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1 Introduction

The surge of interest in using modern amplitude techniques to calculate the Post-Minkow-
skian expansion of classical general relativity [1–27] has led to a renewed focus on the
eikonal formalism in relativistic quantum field theory. This eikonal approach is based
on an exponentiation of the scattering amplitude in impact-parameter space and it is
particularly well suited for understanding classical gravity from a field theoretic setting [28–
43]. Nevertheless, as has been known for long (see, e.g., appendix B of ref. [31] as well
as ref. [44]), the precise definition of the eikonal phase becomes subtle at higher orders.
What in a first approximation can be treated as insignificant contributions from small
transverse momenta q2 become important and have to be taken into account. Such terms
may appear as being of quantum origin but since they mix with terms from the Laurent
expansion in ~ of higher orders in the perturbative expansion they cannot be ignored.
Although there is little doubt that the eikonal formalism can be pushed to arbitrarily high
order by a careful analysis (the small-angle classical scattering regime exists and should be
computable systematically order by order in the coupling), it nevertheless suggests that it
may be useful to pursue alternative strategies as well.

A different approach to the semi-classical limit of the S-matrix is the WKB formalism.
While well-known in the context of non-relativistic quantum mechanics, where it provides
a systematic semi-classical expansion of the wave function through its connection to the
classical Hamilton-Jacobi formalism, little attention has so far been paid to the WKB
framework in relativistic quantum field theory. Motivated by the recent proposal of Bern
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et al. [17] we here wish to explore the possibility of using the WKB limit of relativistic
quantum field theories to derive in an alternative manner the classical scattering of two
massive objects in general relativity from scattering amplitudes.

The eikonal formalism has issues of complexity at several layers. First, while scatter-
ing amplitudes are conveniently computed in the plane-wave basis of momentum space,
the eikonal lives in impact-parameter space. To obtain the needed eikonal exponentiation,
one must carefully separate, order by order, those terms that go into the exponent and
those terms that remain as prefactors at the linear level. Second, after exponentiation in
impact-parameter space one must apply the inverse transformation and seek from it two
crucial ingredients: (1) the correct identification of the transverse momentum transfer ~q
in the center of mass frame and (2) the correct identification of the scattering angle from
the saddle point. At low orders in the eikonal expansion this procedure works well but it
hinges on the impact-parameter transformation being able to undo the convolution prod-
uct of the momentum-space representation. When q2-corrections are taken into account it
is well known that this procedure requires amendments. This motivates why an alterna-
tive pathway, such as the one proposed in ref. [17] which we find is rooted in the WKB
approximation rather than the eikonal per se should be investigated.

We begin our paper by first introducing the exponential representation of the S-matrix
and we then proceed to develop a method that differs from that of ref. [17]. We shall check
our proposal to third Post-Minkowskian order for both maximal supergravity and Einstein
gravity, and we shall also point out a simple link to the potential from the Hamiltonian
formalism. This has all classical contributions to the order we work, including radiation
reaction parts.

2 Exponential representation of the S-matrix

Conventionally, the S-matrix is expanded in the form

Ŝ = 1 + i

~
T̂ (2.1)

where T̂ is the scattering operator. Restricting ourselves at first to two-particle scalar
scattering with incoming and outgoing momenta p1, p2 and p′1, p

′
2, respectively, matrix

elements of T̂ define for us the scattering amplitude M(p1, p2, p′1, p
′
2) through

〈p′1, p′2|T̂ |p1, p2〉 = (2π~)Dδ(D)(p1 + p2 − p′1 − p′2)M(p1, p2, p
′
1, p
′
2) . (2.2)

At this stage it is convenient to introduce also the exchanged four-momentum q through
p′1 = p1 + q and p′2 = p2 − q. The center-of-mass kinematics reads

p1 = (E1(p), ~p ), p2 = (E2(p),−~p ) (2.3)

so that q = p1 − p′1 = −p2 + p′2 with p2
1 = (p′1)2 = m2

1 and p2
2 = (p′2)2 = m2

2, where we have
introduced the two masses m1 and m2.
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Because the S-matrix is unitary, Ŝ†Ŝ = 1, a more natural parametrization might
appear to be

Ŝ = exp
[
i

~
N̂

]
(2.4)

where, in contrast to T̂ , the operator N̂ is Hermitian: N̂ = N̂ †. The eigenvalues of S are
then manifestly pure phases, defined mod 2π.

Standard quantum field theory is set up to evaluate matrix elements of the T̂ -matrix,
providing us with the conventional Born series of perturbation theory. However, it is clearly
straightforward to relate N̂ to T̂ at the operator level. Everything can be formulated in
general terms but since we are interested in the application to classical gravity we will
be specific here. In perturbation theory of gravity we assume that both T̂ and N̂ can be
expanded in Newton’s constant GN . When an odd number of gravitons are emitted the
expansion of the fundamental T̂ -matrix will include powers of

√
GN and for consistency

this must also be the power series expansion of N̂ . Without having to write out explicitly
the precise expansion of the S-matrix in terms of the Dyson expansion, we can therefore
in a compact notation write1

T̂ = GN T̂0 +G
3/2
N T̂ rad

0 +G2
N T̂1 +G

5/2
N T̂ rad

1 +G3
N T̂2 + . . .

N̂ = GN N̂0 +G
3/2
N N̂ rad

0 +G2
N N̂1 +G

5/2
N N̂ rad

1 +G3
N N̂2 + . . . (2.5)

which leads to the operator identifications

T̂0 = N̂0

T̂ rad
0 = N̂ rad

0

T̂1 = N̂1 + i

2~N̂
2
0

T̂ rad
1 = N̂ rad

1 + i

2~(N̂0N̂
rad
0 + N̂ rad

0 N̂0)

T̂2 = N̂2 + i

2~(N̂ rad
0 )2 + i

2~(N̂0N̂1 + N̂1N̂0)− 1
3!~2 N̂

3
0 (2.6)

and so on for higher orders. We have here kept explicit factors of ~. The ordering in terms
of ~ clearly becomes meaningful only once we evaluate matrix elements: loop contributions
to T̂ matrix elements will produce a Laurent series in ~, thus reshuffling the apparent
counting at the operator level.

Iteratively, we can relate N̂i to T̂i and lower-order T̂ ’s. In detail,

N̂0 = T̂0

N̂ rad
0 = T̂ rad

0

1We do not include the lowest-order radiative terms of order G1/2
N because they are not needed for our

discussion of classical two-body scattering to the order we consider below. Radiative terms contribute also
to even powers in GN but we choose here to absorb them into the non-radiative terms without explicit
labelling.
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N̂1 = T̂1 −
i

2~ T̂
2
0

N̂ rad
1 = T̂ rad

1 − i

2~(T̂0T̂
rad
0 + T̂ rad

0 T̂0)

N̂2 = T̂2 −
i

2~(T̂ rad
0 )2 − i

2~(T̂0T̂1 + T̂1T̂0)− 1
3~2 T̂

3
0 (2.7)

and similarly for higher orders.
We now proceed to consider matrix elements of the S-matrix in momentum space. In

addition, and in order to elucidate the structure, it is convenient to also insert completeness
relations whenever operator multiplications occur. We write the completeness relation
symbolically as ∑

n

|n〉〈n| = I (2.8)

where the sum over n runs over the complete set of accessible states. Specifically, and
again with a view towards the scattering of two heavy objects in gravity, the sum takes the
explicit form

I =
∞∑
n=0

1
n!

∫
d(D−1)k1

(2π~)(D−1)
1

2Ek1

d(D−1)k2
(2π~)(D−1)

1
2Ek2

d(D−1)`1
(2π~)(D−1)

1
2E`1

· · · d
(D−1)`n

(2π~)(D−1)
1

2E`n

× |k1, k2; `1, . . . `n〉〈k1, k2; `1, . . . `n|, (2.9)

where the state n = 0 corresponds to just the two massive scalars, the n = 1 state to one
graviton in addition, etc. As is well known, the sum over states is the Lorentz invariant
phase space. This is important because the completeness relation will hence relate expres-
sions to cuts and, therefore, unitarity. When we use the complete set of states to saturate
the matrix elements to any order in G it becomes immediately obvious which terms include
radiative parts.

Considering just two-body scattering, matrix elements of N̂ in momentum space
now read:

〈p′1, p′2|N̂0|p1, p2〉 = 〈p′1, p′2|T̂0|p1, p2〉,

〈p′1, p′2|N̂ rad
0 |p1, p2〉 = 0,

〈p′1, p′2|N̂1|p1, p2〉 = 〈p′1, p′2|T̂1|p1, p2〉 −
i

2~
∑
n

〈p′1, p′2|T̂0|n〉〈n|T̂0|p1, p2〉,

〈p′1, p′2|N̂ rad
1 |p1, p2〉 = 0,

〈p′1, p′2|N̂2|p1, p2〉 = 〈p′1, p′2|T̂2|p1, p2〉 −
i

2~
∑
n

〈p′1, p′2|T̂ rad
0 |n〉〈n|T̂ rad

0 |p1, p2〉

− i

2~
∑
n

(〈p′1, p′2|T̂0|n〉〈n|T̂1|p1, p2〉+ 〈p′1, p′2|T̂1|n〉〈n|T̂0|p1, p2〉)

−
∑
n,m

1
3~2 〈p

′
1, p
′
2|T̂0|n〉〈n|T̂0|m〉〈m|T̂0|p1, p2〉. (2.10)
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We straightforwardly infer some basic facts from these expressions. First, the matrix
element of T̂0, the leading term of the T̂ -matrix, must be real. Second, because also the
matrix element of N̂1 is real we conclude that

=[〈p′1, p′2|T̂1|p1, p2〉] = 1
2~
∑
n

〈p′1, p′2|T̂0|n〉〈n|T̂0|p1, p2〉 (2.11)

where we have abbreviated the completeness relation (2.9). This relation is the leading-
order expression of unitarity,

T̂ − T̂ † = i

~
T̂ T̂ † . (2.12)

On account of coupling constant counting, the right hand side of eq. (2.11) is saturated by
elastic unitarity so that

=[〈p′1, p′2|T̂1|p1, p2〉]

= 1
2~

∫
d(D−1)k1

(2π~)(D−1)
1

2Ek1

d(D−1)k2
(2π~)(D−1)

1
2Ek2

〈p′1, p′2|T̂0|k1, k2〉〈k1, k2|T̂0|p1, p2〉 (2.13)

is exact.
The next step where unitarity allows us to understand the separation into real and

imaginary parts is in the evaluation of the matrix element of N̂2. Although we are here
restricting ourselves to elastic scattering (it can easily be extended to include radiation
following the general steps above) radiation appears indirectly because of unitarity. From
eq. (2.7) it follows that the matrix element of T̂ rad

0 , the leading term of the T̂ -matrix
that includes radiation, must be real. Let us now consider the unitarity relation (2.12) at
order G3

N :
T̂2 − T̂ †2 = i

~

[
(T̂ rad

0 )2 + T̂0T̂
†
1 + T̂1T̂0

]
. (2.14)

What is inside the parenthesis on the right hand side of this equation is indeed Hermitian.
Inserting complete sets of states, we see that the first term is saturated by an intermediate
state of two scalars and one graviton while the remaining terms are saturated by just the
two-particle state of the scalars, thus

2~=[〈2|T̂2|2〉]

=
∫

d(D−1)k1
(2π~)(D−1)

1
2Ek1

d(D−1)k2
(2π~)(D−1)

1
2Ek2

d(D−1)`

(2π~)(D−1)2E`
〈2|T̂ rad

0 |k1, k2; `〉〈k1, k2; `|T̂ rad
0 |2〉

+
∫

d(D−1)k1
(2π~)(D−1)

1
2Ek1

d(D−1)k2
(2π~)(D−1)

1
2Ek2

(
〈2|T̂0|k1, k2〉〈k1, k2|T̂ †1 |2〉

+ 〈2|T̂1|k1, k2〉〈k1, k2|T̂0|2〉
)
. (2.15)

Also this equation is exact to all orders in ~. Comparing with eq. (2.10) we see how the
imaginary part from T̂2 is cancelled partly by the radiation term, partly by the iteration
of the real part of T̂1. Of course, T̂1 also has an imaginary part which indeed contributes,
through the shown iteration, to N̂2. Also in the relation for N̂2 in eq. (2.10) the sums over

– 5 –



J
H
E
P
1
1
(
2
0
2
1
)
2
1
3

states are saturated by two scalars and one graviton for the term involving T̂ rad
0 and just

two scalars in the remaining terms.
At higher orders these relations get increasingly complicated although of course the

two body matrix elements of N̂ are always real.2 reality of the matrix elements For each N̂i

the subtractions of eq. (2.7) remove precisely all imaginary parts from the matrix element
of T̂i.

The expansions (2.10) have nice diagrammatic interpretations in terms of unitarity
cuts. At one-loop order,

N1 = M1 −
i

2
M0 M0

(2.16)

and at two-loop order,

N2 = M2 −
i

2
M rad

0 M rad
0

(2.17)

− i

2


M0 M1

+

M1 M0

− 1
3

M0 M0 M0

.

The cut involving T̂ rad
0 was first computed in ref. [18]. We see here how this imaginary part

of the matrix element of T̂2 is automatically subtracted off as dictated by unitarity. Similar
radiative cancellations occur at higher orders. It is interesting to compare with the manner
in which terms exponentiate in the eikonal approach where the additional subtractions of
imaginary parts of eq. (2.15) occur as part of the lower-point iterations, instead, as here,
in one go because of unitarity.

To summarize this part, the matrix element of any N̂i is manifestly real. In addition,
all iterations of lower-point amplitudes and their corresponding super-classical terms are
automatically subtracted off so that matrix elements of N̂ admit a semi-classical limit
where ~→ 0. Such an object could be expected to have a classical meaning from analytical
mechanics. Resembling the method of Born subtractions that lead to the classical potential
from the solution of the Lippmann-Schwinger equation [8] one might guess that it could
define in an alternative manner the classical potential. Although Born subtractions share
the properties of removing all imaginary parts from the amplitude and of ensuring the
existence of a semi-classical limit ~ → 0, such an identification does not hold beyond
leading orders.

2The reality of the two-particle elements is a consequence of the hermiticity of the operator
(〈p1, p2|N̂ |p3, p4〉)∗ = 〈p3, p4|N̂†|p1, p2〉 = 〈p3, p4|N̂ |p1, p2〉 and the time reversibility of the amplitudes
(〈p1, p2|N̂ |p3, p4〉)∗ = 〈p1, p2|N̂ |p3, p4〉.
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We can instead get a hint from the identification of the exponential representation
of the two-body S-matrix in momentum space with the semi-classical WKB approxima-
tion. As shown in ref. [45], the Schrödinger-like equation satisfied by the U -matrix (the
limit of which provides the S-matrix) leads to a systematic semi-classical expansion of the
momentum-space S-matrix that is a direct analog of the semi-classical WKB expansion of
the wave function in non-relativistic quantum mechanics. The pertinent Hamilton-Jacobi
equation of the leading-order approximation is in a canonically transformed form compared
to the more commonly used in analytical mechanics where, up to a sign, coordinates and
momenta are swapped. In quantum field theory this is implemented by a Fourier trans-
form in the usual way. With this identification, the two-body S-matrix in momentum space
admits a classical limit in terms of the WKB phase shift,

〈p′1, p′2|Ŝ|p1, p2〉 ∼ e2iδ/~ (2.18)

where
δ = J

π

2 +
∫ ∞
rm

dr(pr − p∞)− p∞rm (2.19)

is the radial action. The first term corresponds to the free motion, pr is radial momentum,
rm is the classical turning point (minimal distance in the case of scattering), and p∞ is
the 3-momentum of either particle in the center of mass frame, evaluated at infinity.3 This
simple expression is valid in the elastic channel.

The conventional approach to linking the scattering matrix T̂ with the classical tra-
jectory of this two-body problem would be to transform to impact-parameter space as in
the eikonal approximation. This unwinds the already beautifully exponentiated form of
the S-matrix as in eq. (2.4) and would essentially take us back to the complications of the
eikonal expansion beyond the first leading orders. Instead, one could ask if it might be
possible to start the analysis directly with the operator N̂ , essentially viewing it as the
operator of the phase shift itself, i.e. here the radial action. Instead of the S-matrix itself,
we thus consider matrix elements of the N̂ -operator. This seems to be what lies behind the
interesting proposal of a recent paper by Bern et al. in ref. [17], although it is phrased there
with somewhat different terminology. An immediate issue is how to go from momentum
space to impact-parameter space. In the above paper it is proposed to do this by means
of a (D − 2)-dimensional Fourier transform, as in the eikonal formalism, in conjunction

3This form of the radial action appears to depend on the classical turning point rm. In fact, because
this turning point is uniquely fixed by the angular momentum J and initial momentum p∞ the final result
does not depend on it. Starting with the main equation for the scattering angle χ [11],

χ =
∞∑
k=1

2b
k!

∫ ∞
0

du
(
d

du2

)k [V keff
(√

u2 + b2
)

(u2 + b2)k−1

p2k
∞

]
(2.20)

we find that the radial action is∫ +∞

rm

drpr = −πJ2 −
1
2

∞∑
k=1

1
k!

∫ ∞
0

du
(
d

du2

)k−1
[
V keff
(√

u2 + b2
)

(u2 + b2)k−1

p2k−1
∞

]
(2.21)

up to a constant which is irrelevant here. The first term is just the free radial action.
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with a subtraction formalism with roots in effective field theory. This has been employed
to compute up to fourth Post-Minkowskian order in what is technically known as the po-
tential region [17]. We shall here view the same idea from the slightly different perspective
outlined above and with what we believe is a simpler and more general formalism. We will
check the results up to third Post-Minkowskian order and will simultaneously show that
this method is not limited to the potential region.

3 Unitarity cuts and velocity cuts

In practical terms, the expansions (2.10) are useful for the same reason the effective field
theory subtractions do their job in ref. [17]: they tell us which parts of the matrix elements
of T̂i we do not have to compute since we know that they will be subtracted off anyway.

Because the idea of computing the matrix element of the exponentiated operator N̂
is new, we nevertheless find it illuminating to work through the computations and thus
show how the subtractions of cut diagrams leave us precisely with the desired object up
to third order in the Post-Minkowskian expansion. We will use the same method and the
same basis of integrals as in refs. [19, 20] to which we refer for further details.

As a warm-up exercise, we first go through the one-loop calculation in all details.
Already at this order we will need to carefully keep terms that appear as being of quantum
origin but which, nevertheless, will contribute to classical physics at higher orders. In fact,
we shall provide an all-order result in q2 which will be needed at all subsequent orders in
the Post-Minkowskian expansion.

As our starting point, consider the box integral in D = 4− 2ε dimensions

Is� = −1
4

∫
dDk

(2π~)D
~5

(p1 · k + iε)(p2 · k − iε)k2(k + q)2 . (3.1)

In this expression we neglect the k2 terms of the massive propagators as they vanish in what
corresponds to a soft expansion of I�,s in powers of q. This is explained in appendix A. As
in [19, 20], we write q as q = ~|~q|uq where uq is a unit space-like vector (u2

q = −1). Doing
the change of variable k → ~|~q|k we get

Is� = −
|~q|D−6

4~

∫
dDk

(2π)D
1

(p1 · k + iε)(p2 · k − iε)k2(k + uq)2 . (3.2)

The integral can be written equivalently in terms of p3 and p4 as

Is� = −
|~q|D−6

4~

∫
dDk

(2π)D
1

(p3 · k − iε)(p4 · k + iε)k2(k + uq)2 . (3.3)

Note the exchange of the signs of the ε in the propagators. Similarly, for crossed box which
we label by u we get

Iu� =
|~q|D−6

4~

∫
dDk

(2π)D
1

(p1 · k + iε)(p4 · k + iε)k2(k + uq)2 (3.4)

– 8 –
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or, equivalently,

Iu� =
|~q|D−6

4~

∫
dDk

(2π)D
1

(p3 · k − iε)(p2 · k − iε)k2(k + uq)2 . (3.5)

Adding the boxes (I� = Is� + Iu�) the final result takes the compact form

I� = −
|~q|D−6

8~

∫
dDk

(2π)D
1

k2(k + uq)2

×
( 1
p1 · k + iε

− 1
p3 · k − iε

)( 1
p2 · k − iε

− 1
p4 · k + iε

)
. (3.6)

As shown in appendix A, the real part of the box integral is given by the unitarity cuts of
the massive propagators

<(I�) = −
|~q|D−6

2~

∫
dDk

(2π)D−2
δ((k + p1)2 −m2

1)δ((k − p2)2 −m2
2)

k2(k + uq)2 , (3.7)

which exactly matches to all orders in q2, the product of trees from the right hand side of
the one-loop unitarity relation (2.11) (recalling that the one-loop amplitude is i times the
box contribution)

I1-cut
� ≡ −2<(I�). (3.8)

The integral (3.7) evaluated in D = 4− 2ε reads

<(I�) = −
(

1−
~2|~q|2s

4m2
1m

2
2(σ2 − 1)

)ε 1
8|~q|2+2ε~m1m2

√
σ2 − 1

Γ(−ε)2Γ(1 + ε)
(4π)1−εΓ(−2ε) . (3.9)

This has precisely the form needed for being cancelled by the first unitarity subtraction of
eq. (2.10).

At two-loop order we need one more iteration of the tree-level amplitude, which is the
two-loop equivalent of the one-cut (or two velocity cuts) of the box integral. The relevant
two-cut (or four velocity cuts) two-loop integral is in D = 4− 2ε dimensions

I2−cut
�� = ~3

∫
dDl1dDl2

(2π~)2D−4
δ((p1 − l1)2 −m2

1)δ((p2 + l1)2 −m2
2)

l21(l1 + l2 − q)2

× δ((p1 + l2 − q)2 −m2
1)δ((p2 − l2 + q)2 −m2

2)
l22

. (3.10)

As we show in detail in appendix A, this integral can also be evaluated in the soft expansion.
For both the computation of q2-corrections to <(I�) and I2−cut

�� our method is the one of
velocity cuts introduced in ref. [20]. Velocity cuts can be viewed as the leading-order parts
of full unitarity cuts and they conveniently form the starting point for computations of
q2-corrections in the soft expansion.

Keeping for now only the order in q2 needed for our present purpose, we find

I2−cut
�� = −

(
1−

ε|~q|2s
3m2

1m
2
2(σ2 − 1)

)
1

16m2
1m

2
2(σ2 − 1)|~q|2+4ε~3

Γ(−ε)3Γ(1 + 2ε)
(4π)2−2εΓ(−3ε)

+O(|~q|1−4ε). (3.11)
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These equations, together with the results already provided in refs. [19, 20] suffice to
evaluate the needed matrix elements of N̂1 and N̂2 for both maximal supergravity and
Einstein gravity. This will be described in the next two subsections.

3.1 Maximal supergravity

In maximal supergravity the tree amplitude reads

M0(|~q|, σ) = N0(|~q|, σ) = 32πGNm2
1m

2
2σ

2

|~q|2
(3.12)

and the one-loop amplitude evaluated in [19] can be rewritten as

M1(|~q|, σ) = i~
2
(
32πGNm2

1m
2
2σ

2
)2
I1−cut
�

+ 32
√
πG2

Nm
2
1m

2
2(m1 +m2)σ4

σ2 − 1
(4π)εΓ

(
1
2 − ε

)2
Γ
(

1
2 + ε

)
|~q|1+2εΓ(−2ε)

+
16(1 + 2ε)G2

Nm
2
1m

2
2σ

4
(
σ arccosh(σ)−

√
σ2 − 1

)
(σ2 − 1)

3
2

(4π)εΓ(−ε)2Γ(1 + ε)
|~q|2εΓ(−2ε) ~ +O(|~q|1+2ε).

(3.13)

The first line is the square of the numerator of the tree amplitude in (3.12) times the
imaginary part of the one-loop amplitude in (3.7). This is just the unitarity subtraction
given by one iteration of the tree as shown in the one-loop computation above. These
amplitudes are given with the choice of helicity for the external states made in [13, 46].
We refer to section 3 of [19] for a discussion of helicity dependence on the various part of
the amplitude. We thus immediately get from (2.7)

N1(|~q|, σ) = 32
√
πG2

Nm
2
1m

2
2(m1 +m2)σ4

σ2 − 1
(4π)εΓ

(
1
2 − ε

)2
Γ
(

1
2 + ε

)
|~q|1+2εΓ(−2ε)

+
16(1 + 2ε)G2

Nm
2
1m

2
2σ

4
(
σ arccosh(σ)−

√
σ2 − 1

)
(σ2 − 1)

3
2

(4π)εΓ(−ε)2Γ(1 + ε)
|~q|2εΓ(−2ε) ~ +O(|~q|1+2ε).

(3.14)

It is worthwhile to highlight one difference with the corresponding eikonal calculation here.
Apart from exponentiating the amplitude in impact-parameter space, the eikonal method is
also based on an order-by-order separation into classical and quantum pieces conventionally
parameterized in the b-space transform of the S-matrix as

S̄(b) =
(

1 + 2 i
~

∆(b)
)
e

2iδ(b)
~ . (3.15)

Where ∆(b) collects, to any given order in the expansion, those quantum terms that are
not needed to ensure exponentiation. Indeed, already at one-loop order ∆(b) will contain
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q2-corrections that are subtracted off in the above cancellations used to produce N1(|~q|, σ).
Thus, to that order, exponentiation of the eikonal is also based on unitarity [12] but only
through the leading contribution from the unitarity relation. Here, we instead consistently
subtract in the exponent and thus include the q2-corrections. In this way, all imaginary
parts of the amplitude in momentum space are removed completely, rather than kept at
the non-exponentiated level, as in the eikonal formalism. At this one-loop level, where
we have kept the first quantum correction to illustrate our point, this does not affect the
calculation of the classical term but it shows explicitly how the imaginary quantum terms
are removed. From 2-loop order and up these (real) quantum subtractions of lower order
can correct classical terms at higher orders. A related phenomenon occurs in the eikonal
formalism, but again: the details differ.

We next move to the two-loop amplitude in supergravity, including the radiation re-
action parts. Quoting from ref. [19], we can conveniently rewrite that result as

M2(|~q|, σ) = ~
6(32πGNm2

1m
2
2σ

2)3I2−cut
��

+ 64i
√
πG3

Nm
3
1m

3
2(m1 +m2)σ6

(σ2 − 1)
3
2 |~q|1+4ε~

(4π)2εΓ
(

1
2 − ε

)2
Γ
(

1
2 + 2ε

)
Γ(−ε)Γ

(
1
2 − 2ε

)
Γ
(

1
2 − 3ε

)
Γ (−2ε)

+ 32G3
Nm

4
1m

4
2σ

4(4πe−γE )2ε

π

(
iπ(1 + 2ε)σ2

(
σ arccosh σ −

√
σ2 − 1

)
ε2|~q|4εm1m2(σ2 − 1)2

− π2sσ2

6ε|~q|4εm2
1m

2
2(σ2 − 1)2 −

π2 arccosh(σ)
ε|~q|4εm1m2

√
σ2 − 1

− iπ(1 + iπε)
2ε2|~q|4εm1m2(σ2 − 1)2

(
(1 + 2ε)σ2

√
σ2 − 1 + σ(σ2 − 2) arccosh(σ) + ε

(
(σ2 − 1)

3
2

−σ(σ2 − 2)
)

arccosh2(σ)− εσ(σ2 − 2) Li2
(
2− 2σ

(
σ +

√
σ2 − 1

) )))
+O(~). (3.16)

In this form we see that the first three lines are eliminated by the relations of eq. (2.10) with
tree and one-loop terms. The imaginary part of the radiation reaction part is subtracted
by the corresponding two-to-three particle cut of eq. (2.10) as follows from the calculation
of ref. [18]. We thus get

N2(|~q|, σ) = 32πG3
Nm

3
1m

3
2σ

4 (4πe−γE )2ε

ε|~q|4ε
√
σ2 − 1

(
− sσ2

6m1m2(σ2 − 1)
3
2
− arccosh(σ)

+
( 1

4(σ2 − 1)

)ε(σ(σ2 − 2) arccosh(σ)
(σ2 − 1)

3
2

+ σ2

σ2 − 1

))
+O(~). (3.17)
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Up to two loop classical order and keeping only the leading terms in ε we finally have

N(|~q|, σ) = 32πGNm2
1m

2
2σ

2

|~q|2
+ 32πG3

Nm
3
1m

3
2σ

4

ε|~q|4ε
√
σ2 − 1

(
− sσ2

6m1m2(σ2 − 1)
3
2
− arccosh(σ)

+
( 1

4(σ2 − 1)

)ε(σ(σ2 − 2) arccosh(σ)
(σ2 − 1)

3
2

+ σ2

σ2 − 1

))
+O(~). (3.18)

Following the prescription of ref. [17] and thus defining a Fourier transform of a function
f(s, q2) by

f̄(s, b2) = 1
4m1m2

√
σ2 − 1

∫
dD−2q

(2π)D−2 f(s, q2)e−ib·q (3.19)

we go to impact-parameter space with ~p ·~b = 0 and angular momentum J = |~p ||~b|. This
gives, again keeping only needed terms of ε,

N̄(b, σ) = 2GNm1m2σ2Γ(−ε)√
σ2 − 1

(π|~b|2)ε+16πG3
Nm

2
1m

2
2σ

4

σ2 − 1

(
− sσ2

6m1m2(σ2 − 1)
3
2
−arccosh(σ)

+
( 1

4(σ2 − 1)

)ε(σ(σ2 − 2) arccosh(σ)
(σ2 − 1)

3
2

+ σ2

σ2 − 1

))
1

(π|~b|2)1−3ε
+O(~) (3.20)

or, in terms of J and ignoring factors of pε which become unity in the ε→ 0 limit,

N̄(J, σ) = 2GNm1m2σ2Γ(−ε)√
σ2 − 1

(πJ2)ε+ 16πG3
Nm

4
1m

4
2σ

4

s

(
− sσ2

6m1m2(σ2 − 1)
3
2
−arccosh(σ)

+
( 1

4(σ2 − 1)

)ε(σ(σ2 − 2) arccosh(σ)
(σ2 − 1)

3
2

+ σ2

σ2 − 1

))
1

(πJ2)1−3ε +O(~). (3.21)

Assuming that this coincides with the interacting part of the radial action, we get

χ = − ∂

∂J
lim
~→0

N̄(J, σ) = 4GNm1m2σ2
√
σ2 − 1

1
J

+ 32G3
Nm

4
1m

4
2σ

4

s

(
− sσ2

6m1m2(σ2 − 1)
3
2
− arccosh(σ) + d

dσ

(
σ2 arccosh(σ)√

σ2 − 1

))
1
J3 (3.22)

which we indeed recognize as the angle at third Post-Minkowskian order in maximal su-
pergravity [14, 18, 19]. It includes all terms, and hence also radiation reaction pieces.

3.2 General relativity

Next, we turn to Einstein gravity. We will be able to recycle much of what was used above
plus add the needed new features from refs. [19, 20].

The tree and one-loop amplitudes now read

M0(|~q|, σ) = N0(|~q|, σ) = 16πGNm2
1m

2
2(2σ2 − 1)

|~q|2
+O(~) (3.23)
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and

M1(|~q|, σ) = i~
2 (16πGNm2

1m
2
2(2σ2− 1))2I1−cut

�

+ 3π2G2
Nm

2
1m

2
2(m1 +m2)(5σ2− 1)(4πe−γE )ε

|~q|1+2ε

− 4G2
Nm

2
1m

2
2(4πe−γE )ε~
ε|~q|2ε

(
2(2σ2− 1)(7− 6σ2) arccosh(σ)

(σ2− 1) 3
2

+ 1− 49σ2 + 18σ4

15(σ2− 1)

)
+O(|~q|1+2ε)

(3.24)

where for the classical and quantum terms this is valid up to leading pieces in ε. For the one-
loop piece we have rewritten the result in the same manner as for maximal supergravity
above. We notice that the first line is cancelled by the unitarity relation based on the
iteration of the tree as dictated by eq. (2.10), leaving us with

N1(|~q|,σ)= 3π2G2
Nm

2
1m

2
2(m1 +m2)(5σ2−1)(4πe−γE )ε

|~q|1+2ε

−4G2
Nm

2
1m

2
2(4πe−γE )ε~
ε|~q|2ε

(
2(2σ2−1)(7−6σ2)arccosh(σ)

(σ2−1)
3
2

+ 1−49σ2 +18σ4

15(σ2−1)

)
+O(|~q|1+2ε).

(3.25)

We next turn to the full two-loop amplitude in Einstein gravity [20] which to the needed
order in q2 can be rewritten as

M2(|~q|,σ)= ~
6 (16πGNm2

1m
2
2(2σ2−1))3I2−cut

��

+ 6iπ2G3
N (m1 +m2)m3

1m
3
2(2σ2−1)(1−5σ2)(4πe−γE )2ε

ε
√
σ2−1|~q|1+4ε

+ 2πG3
N (4πe−γE )2εm2

1m
2
2~

ε|~q|4ε

(
im1m2(2σ2−1)
πε(σ2−1) 3

2

(
1−49σ2 +18σ4

15 − 2σ(7−20σ2 +12σ4)arccosh(σ)√
σ2−1

)

+
s
(
64σ6−120σ4 +60σ2−5

)
3(σ2−1)2 − 4

3m1m2σ
(
14σ2 +25

)
+ 4m1m2(3+12σ2−4σ4)arccosh(σ)√

σ2−1

− 2im1m2(2σ2−1)2

πε
√
σ2−1

1+ iπε

(4(σ2−1))ε

(
−11

3 + d

dσ

(
(2σ2−1)arccosh(σ)√

σ2−1

)))
+O(~). (3.26)

So that the first three lines are eliminated by the subtractions of tree and one-loop terms as
dictated by eq. (2.10). The imaginary part of the radiation reaction term is cancelled by the
corresponding two-to-three particle cut of eq. (2.10) as again follows from the calculation

– 13 –



J
H
E
P
1
1
(
2
0
2
1
)
2
1
3

of ref. [18]. We thus find

N2(|~q|, σ) = 2πG3
N (4πe−γE )2εm2

1m
2
2

ε|~q|4ε

(
s
(
64σ6 − 120σ4 + 60σ2 − 5

)
3 (σ2 − 1)2

− 4
3m1m2σ

(
14σ2 + 25

)
+ 4m1m2(3 + 12σ2 − 4σ4) arccosh(σ)√

σ2 − 1

+ 2m1m2(2σ2 − 1)2
√
σ2 − 1

(
−11

3 + d

dσ

(
(2σ2 − 1) arccosh(σ)√

σ2 − 1

)))
+O(~). (3.27)

Up to two loop classical order and again keeping only the leading real terms in ε we thus
arrive at

N(|~q|, σ) = 16πGNm2
1m

2
2(2σ2 − 1)

|~q|2
+ 3π2G2

Nm
2
1m

2
2(m1 +m2)(5σ2 − 1)
|~q|1+2ε

+ 2πG3
N (4πe−γE )2εm2

1m
2
2

ε|~q|4ε

(
s
(
64σ6 − 120σ4 + 60σ2 − 5

)
3 (σ2 − 1)2

− 4
3m1m2σ

(
14σ2 + 25

)
+ 4m1m2(3 + 12σ2 − 4σ4) arccosh(σ)√

σ2 − 1

+ 2m1m2(2σ2 − 1)2
√
σ2 − 1

(
−11

3 + d

dσ

(
(2σ2 − 1) arccosh(σ)√

σ2 − 1

)))
+O(~) (3.28)

which after the Fourier transform to impact-parameter space becomes

N̄(b, σ) = GNm1m2(2σ2 − 1)Γ(−ε)√
σ2 − 1

(π|~b|2)ε + 3π
3
2G2

Nm1m2(m1 +m2)(5σ2 − 1)
4
√
σ2 − 1(π|~b|2)

1
2−2ε

+ πG3
Nm1m2√

σ2 − 1(π|~b|2)1−3ε

(
s
(
64σ6 − 120σ4 + 60σ2 − 5

)
3 (σ2 − 1)2

− 4
3m1m2σ

(
14σ2 + 25

)
+ 4m1m2(3 + 12σ2 − 4σ4) arccosh(σ)√

σ2 − 1

+ 2m1m2(2σ2 − 1)2
√
σ2 − 1

(
−11

3 + d

dσ

(
(2σ2 − 1) arccosh(σ)√

σ2 − 1

)))
+O(~) (3.29)

or, in terms of angular momentum J ,

N̄(J, σ) = GNm1m2(2σ2 − 1)Γ(−ε)√
σ2 − 1

J2ε + 3πG2
Nm

2
1m

2
2(m1 +m2)(5σ2 − 1)

4
√
s

1
J

+ G3
Nm

3
1m

3
2
√
σ2 − 1

s

(
s
(
64σ6 − 120σ4 + 60σ2 − 5

)
3 (σ2 − 1)2

− 4
3m1m2σ

(
14σ2 + 25

)
+ 4m1m2(3 + 12σ2 − 4σ4) arccosh(σ)√

σ2 − 1

+ 2m1m2(2σ2 − 1)2
√
σ2 − 1

(
−11

3 + d

dσ

(
(2σ2 − 1) arccosh(σ)√

σ2 − 1

)))
1
J2 +O(~). (3.30)
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Taking this to be the interacting part of the radial action to third Post-Minkowskian order,
we obtain the scattering angle

χ = − ∂

∂J
lim
~→0

N̄(J, σ) = 2GNm1m2(2σ2 − 1)√
σ2 − 1

1
J

+ 3πG2
Nm

2
1m

2
2(m1 +m2)(5σ2 − 1)

4
√
s

1
J2

+ 2G3
Nm

3
1m

3
2
√
σ2 − 1

s

(
s
(
64σ6 − 120σ4 + 60σ2 − 5

)
3 (σ2 − 1)2

− 4
3m1m2σ

(
14σ2 + 25

)
+ 4m1m2(3 + 12σ2 − 4σ4) arccosh(σ)√

σ2 − 1

+ 2m1m2(2σ2 − 1)2
√
σ2 − 1

(
−11

3 + d

dσ

(
(2σ2 − 1) arccosh(σ)√

σ2 − 1

)))
1
J3 , (3.31)

which agrees with the literature [6, 7], including the radiation reaction terms [14, 15, 20].

4 Kinematics in isotropic coordinates

So far, the computation of the scattering angle from the amplitude has entirely bypassed
the notion of a potential V ; only the radial action, an indirect function of the potential,
played a role. However, there is more information in the potential V itself, even if it by
construction refers to specific coordinates. It may therefore be useful to see how such an
effective potential can be extracted from the scattering angle. Our starting point for this
is the relativistic Salpeter equation of two-body scattering in the center of mass frame,

E =
√
p2 +m2

1 +
√
p2 +m2

2 + V (p, r) . (4.1)

The operator version of this equation together with the Lippmann-Schwinger equation [8]
allows us to relate the potential V (p, r) to the Fourier transform of the scattering ampli-
tude. However, it is not necessary to introduce this additional step if we already know the
scattering angle up to the given order in GN . In isotropic coordinates we can always solve
the energy equation (4.1) in terms of p2,

p2 = p2
∞ − Veff(r) , (4.2)

where p2
∞ = m2

1m
2
2(σ2− 1)/s and, without loss of generality we can parametrize (in D = 4

dimensions)

Veff(r) = −
∞∑
n=1

GnNfn(E)
rn

(4.3)

where the coefficients must be extracted from the amplitude.4 One of the surprising results
of the amplitude approach is that Veff(r) is directly related to the classical part of the
amplitude as it derives either from the effective field theory matching [9] or from the Born
subtractions [10, 11]. In fact, the kinematical relation (4.2) can be taken as a new and

4The case of general D is discussed in ref. [12].
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equally good quantum mechanical Hamiltonian operator, a result anticipated by Damour [2]
before these explicit amplitude computations.

The scattering angle based on the kinematical relation (4.2) has been derived to all
orders and we quote the first few orders from table 1 of ref. [11],

χ1PM = f1,

χ2PM = πp∞
2 f2,

χ3PM = 2p4
∞f3 + p2

∞f1f2 −
f3

1
12 . (4.4)

Comparing with the scattering angle computed to this order by the eikonal method (and
reproduced here, using the new method) we can recursively solve for the unknown fi-
coefficients.

Reminding the reader that s = m2
1 +m2

2 + 2m1m2σ also has σ-dependence, we find

f1 = 2m2
1m

2
2(2σ2 − 1)√
s

, (4.5)

f2 = 3m2
1m

2
2
(
5σ2 − 1

)
(m1 +m2)

2
√
s

, (4.6)

f3 = − m2
1m

2
2

2 (σ2 − 1)
(
3
(
2σ2 − 1

) (
5σ2 − 1

)
(m1 +m2)− 4

(
12σ4 − 10σ2 + 1

)√
s
)

− 2m3
1m

3
2

3
√
s

(
2σ(14σ2 + 25) + 6

(
4σ4 − 12σ2 − 3

)
√
σ2 − 1

arccosh(σ)
)

+ 2m3
1m

3
2
(
1− 2σ2)2

3
√
s (σ2 − 1)2

(
(8− 5σ2)

√
σ2 − 1 + (6σ3 − 9σ) arccosh(σ)

)
,

(4.7)

including radiation-reaction contributions in the last line of f3. We stress again that while
these fi-coefficients reproduce the scattering angle up to third post-Minkowskian order
including the contributions from radiation-reaction terms, they also, through eq. (4.3),
provide us with the kinematical relation (4.2) in isotropic coordinates.

Comparing to the potential of a probe small mass m in the Schwarzschild background
of large mass M � m we have [2]

fprobe
1 = 2m2M(2σ2 − 1),

fprobe
2 = 3

2m
2M2(5σ2 − 1),

fprobe
3 = m2M3

2 (18σ2 − 1) , (4.8)

a well known result when comparing with the result of the potential region only. Because
radiation reaction terms vanish in the probe limit, this is indeed unchanged here.
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5 Conclusions

In an attempt to improve on the systematic expansion of the eikonal formalism we have
instead explored an alternative idea recently suggested by Bern et al. [17] and which we find
is linked to the closely related WKB approximation. Using an exponential representation of
the S-matrix, we systematically relate matrix elements of the operator in the exponential
N̂ to ordinary Born amplitudes minus pieces provided by unitarity cuts. Crucially, we
must now relate this object to the radial action. We do this by a Fourier transform into
impact parameter space and we have checked up to third Post-Minkowskian order that
this method, combined with the above transformation to impact-parameter space, works for
both maximal supergravity and Einstein gravity. It reproduces the scattering angles to that
order and it is not limited to what is known as the potential region of the loop amplitudes.
Instead, we sum all classical contributions and thus include also radiation reaction pieces.
The simplicity of this method seems very appealing and suggests that it may be used to
streamline Post-Minkowskian amplitudes in gravity by means of a diagrammatic technique
that systematically avoids the evaluation of the cut diagrams that must be subtracted, but
simply discards them at the integrand level.

In practice, we need only evaluate matrix elements in the soft q2-expansion. This means
that we expand genuine unitarity cuts around the velocity cuts introduced recently [19, 20].
These velocity cuts seem to provide the most natural way to organize amplitude calculations
in the soft expansion.

We have finally pointed out that there is no obstacle towards obtaining the potential
Veff(r) from the scattering angles computed by this method. Iteratively, coefficients of the
effective potential in isotropic coordinates follow from the angles and the result is unique. It
is also not limited to the result of just the potential region of the amplitudes. This thereby
gives the kinematical relation between momenta and coordinates in isotropic gauge. As a
simple illustration, one can from this predict infinite series of terms from lower-order pieces.
For instance, keeping only the leading f1-term of the effective potential there is nothing to
prevent one from summing the whole series to obtain the standard Newtonian deflection
angle. If one were to include also the f2-term one would get the exact analytical result
corresponding to the f1–f2-theory computed in [8]. Of course, in the context of general
relativity it is not meaningful to compute only a part of the higher order terms.
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A Details of the one and two loop box calculations

In this appendix we first provide some details on the derivation of the cut part of the
one-loop box integral in (3.7) and two-cut part of the double-box integral in (3.11). We
show explicitly that the real part is given by the unitarity cut of the massive propagators
in (A.15) and we evaluate it to all order in q in (A.19).

A.1 The cut part of the box integral

The box integral is defined as

Is� = −1
4

∫
dDk

(2π~)D
~4

(p1 · k + iε)(p2 · k − iε)k2(k + q)2 . (A.1)

In dimensional regularization we can neglect the k2-terms in the massive propagators as
they will, after cancelling a massless k2-propagator only give rise to tadpoles in the soft
expansion, and will hence be set to zero. To perform the soft expansion in powers of
q = ~|~q|uq where uq is a unit space-like vector (u2

q = −1), we make the change of variable
k → ~|~q |k to get

Is� = −
|~q|D−6

4~2

∫
dDk

(2π)D
1

(p1 · k + iε)(p2 · k − iε)k2(k + uq)2 . (A.2)

We note that the integral can equivalently be written in terms of p3 and p4 as

Is� = −
|~q|D−6

4~2

∫
dDk

(2π)D
1

(p3 · k − iε)(p4 · k + iε)k2(k + uq)2 (A.3)

with the important change of sign of signs of the iε term in the propagators.
Similarly, in the u channel corresponding to the crossed box integral, we have

Iu� =
|~q|D−6

4~2

∫
dDk

(2π)D
1

(p1 · k + iε)(p4 · k + iε)k2(k + uq)2 ,

=
|~q|D−6

4~2

∫
dDk

(2π)D
1

(p3 · k − iε)(p2 · k − iε)k2(k + uq)2 . (A.4)

The sum of these box contributions I� = Is� + Iu� takes the form

I� = −
|~q|D−6

8~2

∫
dDk

(2π)D
1

k2(k + uq)2

×
( 1
p1 · k + iε

− 1
p3 · k − iε

)( 1
p2 · k − iε

− 1
p4 · k + iε

)
. (A.5)
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Using the variables p1 = p̄1 + ~ q2 and p2 = p̄2 − ~ q2 we have

I� = −
|~q|D−6

8~2

∫
dDk

(2π)D
1

k2(k + uq)2

×

 1

p̄1 · k + ~|~q|uq ·k
2 + iε

− 1

p̄1 · k −
~|~q|uq ·k

2 − iε


×

 1

p̄2 · k −
~|~q|uq ·k

2 − iε
− 1

p̄2 · k + ~|~q|uq ·k
2 + iε

 . (A.6)

The soft expansion for small ~|q| reads

I� = −
|~q|D−6

8~2

∞∑
n1=0

∞∑
n2=0

∫
dDk

(2π)D
1

k2(k + uq)2

(
~|~q|
2 uq · k

)n1+n2

×
( (−1)n1

(p̄1 · k + iε)n1+1 −
1

(p̄1 · k − iε)n1+1

)( 1
(p̄2 · k − iε)n2+1 −

(−1)n2

(p̄2 · k + iε)n2+1

)
. (A.7)

We now rewrite 2uq · k = (k + uq)2 − k2 − u2
q = (k + uq)2 − k2 + 1. Since, as explained

above, we can neglect the tadpoles in dimensional regularization, we can replace uq · k by
1/2 in the previous expression, and reduce each integral in a basis of four master integrals
of the scalar box, the scalar triangles and the bubble (but we neglect tadpoles as usual):∫

dDk

(2π)D
1

(p̄1 · k)n1+1(p̄2 · k)n2+1k2(k + uq)2

= Bn1,n2(m1,m2, ~|~q|, σ)
∫

dDk

(2π)D
1

(p̄1 · k)(p̄2 · k)k2(k + uq)2

+ T 1
n1,n2(m1,m2, ~|~q|, σ)

∫
dDk

(2π)D
1

(p̄1 · k)k2(k + uq)2

+ T 2
n1,n2(m1,m2, ~|~q|, σ)

∫
dDk

(2π)D
1

(p̄2 · k)k2(k + uq)2

+ Cn1,n2(m1,m2, ~|~q|, σ)
∫

dDk

(2π)D
1

k2(k + uq)2 , (A.8)

where B, T 1, T 2 and C are real rational functions of m1, m2, ~|~q| and σ. Since the bubble
integral is purely imaginary this term cannot contribute to the real part of the integral.

Using LiteRed [47], we observe5 that for all n1 and n2 we have T i2n1,2n2 =T i2n1+1,2n2+1 =
0 with i = 1, 2. This implies that the triangle master integrals contribute only when n1
and n2 are of different parity. In that case, the sum of s and u channel in the box in (A.7)
implies that the integral has one delta function, leaving an integral of the form

i

∫
dD−1~k

(2π)D−1
1

~k2(~k + ~uq)2
(A.9)

which is obviously imaginary.
5This has been checked to high order in |q|2.
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We therefore conclude that only the box master integral contributes to the real part
of I�. This box master integral reads

I�|box = −
|~q|D−6

8~2

∞∑
n1=0

∞∑
n2=0

(
~|~q|
4

)n1+n2

Bn1,n2

×
∫

dDk

(2π)D
1

k2(k + uq)2

( (−1)n1

p̄1 · k + iε
− 1
p̄1 · k − iε

)( 1
p̄2 · k − iε

− (−1)n2

p̄2 · k + iε

)
. (A.10)

We next make that for x real,

1
x± iε

= p.v.(x)∓ iπδ(x) (A.11)

where ε > 0 and p.v.(x) is the principal value. This implies that for x real we have

1
x+ iε

+ 1
x− iε

= 2p.v.(x); 1
x+ iε

+ 1
x− iε

= −2iπδ(x). (A.12)

We now remark that for both x and y real,( 1
x+ iε

+ 1
x− iε

)( 1
y + iε

+ 1
y − iε

)
=
( 1
x+ iε

− 1
x− iε

)( 1
y − iε

− 1
y + iε

)
+ 2

(x+ iε)(y + iε) + 2
(x− iε)(y − iε) . (A.13)

Applied inside the box integral the last terms on the right-hand-side lead to an imaginary
contribution. We therefore conclude that the real part of the box contribution is given by

<(I�) = −
|~q|D−6

2~2

 ∞∑
n=0

2n∑
m=0

(−1)m
(
~|~q|
4

)2n

Bm,2n−m

× ∫ dDk

(2π)D−2
δ(p̄1 · k)δ(p̄2 · k)
k2(k + uq)2 .

(A.14)
Which is the soft expansion of the box integral in terms of the velocity cuts of [20].

We remark that this expression indeed is the soft small |q| expansion of the one-loop
unitarity one-cut of the massive propagators

<(I�) = −1
2I

1−cut
� ≡ −

|~q|D−6

2~2

∫
dDk

(2π)D−2
δ(2p1 · k + k2)δ(−2p2 · k + k2)

k2(k + uq)2 . (A.15)

Using LiteRed [47] to high orders in |~q|2 we conjecture that

2n∑
m=0

(−1)mBm,2n−m =
2nsn

∏n
j=0(D − 3− 2j)

(D − 3)
(
(p̄1 · p̄2)2 − p̄2

1p̄
2
2
)n . (A.16)

We have checked this expression by evaluating the expression up to and including n = 12.
Performing the sum,

∞∑
n=0

n∏
j=0

(
D − 3

2 − j
)( ~2|~q|2s

4
(
(p̄1 · p̄2)2 − p̄2

1p̄
2
2
))n = D − 3

2

(
1 +

~2|~q|2s
4((p̄1.p̄2)2 − m̄2

1m̄
2
2)

)D−5
2

,

(A.17)
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and we thus finally obtain the full real part of the box integral in the soft expansion:

I1−cut
� =

|~q|D−6

4~2

(
1 +

~2|~q|2s
4((p̄1.p̄2)2 − m̄2

1m̄
2
2)

)D−5
2
∫

dDk

(2π)D−2
δ(p̄1 · k)δ(p̄2 · k)
k2(k + uq)2 . (A.18)

Noting that (p̄1 · p̄2)2 − m̄2
1m̄

2
2 = m2

1m
2
2

(
σ2 − 1− ~2|~q|2s

4m2
1m

2
2

)
and finally evaluating the re-

maining bubble integral we have thus established that the cut part of the box integral is
given by

I1−cut
� =

|~q|D−6

~2

∫
dDk

(2π)D−2
δ(2p1 · k + k2)δ(−2p2 · k + k2)

k2(k + uq)2 , (A.19)

=
|~q|D−6

4~2m1m2
√
σ2 − 1

(
1−

~2|~q|2s
4m2

1m
2
2(σ2 − 1)

) 4−D
2 Γ

(
D−4

2

)2
Γ
(

6−D
2

)
(4π)

D−2
2 Γ(D − 4)

.

A.2 The two-cut part of the double-box integral

Having gone through the derivation of the one-cut part of the one-loop box integral in
such great detail we can be brief regarding the corresponding two-cut (or four velocity cut)
computation of the doubly iterated tree in momentum space. We define

I2−cut
�� = 1

~2D−7

∫
dDl1dDl2
(2π)2D−4

δ((p1 − l1)2 −m2
1)δ((p2 + l1)2 −m2

2)
l21(l1 + l2 − q)2

× δ((p1 + l2 − q)2 −m2
1)δ((p2 − l2 + q)2 −m2

2)
l22

. (A.20)

Using p̄-coordinates and neglecting the l2i terms (for the same reason given above)

I2−cut
�� = 1

~2D−7

∫
dDl1dDl2
(2π)2D−4

δ(−2p̄1 · l1 − q · l1)δ(2p̄2 · l1 − q · l1)
l21(l1 + l2 − q)2

× δ(2p̄1 · l2 − q · l2)δ(−2p̄2 · l2 − q · l2)
l22

. (A.21)

The soft series expansion leads to

I2−cut
�� = 1

(2iπ)4~2D−7

∞∑
n1=0

∞∑
n2=0

∞∑
n3=0

∞∑
n4=0

∫
dDl1dDl2
(2π)2D−4

(q · l1)n1+n2(q · l2)n3+n4

l21l
2
2(l1 + l2− q)2

×
( 1

(−2p̄1 · l1− iε)n1+1 −
1

(−2p̄1 · l1 + iε)n1+1

)( 1
(2p̄2 · l1− iε)n2+1 −

1
(2p̄2 · l1 + iε)n2+1

)
×
( 1

(2p̄1 · l2− iε)n3+1 −
1

(2p̄1 · l2 + iε)n3+1

)( 1
(−2p̄2 · l2− iε)n4+1 −

1
(−2p̄2 · l2 + iε)n4+1

)
.

(A.22)

Computing the two first orders in |~q | with LiteRed [47] gives

I2−cut
�� =

(
1− (3 + 4ε)|~q |2s

12m2
1m

2
2(σ2− 1)

)
1

16~2D−7

∫
dDl1dDl2
(2π)2D−4

δ(p̄1 · l1)δ(p̄1 · l2)δ(p̄2 · l1)δ(p̄2 · l2)
l21l

2
2(l1 + l2− q)2

+O(|~q |1−4ε) (A.23)
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which is evaluated to

I2−cut
�� = −

(
1−

(3 + 4ε)~2|~q|2s
12m2

1m
2
2(σ2 − 1)

)
1

16~3
(
m2

1m
2
2(σ2 − 1)− ~2|~q|2s

4

)
|~q|2+4ε

× Γ(−ε)3Γ(1 + 2ε)
(4π)2−2εΓ(−3ε) +O(|~q |1−4ε). (A.24)

Finally expanding also the q2 of the denominator this gives the result quoted in the
main text.
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