity). If H 6 K, then ζ(H) 6 ζ(K);

(iii) (Quasi-linearity). If {H,K} = 0, then ζ(H + λK) = ζ(H) + λζ(K);

(iv) (Vanishing). If supp(H) is displaceable, then ζ(H) = 0;

(v) (Symplectic invariance). ζ(H) = ζ(H ◦ f) for f ∈ Symp0(M).

Given a symplectic quasi-state ζ and a subset S ⊂M , S is called ζ-heavy if

ζ(F ) > inf
x∈S

F (x), for all F ∈ C∞(M),

and ζ-superheavy if

ζ(F ) 6 sup
x∈S

F (x), for all F ∈ C∞(M).

One of the basic properties of these subsets proved in [EntP03] is that a ζ-superheavy subset
is always ζ-heavy, and a ζ-heavy set is stably non-displaceable (this is a notion strictly stronger
than non-displaceability). Let V ⊂ C∞(M) be a finite-dimensional linear subspace spanned
by pairwisely Poisson-commuting functions. Let Ψ : M → V ∗ be the moment map defined by
〈Ψ(x), F 〉 = F (x) for F ∈ V . A non-empty fiber of this moment map is called a stem if the
rest of the fibers are all displaceable. The following theorem was essentially proved in [EntP03,
Theorem 1.6].

Theorem 2.3 [EntP09]. A stem is a superheavy subset with respect to arbitrary symplectic
quasi-states.

In general, the existence of symplectic quasi-states is already an intriguing question. In
[EntP08] it is shown that, given a direct sum decomposition of QH2n(M) = F ⊕QH ′, where F
is a field, one may associate a symplectic quasi-state ζe to the unit element e ∈ F.

The relations between symplectic quasi-states and Lagrangian Floer theory are established
by the i-operator (sometimes also referred to in the literature as the open–closed string maps or
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the Albers map). The version of i-operator we need involves the deformation by a weak bounding
cochain b, thus it will be denoted by

i∗b : QH∗(M) → HF (L, b).

The concrete definition of i∗b was given in [FOOO09], and we refer interested readers there for
details (see also [BC09] for a similar operator in the context of pearl complexes). The key property
of i∗b we need is given in the following proposition.

Proposition 2.4. i∗b is a ring homomorphism which sends the unit of QH∗(M) to that of
HF (L, b).

This fact was shown in [FOOO09, 7.4.2–7.4.6], which passes to the so-called canonical model
of C∗(L; Λ0) and involved deep algebraic techniques in filtered A∞ algebras; therefore it is beyond
the scope of the present paper.

With this understood, our proof will rely on the following key results.

Theorem 2.5 [FOOO11b, Theorem 18.8]. Let L be a relatively spin Lagrangian submanifold of

M , b ∈ M̂weak(L) be a weak bounding cochain, and e ∈ QH∗(M ; Λ).

(1) If e ∪ e = e and i∗b(e) 6= 0, then L is ζe-heavy.

(2) If QH∗(M ; Λ) = Λ ⊕ Q is a direct factor decomposition as a ring, and e comes from a
unit of the factor Λ which satisfies i∗b(e) 6= 0, then L is ζe-superheavy.

Corollary 2.6. Suppose QH∗(M ; Λ) =
⊕n

i=1 Λei as a ring, for ei ∈ QH∗(M ; Λ) being a series
of idempotents (in particular QH∗ is semi-simple). If HF ∗((L, b); Λ) 6= 0, then L is superheavy
for a certain symplectic quasi-state ζek , 1 6 k 6 n.

Proof. This is implicit from the proof of [FOOO11b, Theorem 23.4]. Since i∗b sends the unit to
the unit, at least one of the idempotents ek has non-vanishing image. From Theorem 2.5, L is
superheavy. 2

Combining Corollary 2.6, Theorem 2.1 and (2.3), provided we have a semi-simple quantum
cohomology ring for the ambient manifold M , to show a monotone Lagrangian torus is
superheavy with respect to certain symplectic quasi-state, it suffices to compute the contribution
of each moduli space of holomorphic disks of Maslov index 2 and find the critical points for the
potential function, which will be the topic of subsequent sections.

3. A semi-toric system of CP 2

3.1 Description of the system
We first briefly recall the semi-toric model for S2 × S2 following the idea of [EntP09, Sei98].
Write S2 × S2 as

{x2
1 + y2

1 + z2
1 = 1} × {x2

2 + y2
2 + z2

2 = 1} ⊂ R3 × R3.

Let

F̃ (x1, y1, z1;x2, y2, z2) = z1 + z2,

G̃(x1, y1, z1;x2, y2, z2) =
√

(x1 + x2)2 + (y1 + y2)2 + (z1 + z2)2;

then
ΦS2×S2 = (F,G) := (1

2(F̃ + G̃), 1
2(2− G̃)) : S2 × S2

→ R2
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defines a Hamiltonian system. G̃ is not integrable when it equals 0, that is, at the anti-diagonal
∆̄. This Hamiltonian system gives a moment polytope as in Figure 1 up to a rescale of the
symplectic form, with a singularity at (0, 1) representing a Lagrangian sphere. In classical terms,
this is in fact a moment polytope for S2 × S2\∆̄, where any tubular neighborhood N(∆̄) of ∆̄
will be mapped into to a neighborhood of (1, 0).

Another useful point of view is to consider S2 equipped with the standard round metric,
which induces a metric on its cotangent bundle. S2 × S2 is obtained from T ∗S2 by a symplectic
cut at the hypersurface

M1 = {p ∈ T ∗S2 : |p| = 1},
that is, we collapse the orbits formed by the geodesic flow. The circle action on this hypersurface is
exactly the unit-speed geodesic flow we use for cutting. See [Ler95] for details of the construction
of symplectic cuts. This way we also identify naturally cotangent vectors of length 61 in T ∗S2

with S2×S2\∆. In this perspective, we may describe the T2-action induced by Φ in a geometric
way. Consider the rotation of S2 along an axis. The cotangent map of this rotation generates the
circle action τ

F̃
on the whole T ∗S2. Another circle action τ

G̃
is generated by the unit geodesic

flow on the complement of the zero section (we already used it for symplectic cut above). Both
τ
F̃

and τ
G̃

descend under the symplectic cut and commute, thus inducing a genuine T2-action

on S2 × S2\∆̄.
We proceed to the case for CP 2. Consider the Z2-action on T ∗S2 induced by the antipodal

map on the zero section. It is readily seen that the symplectic cut at the level set M1 is also
Z2-equivariant, so we may well quotient out this Z2 action first and then perform the symplectic
cut. This is equivalent to performing the symplectic cut on T ∗RP 2, which results in a
symplectic CP 2. In summary we have the following commutative diagram, which is equivariant
with respect to the action of τF̃ and τG̃.

T ∗61S
2 � � //

π

��

S2 × S2

ι

��
T ∗61RP 2 � � // CP 2

Here π is the 2-to-1 cover over T ∗RP 2 and T ∗61S
2 and T ∗61RP 2 denotes cotangent vectors of

length 61, and ι is the standard 2-fold branched cover from S2×S2 to CP 2, branching along the
diagonal. Notice now both τF̃ and τG̃ are Z2-equivariant under the deck transformation, therefore,
the above 2-fold cover induces two commuting circle action on CP 2\RP 2. However, since the
Z2-action halves the length of each geodesic, to get a time-1 periodic flow, the Hamiltonian
function generating the circle action descended from τG̃ should be the descendant of 1

2G̃ on

S2 × S2. The end result after appropriate reparameterizations is a toric model for CP 2\RP 2

with moment polytope as in Figure 2. Note from the reasoning regarding G̃, after the
reparameterization the line area of CP 2 is 2 (if the line class area had been 1, the sizes in
Figure 2 would have been 1

2 by 2). Similar to the case of S2 × S2, (1, 0) indeed represents the
standard Lagrangian RP 2 ⊂ CP 2. We will denote this semi-toric moment map as ΦCP 2 .

3.2 Symplectic cutting CP 2

The main ingredient of our proof, following an idea of the arXiv version of [FOOO12], is to
split CP 2 into two pieces and glue the holomorphic curves. The splitting we use is described
as follows. We continue to regard CP 2 as a result of cutting along M1 in T ∗RP 2. Consider
Mε = {|p| = ε} ⊂ T ∗RP 2 ↪→ CP 2. A further symplectic cut along Mε results in two pieces, and
we examine this cutting in slightly more detail.
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Figure 3. Cutting along Mε.

Let X0, X1 be the two components of CP 2\Mε, where X1 contains the original RP 2. Their

closures, denoted X ′0 and X ′1, respectively, have a boundary being the lens space L(4, 1) equipped

with the standard contact form (the one coming from S3 quotiented by a Z4-action). Therefore

a neighborhood of the boundary admits a local S1-action.

As is constructed in [Ler95], by quotienting such an action on ∂X ′1 and gluing back to X ′1,

one completes the symplectic cutting and this operation results in X ′′1 := (CP 2, 2εω0). Denote

by H ∈ H2(CP 2,Z) the homology class of a line; then X ′′1 \X1 is an embedded symplectic divisor

in X ′′1 of class 2H, which we called the cut locus or cut divisor. Following the same procedure for

the other piece X0 leads to a minimal symplectic 4-manifold (see for example [Dor13, Lemma

1.1]), along with a symplectic sphere of self-intersection (+4) inherited from the quadric Q :=

{x2+y2+z2 = 0} in the original CP 2. Moreover, it contains a symplectic sphere of self-intersection

(−4) as the cut locus, from which we see that X ′′0 is indeed the symplectic fourth Hirzebruch

surface F4 (meaning a symplectic S2 × S2 with (−4)-divisor) by McDuff’s famous classification

of rational and ruled manifolds [McD90].

We also want to examine such a cut process from the other side of M1. Biran’s decomposition

theorem for CP 2 [Bir01] implies that CP 2\RP 2 is indeed a symplectic disk bundle O(4) over

a sphere, where the zero section has symplectic area 4, and the symplectic form is given by

π∗ωΣ + d(r̄2α). Here π is the projection to the zero section, ωΣ a standard symplectic form

on the sphere up to a rescale, r̄ the radial coordinate of the fiber and α a connection form of

the circle bundle associated to O(4). Then the fiber class has at most symplectic area 1, and

the total space can be identified symplectically with CP 2\RP 2 with the standard symplectic

form.

In this case X ′0 is identified with {|r̄| 6 1 − ε} ⊂ O(4) and the geodesic flow in T ∗RP 2

is identified with the action of the one obtained by multiplying eiθ in each fiber. Therefore,

one may perform a symplectic cut along |r̄| = 1 − ε for 1 � ε > 0, the resulting manifold is

again the symplectic F4 as above, where the form is compatible with the standard (integrable)

complex structure obtained as P (O ⊕ O(4)). To summarize, we have the following lemma (see

also Figure 3).

Lemma 3.1. Consider CP 2 as a consequence of a symplectic cut along the contact type

hypersurface {|p| = 1} ⊂ T ∗RP 2. Then a further symplectic cut along {|p| = ε} results in a

CP 2 with rescaled symplectic form, as well as a symplectic fourth Hirzebruch surface whose zero

section has symplectic area equal to 2. Moreover, the symplectic CP 2 comes naturally with a

symplectic quadric as the cut locus, and F4 with a (−4)-sphere as the cut locus.
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Figure 4. H2(F4, L;Z).

Remark 3.2. Discussions above seem to be well known. For a dual perspective via symplectic
fiber sum, one is referred to, for example, [Dor13]. In particular, the above cutting can be seen
as a reverse procedure of symplectic rational blow-down of the (−4)-sphere in the symplectic F4.

3.3 Second homology classes of CP 2 with boundary on a semi-toric fiber
From § 3.1, we have obtained a desired family of Lagrangian tori as semi-toric fibers in CP 2.
From now on L will denote one of the semi-toric fibers parameterized by R2-coordinates in
Figure 2. Our next task is to understand H2(CP 2, L). In our exposition we will use Borel–
Moore homology, for which one can find a comprehensive treatment in [CG97]. However, it is
instructive to point out that in this article we only consider Borel–Moore homology for symplectic
manifolds with cylindrical ends. In such cases, Borel–Moore homology is simply a convenient
terminology, equivalent to usual homology relative to cylindrical ends. When we consider Borel–
Moore homology classes relative to a Lagrangian L, this means the homology relative to both
cylindrical ends and L.

From the usual long exact sequence for relative homology, one easily sees that H2(CP 2, L;Z)
has rank 3. Again split CP 2 along Mε into a copy of F4 and (CP 2, εωstd) as in § 3.2, while keeping
L ⊂ F4 by choosing ε small enough.

From the classification theorem of homology classes in [CO06], one obtains eight homology
classes of interests, marked as [Di] and [ei], i = 1, 2, 3, 4 in Figure 4. In the figure, ei are the
T2-equivariant divisors and, as relative cycles, Di denote the images of J0-holomorphic disks
which intersect ej exactly δij times counting multiplicity. For ease of drawing we did not draw
D3 perpendicular to e3, but it is understood in the way Cho and Oh describe in [CO06].

Out of these eight classes, one has a basis of H2(F4, L;Z) consisting of [e1], [e2], [D1] and
[D2]. Other classes have relations

[e3] = [e1], [e4] = [e2]− 4[e1], (3.1)

[D1] + [D3] + 4[D2] = [e2], [D2] + [D4] = [e1]. (3.2)

One way of checking these relations is to use Poincaré pairings and gluing chains with opposite
boundaries on L. Notice that there is a natural homomorphism to the Borel–Moore homology
of F4\e4:

ι : H2(F4, L;Z) → HBM
2 (F4\e4, L;Z).

Here ι is indeed the composition of two homomorphisms: the first from H2(F4, L;Z) to H2(F4,
L ∪ N (e4);Z) by quotienting a tubular neighborhood N (e4) of e4, and the second from
the excision isomorphism H2(F4, L ∪ N (e4);Z) to H2(F4\N ′(e4), L ∪ C;Z), where N ′(e4) is a
smaller tubular neighborhood contained in N (e4), and C = N (e4)\N ′(e4) is a cylindrical end in
F4\N (e4). The latter is by definition a Borel–Moore homology relative to L, which by homotopy
invariance of usual relative homology is exactly what is on the target of ι, since F4\e4 is homotopy
equivalent to F4\N (e4). In this special case it can be intuitively understood as restricting a
singular chain to the portion that is inside F4\e4.
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ι is surjective with kernel [e4], so the classes in HBM
2 (F4\e4, L;Z) can still be represented by

ei, i = 1, 2, 3 and Dj , j = 1, 2, 3, 4 appropriately punctured with the same relations as in (3.1),
(3.2). These facts can be easily seen from the duality between the Borel–Moore homology and
the usual cohomology.

On the other side of the cutting, which is CP 2\Q, where Q= {x2+y2+z2 = 0} is the standard
quadric, the second Borel–Moore homology contains only a 2-torsion: this is indeed the relative
homology group H2(CP 2, Q;Z). We will only consider Borel–Moore cycles with asymptotics
equal to a union of certain Reeb orbits of ∂∞(CP 2\Q) = L(4, 1). Regard Borel–Moore cycles
with 2k punctures (number of Reeb orbits) at infinity as equivalent, and denote such equivalence
classes by kH ′. Note that k already contains information of the homology classes: cycles in k1H

′

and k2H
′ represent the same Borel–Moore classes in H2(CP 2\Q, ∂∞(CP 2\Q)) if and only if

k1 − k2 ≡ 0 mod 2, but the relative Chern number will depend on the actual equivalence classes
instead of solely the Borel–Moore classes. See § 3.4.

Relations between classes in X0 = F4\e4 and X1 = CP 2\Q
To describe the relations between classes in the two pieces, we first fix a basis of HBM

2 (F4\e4,
L;Z) consisting of {ι[e2], ι[D1], ι[D2], ι[D4]}. When no possible confusion occurs, we will simply
suppress ι by abuse of notation. Notice that cycles in kH ′ in X1 have 2k punctures counting
multiplicity, which matches with cycles with coefficient 2k in the D4-component in X0. Of
particular interest is that by matching a cycle CH′ ⊂ X1 in class H ′ with a 2-cycle of class
2[D4] with correct asymptotics, one obtains a relative cycle in CP 2 with boundary on L. The
class in H2(CP 2, L;Z) represented by such a cycle is denoted by [D′4] = 2[D4]#[H ′].

To understand [D′4] more explicitly, notice that ∂[D′4] = 2∂[D4] = −2∂[D2] ∈ H1(L;Z).
Therefore, one may match a cycle in class [D′4] with one in 2[D2] to obtain a closed cycle in
CP 2. Such a cycle intersects e2 positively twice counting multiplicities, and therefore represents
nothing but the line class in projective space H ∈ H2(CP 2;Z). In summary, we deduce that

[H ′]#2[D4]#2[D2] = [D′4]#2[D2] = H ∈ H2(CP 2;Z). (3.3)

Classes [e1] and [e3] do not extend naturally to closed classes as in H2(CP 2). However, using the
same method as for [D4], taking them twice caps cycles in H ′ of X1. Therefore we also have

[H ′]#2[e1] = [H ′]#2[e3] = H ∈ H2(CP 2;Z). (3.4)

These gluing relations will play an important role later. It is also readily seen that {H, [D1], [D2]}
forms a basis of H2(CP 2, L;Z), where F4\e4 is (symplectically) embedded to CP 2 in a canonical
way, thus inducing a natural inclusion of Borel–Moore 2-cycles.

3.4 Computation of the relative Chern numbers and Conley–Zehnder indices
We now compute the Maslov indices for H2(CP 2, L) by understanding the relative Chern
classes and Conley–Zehnder indices involved. A technical reason for our case being slightly more
complicated than the case of a Lagrangian S2 is that there is no natural splitting of T (T ∗RP 2).
This is caused by the non-orientability of RP 2 (to compare the case of Lagrangian S2, see for
example [Hin04, Eva10b, LW12]). However, we will use a trivialization of the splitting surface
Mε which seems even more natural and convenient in the (semi-)toric context. From § 3.2, we
remind the reader that Xi, i = 0, 1 denotes the two components of the complement of Mε ⊂ CP 2

and X ′i represents their closures.
As we already saw, there is an S1-action on ∂X ′i = Mε for both i = 0, 1. In the toric picture

of CP 2\RP 2, such an S1-action induces a vector field on Mε which is dual to ∂/∂x2 in the
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moment polytope. This action induces a natural trivialization of the contact distribution over
its own orbits. We will call such a trivialization Φ and use it to compute the Conley–Zehnder
indices and first Chern numbers. For the definitions of these two invariants one is referred to
[EGH00], or [Eva10b, Hin04].

By definition, the Poincaré return map with respect to such a trivialization is always identity,
therefore,

µΦ
CZ ≡ 0. (3.5)

We will pursue the first Chern number for (Borel–Moore) classes described in § 3.3 in the rest of
the section.

We start with X0. As always, we assume the Lagrangian torus fiber is contained in this side.
Consider again the O(4) disk bundle as in § 3.2, from which we cut along another hypersurface
Mε/2 = {r = 1 − ε/2} to obtain a symplectic fourth Hirzebruch surface X0. One may also
equip it with a compatible toric complex structure. The anti-canonical divisor is defined by the
equivariant divisors on the boundary of the moment polytope; therefore, the anti-canonical line
bundle

∧2 TX0 admits an equivariant section ξ vanishing exactly on the boundary equivariant
divisors with order 1.

Embed X0 equivariantly into X0. Take any cycle u : Σ →X0 with boundary on a torus fiber L
and asymptotics being Reeb orbits of ∂X0 with additional assumption that it intersects the toric
boundary of X0 transversally. It has boundary Maslov index zero if we take the trivialization
induced by the torus action near L. Assume that u intersects transversally with the equivariant
divisors. The pull-back u∗

∧2(TX0, J) thus comes naturally with a section u∗ξ which vanishes
at the inverse image of u(Σ) ∩⋃4

i=1 ei with order ±1 depending on the intersection form. u∗ξ is
clearly equivariant with the S1-action on ∂X0 and the torus boundary thus agreeing with the
trivialization there. This observation immediately computes the following:

cΦ
1 (D1) = cΦ

1 (D2) = cΦ
1 (D3) = 1, cΦ

1 (D4) = 0. (3.6)

We would like to remind the reader that D4 here represents a Borel–Moore homology class of
X0, thus has no intersection with the relevant equivariant divisors (X0

∼= F4\e4). Notice also
that the first Chern number of e2 is independent of the choice of trivializations. From (3.1) and
(3.2) we may compute the rest of the Chern numbers, summarized as follows:

cΦ
1 (e1) = cΦ

1 (e3) = 1, cΦ
1 (e2) = 6. (3.7)

For the relative Chern classes in X1, we again focus on cycles with asymptotics equalling copies
of S1-orbits on Mε. Note that, when counting multiplicity, there are always an even number of
S1-orbits since simple orbits represent a non-trivial element in π1(T ∗RP 2). The class kH ′ has 2k
asymptotics, which can be capped by 2k[D4]#2k[D2] to form a closed cycle in CP 2 from (3.2).
Such a class intersects positively with e2 at 2k points, thus itself being the class kH in CP 2.
From our computation in X0, we see that

cΦ
1 (kH ′) = 3k − 2k = k > 0. (3.8)

4. Classification of Maslov 2 disks

4.1 A quick review of symplectic field theory and neck-stretching
In this section we collect basic definitions and facts from symplectic field theory (SFT),
especially the part of neck-stretching, mostly for the reader’s convenience and to fix notation.
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For more details, we refer interested readers to [EGH00, BEHWZ03] and other expositions such
as [Eva10b, Hin04, LW12].

Given a closed symplectic manifold (M,ω), we call (N,α) a contact type hypersurface if there
is a neighborhood V of N such that V is diffeomorphic to (−ε, ε)×N , and ∂s is a Liouville vector
field in V , that is, L∂sω = ω. Here s is the coordinate of the first component of V . In this case,
α = i∂sω is a contact form, of which the contact distribution is denoted by ξ, and the Reeb flow
is denoted by R.

An almost complex structure J ∈ Jω is called adjusted if the following conditions hold in V :

(i) J |ξ = J̃ is independent of s;

(ii) J(∂s) = R.

We now consider a deformation of a given adjusted almost complex structure J . Let Vt = [−t−ε,
t+ ε] and βt : Vt → [−ε, ε] be a strictly increasing function with βt(s) = s+ t on [−t− ε,−t− ε/2]
and βt(s) = s− t on [t+ ε/2, t+ ε]. Define a smooth embedding ft : Vt ×N ↪→ M by

ft(s,m) = (βt(s),m).

Let J̄t be the ∂/∂s-invariant almost complex structure on Vt × N such that J̄t(∂/∂s) = R
and J̄t|ξ = J |ξ. Glue the almost complex manifold (M\ft(Vt × N), J) to (Vt × N, J̄t) via ft to
obtain the family of almost complex structures Jt on M .

Notice that each Jt agrees with J away from the collar (−ε, ε) × N . And on this collar, it
agrees with J on ξ. Suppose N is separating, and let M\N = W ∪ U , where W has a concave
boundary and U a convex boundary. When t → ∞, the neck-stretching process results in an
almost complex structure J∞ on the union of symplectic completions W = (−∞, 0]×N∪W of W
and U = U∪[0,+∞) of U . On the cylindrical ends, we require J |∞(∂s) = R and J |∞ = J |ξ similar
to the definition of J t. In the exact same way, we define J∞ on SN = ((−∞,+∞)×N, d(etα)),
the symplectization of N .

Let M∞ = W ∪ SN ∪U and J∞ be the almost complex structure defined above. Let Σ be a
Riemann surface with nodes. A level-k holomorphic building consists of the following data.

(i) (Level) A labelling of the components of Σ\{nodes} by integers {1, . . . , k} which are the
levels. Two components sharing a node differ at most by 1 in levels. Let Σr be the union of
the components of Σ\{nodes} with label r.

(ii) (Asymptotic matching) Finite energy holomorphic curves v1 : Σ1 → U , vr : Σr → SN ,
2 6 r 6 k − 1, vk : Σk → W . Any node shared by Σl and Σl+1 for 1 6 l 6 k − 1 is a positive
puncture for vl and a negative puncture for vl+1 asymptotic to the same Reeb orbit γ. vl should
also extend continuously across each node within Σl.

Now for a given stretching family {Jti} as previously described, as well as Jti-curves ui : S →

(M,Jti), we define the Gromov–Hofer convergence as follows.
A sequence of Jti-curves ui : S → (M,Jti) is said to be convergent to a level-k holomorphic

building v in Gromov–Hofer’s sense, using the above notation, if there is a sequence of maps
φi : S → Σ, and for each i, there is a sequence of k−2 real numbers tri , r = 2, . . . , k−1, such that:

(i) (domain) φi are locally biholomorphic except that they may collapse circles in S to nodes
of Σ;

(ii) (map) the sequences ui ◦ φ−1
i : Σ1 → U , ui ◦ φ−1

i + tri : Σr → SH, 2 6 r 6 k − 1, and
ui◦φ−1

i : Σk →W converge in C∞-topology to corresponding maps vr on compact sets of Σr.

Now the celebrated compactness result in SFT reads as follows.
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Theorem 4.1 [Eva10a, Theorem 5.32], [BEHWZ03, Theorem 10.3]. If ui has a fixed homology
class, there is a subsequence tim of ti such that utim converges to a level-k holomorphic building
in the Gromov–Hofer sense.

This theorem as stated appeared in [Hin04, Eva10b]. It should be considered an immediate
consequence of [BEHWZ03, Theorem 10.3], but some clarifications might be appropriate. The
original formulation in [BEHWZ03] involves the finiteness of the following symplectic energy
E(u) defined in [BEHWZ03, § 9.2]:

E(u) = Eω(u) + Eλ(u),

Eω(u) =

∫
S1

u∗ω +

∫
S2

u∗p∗Nω,

Eλ(F ) = sup

∫
S2

(ϕ ◦ a) da ∧ u∗λ.

Here, u : S → (M,Jti) is a Jti-holomorphic map as before, S1 = S\S2, S2 = u−1(V ) and pN :
(−ε, ε)×N is the projection to the factor N (considered as {0}×N ⊂ (−ε, ε)×N = V ). We will
suppress the dependence on ti since it is irrelevant.

The finiteness of E(u) can be implied by the restriction of fixed homology class, justified as
follows. First of all, notice Eω(u) 6 Cω(u) for some constant C depending only on ε. It suffices
to compare the two sides in the portion S2. In our coordinates, ω = d(etλ), so∫

S2

u∗p∗Nω =

∫
S2

u∗(dt ∧ λ+ dλ)

6 eε
∫
S2

u∗(etdt ∧ λ+ etdλ)

= C

∫
u∗d(etλ) = Cω(u).

One then notices this is the only relevant finite energy condition from [BEHWZ03, Lemma 9.2],
which asserts C̃ · Eω(u) > E(u) for some constant C̃ again depending only on ε. The upshot is
that the finiteness of ω-area is sufficient to guarantee the Gromov–Hofer compactness as claimed
in Theorem 4.1; for this reason we will not mention the energy condition in the rest of our paper.

The definitions and statements above hold true for bordered stable maps with no extra
complications, as long as the Lagrangian boundary does not intersect the contact type boundary
N . Since the choice of almost complex structure will play an important role in subsequent
sections, we would like to specify a special class of adjusted almost complex structures for later
applications.

We end this section by drawing the reader’s attention to a special class of adjusted almost
complex structures particularly suited for our purpose, which can easily be generalized to any
toric manifolds or semi-toric situations similar to the case treated here. Denote by e′1, e′2 and e′3
the pre-images of the three edges of ΦCP 2 , numbering in a coherent way as in F4 in § 3.3.

Definition 4.2. We say J ∈ J εtadj, the space of compatible toric adjusted almost complex

structures, if J is compactible with ωstd|X0 and adjusted to the hypersurface Mε = Φ−1
CP 2({x2 =

1 − ε}) while e′1, e′2 and e′3 are J-holomorphic in X0 = Φ−1
CP 2({x2 < 1 − ε}). Moreover, J is

invariant under the circle action generated by Reeb flow in a neighborhood of Mε.

It is not hard to see that J εtad j is non-empty. Note that e′1, e′3 intersects Mε transversely,
and they are foliated by simple orbits of the circle action. Moreover, the Liouville vector field
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near Mε is invariant under the circle action, and is tangent to e′1 and e′3 in a neighborhood of
Mε. Therefore, one only needs to define the almost complex structure to be adjusted, whose
restriction to the contact distribution is invariant under the circle action, then extend to the rest
of X0 in an ωstd|X0-compatible way so that e′i ∩X0 are holomorphic for i = 1, 2, 3.

We would like to point out that one can still achieve transversality within J εtad j because no
(punctured) holomorphic curves lie entirely in the region where we fixed the almost complex
structure, with the exceptions of e′i, which are clearly regular in their own right (see Wendl’s
automatic transversality in § 4.2.3). Moreover, the space of such almost complex structures is
contractible, because it is just the space of sections of a bundle with contractible fibers with
prescribed values on a closed set.

4.2 Contributions of holomorphic disks of Maslov index 2
In this section we will compute terms involved in equation (2.3) by studying the evaluation
of several moduli spaces. We first study the configurations of limits under neck-stretching of
holomorphic disks of Maslov index 2, then study all possible cases of resulting holomorphic
buildings.

Here we fix some more notation convenient for our exposition. For a Borel–Moore class B,
we consider the moduli space of holomorphic disks punctured at an interior point and with one
marked point on the boundary, which we denote by Mk

1(B;M,J) if the interior puncture is
asymptotic to k times of a simple Reeb orbit. We also consider the evaluation maps

evi :Mk
1(B;M,J) → N ,

where N is the Morse–Bott manifold in which the interior puncture lies. When no confusion is
likely to occur, we sometimes suppress M and J .

4.2.1 Neck-stretching of holomorphic disks. Given J ∈ J εtad j , we may perform neck-

stretching described in 4.1 along Mε, and denote J+ := J∞|X0 , J− := J∞|X1 . We would like
to clarify the choice of Mε first. Given a Lagrangian torus fiber, we can always choose ε � 1
so that L lies inside X0, and we only consider the neck-stretching along this fixed hypersurface.
Although such a fixed stretching data cannot compute the superpotential for all Lagrangian
fiber in the semi-toric picture, this is irrelevant; we are interested in non-displaceability and
superheaviness of a fixed fiber instead of a theory of family Lagrangians. Hence we remain in
the usual neck-stretching argument set-up.

Recall that X0 can be compactified to F4 by collapsing the circle action on the boundary.
Under this operation, the asymptotic boundary of X0 collapses to the edge e4, and (part of) e′i
gives rise to ei in F4 for i = 1, 2, 3.

Let L be an arbitrary torus fiber in X0 we first note the following lemma.

Lemma 4.3. For J ∈ J εtad j , suppose one has an irreducible J+-holomorphic curve C with finite
energy, possibly with boundary on L and punctures on ∂∞(X0). Assume C has finite ω-energy.
Then it has its class in the positive span of {[Di]}4i=1. In particular, the relative Chern number
cΦ

1 (C) > 0, and equality holds if and only if [C] = k[D4] for some k ∈ Z>0.

Proof. We use the compactification (X̃0, J̃) from Lemma 4.7, of which the proof is independent
of our actual neck-stretching analysis.

From this compactification (by collapsing circle actions on ∂∞X0) we can obtain a punctured
holomorphic curve in an almost complex manifold (X̃0, J̃) simply by embedding C into X0 ↪→ X̃0.
From the finite energy assumption and the compatibility of ω̃ and J̃ , the image of C in (X̃0, J̃)
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can be compactified by removal of singularities, to a closed J̃-holomorphic curve with boundary
on L. Since Σ is a J̃-holomorphic curve identified with e4 in X̃0, and the rest of the ei are also
naturally identified with compactification’s toric boundary of X0 (again from collapsing the
circle action), the first assertion is a direct consequence of positivity of intersection. The second
assertion follows from the calculation of § 3.4. 2

We are now ready to prove the following lemma.

Lemma 4.4. For J ∈ J εtad j , the equation of the potential function (2.3) has at most four terms

of contributions coming from [D1], [D2], [D3] and [D′4], i.e.Mk
1(L; J, β) is non-empty only when

β is one of these four classes.

Proof. Given J ∈ J εtad j , by neck-stretching we obtain a family of almost complex structure Jt.
Consider a homology class A which admits Jti-holomorphic disks with Maslov index 2 for a
sequence ti ↗ ∞, i ∈ Z+. By the compactness Theorem 4.1, it converges to a holomorphic
building. We then have one of the following cases.

Case 1: the X1-part of the holomorphic building is empty. Since X0 is symplectomorphic to
F4\e4, (3.6) and Lemma 4.3 implies D1, D2, D3 are the only possibilities, otherwise the Maslov
index must exceed 2.

Case 2: the X1-part of the holomorphic building is non-empty. Consider the X1-part of the
holomorphic building S1. Since it must have periodic orbits as asymptotes, it is a Borel–Moore
cycle of class kH ′ for some k ∈ Z+. Therefore, cΦ

1 (S1) > 1 by (3.8), and the equality holds only
when k = 1. To close up this cycle in CP 2, one must cap S1 by some cycle in X0. However,
from our computations in § 3.4 and Lemma 4.3 we saw that all classes but multiples of [D4] have
positive first Chern number. Therefore, the only J∞-holomorphic building with Maslov index 2
consists of a cycle in class H ′ in X1 and a holomorphic disk in the class 2[D4] in X0. The class
they form in H2(CP 2, L;Z) is [D′4]. 2

Lemma 4.4 narrows our study down to four classes. Notice the above two lemmata assume
no genericity of J . Moreover, from the proof we see that to understand the contributions of [Di],
i = 1, 2, 3, it suffices to study the stretching limit. To understand holomorphic disks in [D′4], we
need a slightly more detailed description of the limit holomorphic building.

Lemma 4.5. When t →∞, Jt-holomorphic disks in class D′4 converge to a holomorphic building
consisting of the following levels, if they exist:

(1) the X1-part is a holomorphic plane in class H ′ with one asymptotic puncture of multiplicity
2;

(2) the symplectization part is a trivial cylinder with one asymptotic puncture of multiplicity
2 on both positive and negative sides;

(3) the X0-part is a holomorphic disk in class 2[D4] with a single puncture of multiplicity 2.

Proof. In the proof of Lemma 4.4 we already saw that the X1-part can only be of class H ′ and
that the X0-part is a cycle in class 2[D4] by counting Maslov indices and numbers of punctures.
To see that the X0-part is a holomorphic disk with a single puncture of multiplicity 2 instead of
two simple punctures, notice that otherwise the holomorphic building will be forced to have at
least genus 1, since simple orbits cannot be capped by disks on the X1 side. This verifies (3).

In the symplectization part, since all orbits have the same period, and the positive end
has exactly one orbit of multiplicity 2, the negative end also has at most 2 orbits counting
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multiplicities. Again, since simple orbits do not close up in X1, there must be two negative ends
counting multiplicity. Since the λ-energy (see its definition in, for example, [EGH00]) is now
zero for the symplectization part, the image of the symplectization part is a trivial cylinder.
Since branched covers over the trivial cylinder always create genus in this holomorphic building,
we conclude that the symplectization part is indeed an unbranched double cover of the trivial
cylinder. This verifies (2), as well as that the X1-part has exactly one puncture of multiplicity
2. The rest of the assertions in (1) are easy. 2

4.2.2 Contribution of [Di], i = 1, 2, 3. In this section, we prove the following proposition.

Proposition 4.6. For generic J ∈ J εtad j , deg(ev0∗[M1([Di]; J)]) = 1 for i = 1, 2, 3.

Proof. Let us perform a neck-stretch on J , so that all disks of M1([Di]; Jt) lie entirely in X0.
Since J is cylindrical near Mε, we have the following claim.

Lemma 4.7. The pair (X0, J
+ = J∞|X0) is biholomorphic to an open set U of a closed symplectic

manifold with a compatible almost complex structure (X̃0, ω̃, J̃), so that the following holds:

(i) (X̃0, ω̃) is in fact the result of the symplectic cut constructed in § 3.1, i.e. X̃0 = X ′′0 = F4;

(ii) Σ = X̃0\U is a J̃-divisor.

Proof. This is simply a translation between the set-up of relative invariants of [LR01] and the one
of SFT in the case where Reeb orbits foliate the contact type hypersurface. X̃0 as a symplectic
manifold comes from collapsing the circle action on ∂X0, which forms a symplectic divisor Σ.
For some small δ > 0, near Σ the symplectic form of X̃0 can be written as:

ω = π∗τ0 + d(r′λ′), (4.1)

for δ > r′ > 0. Here τ0 is a symplectic form on Σ, r′ a radial coordinate; π is the radial projection
to Σ, and λ′ a connection 1-form (in our case it is also a contact form) on level sets of r′, satisfying
dλ′ = π∗τ0. Given any complex structure J on Σ, J can be lifted to the horizontal distributions
ξ (i.e. the contact distributions), while the almost complex structure on the whole neighborhood
can be defined by further requiring J(r′∂r′) = R′. Here R′ is the Hamiltonian flow generated
by the local (in our case also global) S1-action. Conversely, given an almost complex structure
satisfying J(r′∂r′) = R′ and invariant under the circle action on Ũ\Σ where Ũ is a neighborhood
of Σ, it has a natural extension to Σ.

On the SFT side, endow a symplectic form written as d(rλ) to the collar of N = ∂X0,
1 + δ > r > 1, where λ is the contact form on N . This coordinate can be transformed back
to the one in § 4.1 by taking a log-function on the cylindrical coordinate. The zero level set
there becomes the level set r = 1 in the current coordinate. In the current coordinate, the toric
adjustedness of J+ is equivalent to the invariance under both flows of r∂r and R, and that
J+(∂′r) = R, where R are the contact distribution and the Reeb flow, respectively.

Notice the fact that (N × (1, 1 + δ), d(rλ)) is symplectomorphic to (N × (0, δ), dλ + d(rλ))
just by shifting the r-coordinate. By choosing τ0 so that π∗τ0 = dλ, the symplectic cut,
from the perspective of this coordinate change, is simply to glue a divisor Σ to (N × (0, δ),
dλ+ d(rλ)), then the symplectic form extends naturally. In particular, the shift above provides
a symplectic identification of a collar neighborhood of ∂X0 ⊂ X0 and Σ of Ũ\Σ. Under such an
identification, J+ induces an almost complex structure J̃ on Ũ\Σ, which is invariant under r′∂r′

and the Hamiltonian flow R′ by the assumption of toric adjustedness. It is then straightforward
to see that J̃ extends to the cut divisor Σ in the new coordinate. Extending further
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the identification on Ũ to a diffeomorphism between U = X̃0\Σ and X0, we induce J̃ by J+

on the whole X̃0. 2

Given Lemma 4.7 and the removable singularity theorem, we may identifyM1([Di], Jt) with
the moduli space of holomorphic disks without punctures in F4 endowed with an toric adjusted
almost complex structure J̃ so that equivariant divisors as ei are J̃-holomorphic. A problem
arises after the compactification: J̃ is never generic, in the sense that e4 has negative Chern
number, yet always J̃-holomorphic. We cannot use Cho–Oh’s classifications either, because J̃ is
not toric. However, we can still prove the following lemma.

Lemma 4.8. The moduli space M1([Di]; X̃0, J̃) is compact for i = 1, 2, 3. Hence when t is large
enough,

ev0∗([M1([Di];CP 2, Jt)]) = ev0∗([M1([Di]; X̃0, J̃)]), i = 1, 2, 3.

Proof. To understand the left-hand side, we may consider the problem in the limit and replace the
left-hand side by X0 and J+. By the same analysis as in case 2 of Lemma 4.4, any leveled curves
coming as a limit for t → +∞ must have an empty X1-part. Further, Lemma 4.7 identifies such
a curve as one on the right-hand side which has no e4-component. Hence the conclusion follows
provided one can prove the [Di] are indecomposable on the right-hand side. Corresponding classes
are also indecomposable on the left-hand side by a similar reasoning. But in our application we
will assume L is monotone, so all classes on the left-hand side are clearly indecomposable for the
ω-area reason, so we will omit the actual proof.

Take [D1] as an example, and the rest of the cases are similar. Assume u : Σ → (X̃0, J̃) is
a stable curve in the moduli space of right-hand side with irreducible components Σ1, . . . ,Σk,
and the homology classes of all of these components are written in terms of basis {[Di]}4i=1. Let
Σ1 . . . ,Σl be components of e4, while [e4] = [D1] + [D3] − 4[D4]. Now Lemma 4.3 implies that
[Σj ], j > l all lie in the positive cone spanned by [Di] for i = 1, 2, 3, 4. By comparing coefficients
of [D3], we conclude that l = 0. It then follows easily that k = 1 and [Σ1] = [D1]. Since [D1] pairs
trivially with [e4], our claim is proved by positivity of intersections. 2

Lemma 4.8 implies that M1([Di]; X̃0, J̃) is in fact compact even with no genericity
assumption since the class itself is indecomposable. Therefore, the standard cobordism arguments
apply. In particular, one may choose a generic path {Jt}t∈[0,1] connecting J0 and J1 = J̃ for J0 also
satisfying that ei, i = 1, 2, 3, 4 are J0-holomorphic. Recall from [CO06] that there is an integrable
complex structure J0 where ev0∗([M1([Di]; X̃0, J0)]) is known to be [L], hence concluding our
proof of Proposition 4.6. 2

4.2.3 The contribution of [D′4]. Our goal for this section is to prove the following proposition.

Proposition 4.9. For a generic choice of J ∈ J εtad j ,

deg(ev0∗[M1(D′4;CP 2, J)]) = 2.

As already explained in previous sections, we only need to consider J ∈ J εtad j with
its neck stretched sufficiently long. We first briefly review Wendl’s automatic transversality
theorem.

One of the new ingredients of Wendl’s theorem is the introduction of the invariant parity,
defined in [HWZ95], to the formula. Let Y be a symplectic cobordism, where Y ± are the positive
(respectively negative) boundaries. Given a T -periodic orbit γ of Y ±, one has an associated
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asymptotic operator, which takes the form of A = −I0∂t − S(t) on L2(S1,R2) by taking a
trivialization of the normal bundle. Here I0 is the standard complex structure on R2, while S(t)
is a continuous family of symmetric matrices. For λ ∈ σ(A), one may define a winding number
w(λ) to be the winding number of non-trivial λ-eigenfunction of A. It is proved in [HWZ95]
that w(λ) is an increasing function of λ which takes every integer value exactly twice. For
non-degenerate operators A (i.e. 0 /∈ σ(A)), we define

α+(A) = max{w(λ) | λ ∈ σ(A), λ < 0},
α−(A) = min{w(λ) | λ ∈ σ(A), λ > 0},

and the parity p(A) = α+(A) − α−(A)(mod 2). If A is degenerate, we define α±(A ± δ) and
p(A ± δ) for small δ > 0. For a given puncture, the actual perturbation depends on which
of Y ± it lies on, as well as whether the moduli space we consider constrains the puncture
inside a Morse–Bott family. Chris Wendl pointed out to the author that, in our case when the
contact type boundary is foliated by a 2-dimensional family of Reeb orbits, since the eigenvalue
0 has multiplicity 2, either way of perturbation incurs odd parity. (The reader should also be
reminded that the parity is independent of the choice of the trivialization; hence it suffices to
look at the trivialization where the Poincaré return map is trivial, that is, the one we chose for
µCZ = 0.)

Now given a non-constant punctured holomorphic curve u : Σg → Y , the virtual index is
computed as

ind(u) = (n− 3)χ(Σ) + 2cΦ
1 (u) +

∑
γ+

(µCZ(γ+) + 1
2 dim(N ))−

∑
γ−

(µCZ(γ−)− 1
2 dim(N )).

Here γ± runs over all positive (respectively negative) punctures, and N is the Morse–Bott
manifold formed by the Reeb orbits.

We now define the normal Chern number as:

2cN (u) = ind(u)− 2 + 2g + #Γ0 + #π0(∂Σg).

Here, Γ0 denotes the number of punctures of even parities; hence in our applications when
the contact type boundary is foliated by 2-dimensional family of Reeb orbits, this term always
vanishes.

The last input is the total order of critical points of an almost complex curve u:

Z(du) =
∑

z∈du−1(0)∩Σ

ord(du; z) +
1

2

∑
z∈du−1(0)∩∂Σ

ord(du; z).

Having understood these, Wendl’s automatic transversality theorem reads as follows.

Theorem 4.10 [Wen10, Theorem 1]. Suppose dimY = 4 and u : (Σ, j) → (Y, J) is a non-constant
curve with only Morse–Bott asymptotic orbits. If

ind(u) > cN (u) + Z(du),

then u is regular.

For the contribution to equation (2.3) of holomorphic disks in class D′4, we consider the
gluing problem of M2(H ′;X1, J

−) and M2
1(2[D4];X0, J

+). Note that this is sufficient by
the configuration analysis of the limit holomorphic building in Lemma 4.5. The standard gluing
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argument requires the following conditions:

(1) curves in both M2(H ′;X1, J
−) and M2

1(2[D4];X0, J
+) are regular;

(2) ev1 × ev1 :M2(H ′;X1, J
−)×M2

1(2[D4];X0, J
+) → S2 × S2 is transversal to the diagonal

∆ ⊂ S2 × S2. Here S2 = N is exactly the Morse–Bott family parameterizing Reeb orbits
on Mε.

One sees that condition (2) is automatic since the first component of the evaluation map is
surjective onto S2. This corresponds to the standard fact in Gromov–Witten theory that, given
any compatible almost complex structure J in CP 2, an embedded J-holomorphic conic Σ and
a point p ∈ Σ, there is a unique J-complex line tangent to Σ at p. For (1) we apply Wendl’s
automatic transversality in dimension 4.

The virtual index of an irreducible curve C ∈M2(2[D4];X0, J
+) reads:

ind(u) = (2− 3)(2− 1− 1) + 0 + 0− (0− 1) = 1.

The computation also shows that, for generic J , the compactification of this moduli space does
not contain irreducible curves with critical points or sphere bubbles since these are codimension 2
phenomena. On the other hand, we can compute cN (u) = 0. Therefore, automatic transversality
holds for all C ∈M2

1(2[D4];X0, J
+).

To show that disk bubbles do not appear, we again use Lemma 4.7 to identify the moduli
space M2

1(2[D4];X0, J
+) to one on F4, denoted by Mcrit

1 (2[D4]; e4, X̃0, L; J̃), where J̃ is the
extended almost complex structure.

Definition 4.11. Let Mcrit
1 (2[D4]; e4, X̃0, L; J̃) be the moduli space of J̃-holomorphic disks u :

(D2, j) → (X̃0, J̃) which satisfies the following:
• u has an interior marked point x and a boundary marked point y;
• u(∂D) ⊂ L, u(x) ∈ e4, du(x) = 0 with order 1.

Now by collapsing the Reeb orbits on ∂X0, a stable punctured disk in M2
1(2[D4];X0, J

+)

descends to a stable disk in Mcrit
1 (2[D4]; e4, X̃0, L; J̃). The order of vanishing of du exactly

corresponds to the multiplicity of the asymptotic Reeb orbit.

Lemma 4.12. Holomorphic disks u ∈ Mcrit
1 (2[D4]; e4, X̃0, L; J̃) are regular for generic J̃ .

Moreover, the moduli space is compact.

Proof. The argument is taken almost word-for-word from the case of open manifolds. Since
u cannot develop critical points other than x for generic choice of J̃ , we may apply Wendl’s
automatic transversality, Theorem 4.10. We have the Fredholm index:

ind(u) = −1 + 2 · 2 = 3,

cN (u) = 1
2(3− 2 + 1) = 1.

Since we have a unique critical point of order 2,

3 = ind(u) > cN (u) + Z(du) = 1 + 1 = 2,

verifying the transversality of u ∈ Mcrit
1 (2[D4]; e4, X̃0, L; J̃). We now only need to show that

∂Mcrit
1 (2[D4]; e4, X̃0, L; J̃) = ∅. The argument of Lemma 4.8 shows that the only possible type of

reducible stable curve u ∈ ∂Mcrit
1 (2[D4]; e4, X̃0, L; J̃) consists of a union of 2 disks in class [D4] (by

comparing coefficients of either [D1] or [D3] for possible irreducible decompositions). However,
given a sequence uk ∈ Mcrit

1 (2[D4]; e4, X̃0, L; J̃) converging to u, uk(x) ∈ e4 are always critical
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values which cannot approach the boundary. If a disk bubble occurs, one of the components
inherits such a critical point, and thus has intersection index with e4 at least 2. But this
contradicts the fact that each component is in class [D4]. 2

To compute the evaluation map, we may now choose a generic path connecting {Js}s∈[0,1]

connecting J1 = J̃ and the standard toric complex structure J0 of F4 as in [CO06],
while requiring that ei, i = 1, 2, 3, 4 are Js-holomorphic. In view of the arguments in
Lemma 4.12, the moduli space Mcrit

1 (2[D4];F4, L; Js) does not develop disk or sphere bubbles.
Moreover, 2[D4] does not admit a multiple cover more than 2-fold, whereas these 2-fold
covers are in fact curves in Mcrit

1 (2[D4]; e4, X̃0, L; J̃) instead of the boundary of the moduli
space ∂Mcrit

1 (2[D4]; e4, X̃0, L; Js). Therefore, the standard cobordism argument in [MS04]
applies. In particular, ev0∗[Mcrit

1 (2[D4]; e4, X̃0, L; J̃)] = ev0∗[Mcrit
1 (2[D4];F4, L; J0)]. By Cho–

Oh’s classification, Mcrit
1 (2[D4];F4, L; J0) consists only of double covers of embedded disks in

M1([D4];F4, L; J0) with critical points on intersections with e4. Therefore, from the identification
of M2

1(2[D4];X0, J
+) and Mcrit

1 (2[D4]; e4, X̃0, L; J̃),

ev0∗[M2
1(2[D4];X0, J

+)] = ev0∗[Mcrit
1 (2[D4]; e4, X̃0, L; J̃)]

= ev0∗[Mcrit
1 (2[D4];F4, L; J0)] = 2[L].

On the X1 side, what concerns us is M2(H ′;X1, J
−). We already saw from the argument of

condition (2) of the standard gluing argument that these curves correspond one-to-one to closed
curves in CP 2 of line class which are tangent to the given embedded conic. In particular no
bubbling or critical points occurs for these curves. The virtual index of such a curve C1 is

ind(C1) = (2− 3)(2− 1) + 2 + 1− 0 = 2,

and cN (C1) = 0. This verifies condition (1). Moreover, ev1 :M2(H;X1, J
−) → S2 is surjective

and of degree 1 from considering the Gromov–Witten invariants of tangent lines on the conic
after closing up the orbits on the boundary. Therefore, the standard gluing argument applies
and leads to the following commutative diagram.

M2(H ′;X1, J
−) ev1 ×ev1M2

1(2[D4];X0, J
+)

glue //

ẽv0 **

M1(D′4;CP 2, L)

ev0
xx

L

Here ẽv0 is the evaluation of M2
1(2[D4];X0, J

+) to the boundary marked points. It then follows
that, for t sufficiently large,

deg[ev0 :M1(D′4;CP 2, L; Jt) → L] = 2. (4.2)

5. Completion of the proof

To summarize, we have computed evaluation maps of all holomorphic disks of Maslov index 2 of
(CP 2, Jt) for the fiber over u = (u1, u2) when t is sufficiently large, as long as (u1, u2) ∈ R2 lies
in X0. Note that the ω-area of the four families of Maslov 2 disks are exactly u1, u2, 4− u1 − u2

and 2− 2u2 (see [CO06]). Plugging these inputs into (2.3) we deduce that the potential function
of CP 2 in the toric degeneration picture is written as:

POu(y) = T u1y1 + T u2y2 + T 4−u1−4u2y−1
1 y−4

2 + 2T 2−2u2y−2
2 .
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Taking u = (2
3 ,

2
3), the equations of critical points are written as{

y2
1y

4
2 = 1,

1− 4y−5
2 y−1

1 − 4y−3
2 = 0.

(5.1)

We therefore deduce that y1y
2
2 = ±1. When we take it to be 1, we have y3

2 = 8 and thus it
clearly has three solutions. This verifies that POu contains a critical point for some values y1

and y2; hence HF ∗(L, b) 6= 0 for some choice of bounding cochain b. Moreover, QH∗(CP 2,Λ) is
semi-simple and decomposes into three direct factors of Λ. Writing QH∗(CP 2; Λ) = Λ[z]/(z3−T ),
the idempotents are simply 1

3ε
−2
i (z2 + εiz + ε2i ) for i = 1, 2, 3. Here εi are the roots of x3−T = 0

in Λ. Now Corollary 2.6 implies L(u) is indeed superheavy with respect to some symplectic
quasi-state. This concludes our proof of Theorem 1.1.

Remark 5.1. Our example manifests two interesting aspects of the effect of the choice of Novikov
rings. Namely, we found three local systems on the exotic monotone fiber, which is different from
the case of the calculation of [FOOO12], where the monotone exotic fiber in S2×S2 only has half
the number of local systems of the standard monotone fiber, that is, the product of equators.

According to comments due to Kenji Fukaya, combining results from [AFOOO], our
computation implies that this single exotic fiber is sufficient to generate a certain Fukaya category
with characteristic zero coefficients. However, this fiber is disjoint from RP 2, thus cannot generate
any version of Fukaya category with characteristic 2 coefficients (in fact our torus is always a
zero object for characteristic 2 Fukaya categories of CP 2). This shows that the choice of the
characteristic of coefficient rings could be more than technical.

Remark 5.2. Leonid Polterovich brought up another very interesting question: is it possible to
distinguish the symplectic quasi-states/morphisms for the three idempotents of QH∗(CP 2; Λ)?
These three quasi-states/morphisms are intuitively very closely related; given the Novikov field
Λnov = {aiT λi : λi ∈ Z, limλi = +∞}, then Λnov[z]/(z3 − T ) is already a field. However, when
we tensor this ring by Λ, the algebraic closure of Λnov, the resulting ring is only semi-simple,
as indicated in our computation. Therefore, the identity in the field Λnov[z]/(z3 − T ) splits
into three idempotents after a purely algebraic procedure; thus, intuitively, the three symplectic
quasi-states/morphisms are ‘algebraically split’ from the original quasi-state/morphism as well.

It was known to Entov and Polterovich [EntP03, EntP06] that S2 carries a unique symplectic
quasi-state. However, the corresponding statement for quasi-morphism is not known even for
the spectral quasi-morphisms in this case. For CPn, n > 2, there are no results available. In
general, there is no systematic approach for identifying two symplectic quasi-morphisms/states,
or distinguishing them when they are only known to be supported on the same Lagrangian
submanifolds.

However, Michael Entov and Leonid Polterovich1 kindly showed the author that the following
theorem indeed holds.

Theorem 5.3 (Entov–Polterovich). Assume e, f ∈ QH(M) are idempotents so that ef = f .
Then:

(1) µe 6 µf , ζe > ζf . Hence any e-superheavy set is also f -superheavy and any f -heavy set is
also e-heavy;

(2) assume µe is a genuine (and not partial) quasi-morphism; then µe = µf and thus µf is a
genuine quasi-morphism as well.

1 Private communications.
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Here µe, µf are symplectic quasi-morphisms of corresponding idempotents, while ζe and ζf are
the quasi-states (see their precise definition from [Ent14]). The argument uses mainly algebraic
properties of spectral numbers (e.g. those listed in [EntP09, § 3.4]). This is the first, to the
author’s best knowledge, criterion for two symplectic quasi-morphisms to be identified. It would
be very interesting to understand if there is a deeper meaning from this observation.
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