ON AN EXPLICIT CHARACTERIZATION OF SPHERICAL CURVES

YUNG-CHOW WONG ${ }^{1}$

Abstract

It will be proved that the "explicit characterization" of spherical curves recently obtained by S. Breuer and D. Gottlieb (Proc. Amer. Math. Soc. 27 (1971), pp. 126-127) is, without any precondition on the curvature and torsion, a necessary and sufficient condition for a curve to be a spherical curve. The proof is based on an earlier result of the present author on spherical curves (Monatsh. Math. 67 (1963), pp. 363-365).

1. Introduction. The curves to be considered here are curves in a Euclidean 3 -space with an equation of the form $\boldsymbol{x}=\boldsymbol{x}(s), s \in[0, L]$, where s is the arc length and the vector function $\boldsymbol{x}(s)$ is of class C^{4}. For such a curve, the following facts are well known:
(i) The nonnegative curvature (C^{2}-function) k_{1} defined on $[0, L]$ is unique.
(ii) If k_{1} is nowhere zero, the torsion (C^{1}-function) k_{2} defined on $[0, L]$ is unique except for a sign.
(iii) These two functions k_{1}, k_{2} completely determine the shape and size of the curve.

In books on elementary differential geometry (see for example [2, p. 32]), the condition for a curve to be a spherical curve, i.e. for it to lie on a sphere, is usually given in the form

$$
\begin{equation*}
\left[k_{2}^{-1}\left(k_{1}^{-1}\right)^{\prime}\right]^{\prime}+k_{2} k_{1}^{-1}=0, \tag{1.1}
\end{equation*}
$$

where the prime denotes differentiation with respect to the arc length s.
Clearly, condition (1.1) has a meaning only if k_{1} and k_{2} are nowhere zero, and it is only under this precondition that (1.1) is a necessary and sufficient condition for a curve to be a spherical curve. When "cleared of fractions", (1.1) takes the form

$$
\begin{equation*}
\left(-k_{1} k_{1}^{\prime \prime}+2 k_{1}^{\prime 2}\right) k_{2}+k_{1} k_{1}^{\prime} k_{2}^{\prime}+k_{1}^{2} k_{2}^{3}=0 . \tag{1.2}
\end{equation*}
$$

Received by the editors May 27, 1971.
AMS 1970 subject classifications. Primary 53A05.
Key words and phrases. Spherical curve, curvature, torsion, nowhere zero.
${ }^{1}$ The author wishes to thank his colleague Dr. Y. H. Au-Yeung for his help during the preparation of this paper.

Although condition (1.2) has a meaning whether or not k_{1} and k_{2} are nowhere zero, it is neither a necessary condition nor a sufficient condition for a curve to be a spherical curve unless k_{1} and k_{2} are nowhere zero [5, Theorem 5.2].

A condition for a curve to be a spherical curve which is both necessary and sufficient and which holds without any precondition on k_{1} or k_{2} has been given by the author [4] in the following form:

Theorem 1.1. A C^{4}-curve $\boldsymbol{x}=\boldsymbol{x}(s), s \in[0, L]$, parametrized by its arc length s, is a spherical curve if and only if
(i) its curvature k_{1} is nowhere zero (then its torsion k_{2} is defined), and
(ii) there exists a C^{1}-function f defined on $[0, L]$ such that

$$
\begin{equation*}
f k_{2}=\left(k_{1}^{-1}\right)^{\prime}, \quad f^{\prime}+k_{2} k_{1}^{-1}=0 \tag{1.3}
\end{equation*}
$$

Moreover, a curve satisfying this condition lies on a sphere of radius $\left(k_{1}^{-2}+f^{2}\right)^{1 / 2}$ (which is of course a constant).

Quite recently, S. Breuer and D. Gottlieb [1], using a result of theirs on differential equations, derived from (1.1) the following "explicit characterization" of spherical curves:

$$
\begin{equation*}
k_{1}^{-1}(s)=A \cos \int_{0}^{s} k_{2} d s+B \sin \int_{0}^{s} k_{2} d s, \tag{1.4}
\end{equation*}
$$

where A and B are constants. Since (1.4) is deduced from (1.1), we can hardly expect that it would be a necessary and a sufficient condition for a curve to be a spherical curve without the precondition that k_{1} and k_{2} are nowhere zero. It is therefore a pleasant surprise that this should turn out to be the case, as we shall show by proving the following theorem.

Theorem 1.2. A C^{4}-curve $\boldsymbol{x}=\boldsymbol{x}(s), s \in[0, L]$, parametrized by its arc length s, with curvature k_{1} and torsion k_{2} is a spherical curve if and only if

$$
\begin{equation*}
\left(A \cos \int_{0}^{s} k_{2} d s+B \sin \int_{0}^{s} k_{2} d s\right) k_{1}(s)=1 \tag{1.5}
\end{equation*}
$$

where A, B are constants. Moreover, a curve satisfying condition (1.5) lies on a sphere of radius $\left(A^{2}+B^{2}\right)^{1 / 2}$.

2. Proof of Theorem 1.2.

Sufficiency. It suffices to show that if a curve satisfies condition (1.5), then it satisfies the conditions in Theorem 1.1. First, (1.5) implies that k_{1} is nowhere zero. Next, writing (1.5) as

$$
A \cos \int_{0}^{s} k_{2} d s+B \sin \int_{0}^{s} k_{2} d s=k_{1}^{-1}(s)
$$

and differentiating, we get

$$
\left(-A \sin \int_{0}^{s} k_{2} d s+B \cos \int_{0}^{s} k_{2} d s\right) k_{2}(s)=\left(k_{1}^{-1}\right)^{\prime}(s) .
$$

It can now be verified that the function f defined by

$$
f(s)=-A \sin \int_{0}^{s} k_{2} d s+B \cos \int_{0}^{s} k_{2} d s
$$

satisfies condition (1.3). This completes the proof of the sufficiency of condition (1.5).

Necessity. Suppose that $\boldsymbol{x}=\boldsymbol{x}(s), s \in[0, L]$, is a spherical curve. Then the conditions in Theorem 1.1 are satisfied. Let us define a C^{2}-function θ and two C^{1}-functions g and h on $[0, L]$ by

$$
\begin{equation*}
\theta(s)=\int_{0}^{s} k_{2}(s) d s \tag{2.1}
\end{equation*}
$$

$$
\begin{aligned}
& g(s)=k_{1}^{-1}(s) \cos \theta(s)-f(s) \sin \theta(s) \\
& h(s)=k_{1}^{-1}(s) \sin \theta(s)+f(s) \cos \theta(s)
\end{aligned}
$$

If we differentiate equations (2.2) with respect to s and take account of (2.1) and (1.3), we find that g^{\prime} and h^{\prime} are both identically zero. Therefore, $g(s)=A, h(s)=B$, where A, B are constants. Now substituting these in (2.2) and solving the resulting equations for $k_{1}^{-1}(s)$, we get

$$
k_{1}^{-1}(s)=A \cos \theta(s)+B \sin \theta(s)
$$

which is (1.5). This proves the necessity of condition (1.5).
Finally, to prove the last assertion in Theorem 1.2, we note from the first part of this section that, for a curve satisfying the condition $k_{1}^{-1}=A \cos \theta+B \sin \theta$, the function $f=-A \sin \theta+B \cos \theta$ satisfies condition (1.3) in Theorem 1.1. Therefore, by Theorem 1.1, this curve lies on a sphere with radius

$$
\left[\left(k_{1}^{-1}\right)^{2}+f^{2}\right]^{1 / 2}=\left(A^{2}+B^{2}\right)^{1 / 2}
$$

The proof of Theorem 1.2 is now complete.
3. A remark. Condition (1.4) was originally derived from (1.1) by S . Breuer and D. Gottlieb [1] by using a rather profound result of theirs on differential equations. But it can also be derived very simply as follows.

As in (2.1), we let $\theta(s)=\int_{0}^{s} k_{2} d s$. Then the differential equation (1.1) can be rewritten as

$$
\begin{equation*}
d^{2} k_{1}^{-1} / d \theta^{2}+k_{1}^{-1}=0 \tag{3.1}
\end{equation*}
$$

the solution of which is $k_{1}^{-1}=A \cos \theta+B \sin \theta$, where A, B are constants. This proves (1.4).

It is interesting to note that C. E. Weatherburn [3, p. 25, Exercise 3] came very close to obtaining (1.4), but he stopped at (3.1).

References

1. S. Breuer and D. Gottlieb, Explicit characterization of spherical curves, Proc. Amer. Math. Soc. 27 (1971), 126-127. MR 41 \#5165.
2. D. J. Struik, Lectures on classical differential geometry, Addison-Wesley, Reading, Mass., 1950. MR 12, 127.
3. C. E. Weatherburn, Differential geometry of three dimensions. Vol. 1, Cambridge Univ. Press, London, 1931.
4. Y. C. Wong, A global formulation of the condition for a curve to lie in a sphere, Monatsh. Math. 67 (1963), 363-365. MR 27 \#5173.
5. Y. C. Wong and H. F. Lai, A critical examination of the theory of curves in three dimensional differential geometry, Tôhoku Math. J. (2) 19 (1967), 1-31. MR 35 \#4825.

Department of Mathematics, University of Hong Kong, Hong Kong

