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ON AN EXTENSION OF THE LYAPUNOV CRITERION OF
STABILITY FOR QUASI-LINEAR SYSTEMS VIA INTEGRAL

INEQUALITIES METHODS

UDC 519.21

NGUYEN HUU DU

Abstract. In this article, we concern ourselves with a new concept for comparing the
stability degree of two dynamical systems. By using the integral inequality method,
we give a criterion which allows us to compare the growth rate of two Itô quasi-linear
differential equations. It can be viewed as an extension of the Lyapunov criterion to
the stochastic case.

1. Introduction

It is known that studying the asymptotic behavior of dynamical systems is important
both in theory and in application. Therefore, there are many works dealing with this
topic and there exist a large amount of stability criteria for deterministic and stochastic
systems. Among these criteria, the characteristic Lyapunov exponent is a powerful tool
because it is important for explaining the chaos of the systems under consideration (see
[1, 2, 10], etc.). We remark that studying the Lyapunov exponent of a function means
comparing its growth rate with the growth rate of the exponential one. However, the
class of exponential functions is rather simple and it does not contain much information
on the behavior of the function considered. By requirement of technical problems, we
have sometimes to replace this class by a larger one, say C, and compare this function
with elements of C in order to know its behavior, especially at t = ∞. To realize this
we introduce a concept of comparing the behavior of trajectories of solutions of two
differential equations as follows: a system is said to be better than a given one in the
class C in view of stability (we will say that this system is more stable than the given one)
if, whenever all trajectories of the given system starting from a small neighborhood of the
origin 0 belong to the corridor {(t, x) : t ≥ 0, |x| ≤ qt} generated by a positive function
qt ∈ C, then all trajectories of the second system starting from a suitable neighborhood
of 0 must have the same property.

Naturally, this raises a question: when is one system more stable than another? Of
course, it is a difficult problem even in the deterministic case. In this article, we deal
with a criterion for comparing two quasi-linear systems. This problem is encountered
when we investigate a nonlinear stochastic system via its first linear approximation.

The article is organized as follows. Section 2 gives a concept of comparing two dif-
ferential stochastic equations. In Section 3, we are concerned with the regularity of a
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stochastic linear equation and formulate the main theorem. Section 4 deals with its
proof.

Although the result is formulated for the one-dimensional Wiener process (Wt), it
remains true for multidimensional processes.

2. Comparison of growth rates of stochastic systems

Let (Ω,Ft, t ≥ 0, P) be a stochastic basis satisfying the standard conditions (see [7])
and (Wt, t ≥ 0) be a Wiener process defined on (Ω,Ft, t ≥ 0, P). For the sake of simplicity
we assume that (Wt, t ≥ 0) is a one-dimensional process. We consider a system described
by the following stochastic differential equation:

(2.1)

{
dXt = a(t, Xt, ω) dt + A(t, Xt, ω) dWt,

X0 = x ∈ Rd,

where, for all x ∈ Rd, (a(t, x)) and (A(t, x)) are two stochastic processes, Ft-adapted,
with values in Rd such that

(2.2) a(t, 0) ≡ 0, A(t, 0) ≡ 0 for any t ≥ 0.

Suppose that for any x ∈ Rd, equation (2.1) has a unique solution starting from x.
Let us recall the classical definition of Lyapunov stability. We write Xt(x, ω) for the
solution of (2.1) satisfying X0(x, ω) = x. From (2.2), it follows that X ≡ 0 is a trivial
solution of (2.1).

Definition 2.1 (see [10], p. 206). The trivial solution X ≡ 0 of (2.1) is said to be stable
if for any ε > 0

(2.3) lim
x→0

P

{
sup

0≤t<∞
|Xt(x, ω)| ≤ ε

}
= 1.

However, this definition gives no information when the solution X(t, x) is unbounded
or converges rather fast to 0. We remark that, in fact, considering the stability of the
trivial solution means we compare its trajectories with the constant functions because
the relation sup0≤t<∞ |Xt(x, ω)| ≤ ε implies |Xt(x, ω)| ≤ ε(t) for any t > 0, where
ε(t) = ε for all t > 0. This suggests that it is necessary to choose functions varying in
time to get more information on the growth rate of solutions. Or, equivalently, instead
of using only one, we can use a family of neighborhoods of 0 depending continuously on
t and study conditions under which the solutions of (2.1) always belong to this family.
Moreover, with the help of this family, we can compare the growth rates of two systems
as explained below.

Together with equation (2.1), we consider another one

(2.4)

{
dYt = b(t, Yt, ω) dt + B(t, Yt, ω) dWt,

Y0 = y ∈ Rd,

where (b(t, x)) and (B(t, x)) satisfy the same conditions as (a(t, x)) and (A(t, x)), i.e.,

b(t, 0) ≡ 0, B(t, 0) ≡ 0 for all t > 0.

We denote by Yt(y) the unique solution of (2.4) starting from y. Let C be the class of
all positive, continuous functions from [0,∞) to R+ and M be a subset of C.

Definition 2.2. The trivial solution X ≡ 0 of system (2.1) is said to be more stable
than the solution Y ≡ 0 of system (2.4) in the comparison class M if and only if for any
q ∈ M, the relation

(2.5) lim
y→0

P{|Yt(y)| ≤ qt for any t ≥ 0} = 1
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implies that

(2.6) lim
x→0

P{|Xt(x)| ≤ qt for any t ≥ 0} = 1.

Definition 2.2 is an extension of the classical definition of stability. Indeed, it is easy
to prove the following theorem

Theorem 2.3 (see [14]). System (2.1) is stable in the sense of (2.3) if and only if it is
more stable than the trivial system

(2.7) Ẏ = 0, Y0 ∈ Rd,

on the class C.

Next, we also give a definition of comparison similar to the definition of asymptotical
stability.

Definition 2.4. System (2.1) is said to be really more stable than (2.4) if condition (2.5)
implies that there exists a q∗ ∈ M such that

lim sup
t→∞

1
t

log
q∗t
qt

< 0

and

(2.8) lim
x→0

P{|Xt(x)| ≤ q∗t for all t ≥ 0} = 1.

Example. Both systems

Ẍ − 2Ẋ + 2X = 0,(A)

dY =
3
2
Yt dt + Yt dWt(B)

are unstable. The system (A) has the solution Xt(x1, x2) = et(x1 cos t+x2 sin t), and by
Itô’s formula we see that Yt(y) = y exp{t + Wt}. It is easy to see that (A) is more stable
than (B) in the class C. Indeed, if q ∈ C is such that

lim
y→0

P{|Yt(y)| ≤ qt for all t ≥ 0} = 1,

then from Wt � N(0, t) we get qt ≥ c exp{t + α
√

t} for some suitable c and α. Hence,
|Xt(x1, x2)| ≤ qt for any t > 0 provided |x1|+ |x2| is sufficiently small, i.e., we have (2.6).

3. Comparison of quasi-linear systems

For any function f : [0,∞) → Rn, the number

λ[f ] := lim
t→∞

1
t

ln ‖f(t)‖

is called the Lyapunov exponent of the function f . We recall the Lyapunov criterion of
asymptotic stability for the first approximation. If the linear part

(3.1) ξ̇ = A(t)ξ, ξ ∈ Rd,

is regular (see [6], p. 165) and its top Lyapunov exponent is negative, then the trivial
solution of the perturbed system

(3.2) Ẋ = A(t)X + f(t, X), X0 ∈ Rd,

is asymptotically stable, provided |f(t, x)| ≤ k|x|m, m > 1.
Naturally, one wants to generalize this result to stochastic systems described by Itô’s

differential equations. As mentioned before, the main difficulty we encounter is that the
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Wiener process (Wt) has unbounded variations. Then we cannot use directly the method
described in [6]. Recently, N. D. Cong in [4] has shown that if the equation

(3.3)

{
dZt = AtZt,

Z0 = z ∈ Rd,

is regular then the linear equation

(3.4)

{
dZt = AtZt + BtZt dWt,

Z0 = z ∈ Rd,

where At and Bt are two functions with values in d × d-matrices, satisfying

(3.5) |At| ≤ A, |Bt| ≤ B for any t > 0,

with two certain constant matrices A and B, is also regular. Suppose that Zt(z) is the
solution of (3.3) satisfying Z0(z) = z. We denote by λ[z] the Lyapunov exponent of Zt(z)
defined by

λ[z] = lim sup
t→∞

1
t

ln |Zt(z)|.

In the case the limit exists (instead of lim sup), we say that Zt(z) has an exact exponent.
It is known that (see [12]) the spectrum (i.e., the set of all finite Lyapunov exponents)

of (3.3) consists of d nonrandom constants, namely

(3.6) λ1 ≤ λ2 ≤ · · · ≤ λd

(taking all multiplicities into account).
The regularity of (3.3) (see [6], p. 139) means that there exists a normal fundamental

matrix Zt of the solution of (3.3) such that the k-column vector of Zt takes the exact
Lyapunov exponent λk. Set

Φt = Zt exp{−Λt}, t ≥ 0, Λ = diag{λ1, λ2, . . . , λd}.

Then it is easy to see [4] that

(3.7) λ[Φ] = λ[Φ−1] = 0.

Our main result is the following

Theorem 3.1. Suppose that (3.3) is regular and is really more stable than the system

(3.8)

{
dYt = a(t, Yt) dt + σ(t, Yt) dWt,

Y0 = y ∈ Rd,

in the class C. Then the perturbed system

(3.9)

{
dXt =

[
AtXt + f(t, Xt)

]
+

[
BtXt + g(t, Xt)

]
dWt,

Xt = x ∈ Rd,

with locally Lipschitz functions f(t, x) and g(t, x) satisfying the condition

(3.10) |f(t, x)| ≤ k min
{
|x|α, |x|β

}
, |g(t, x)| ≤ k min

{
|x|α, |x|β

}
,

where α > 1 > β > 0, will be more stable than (3.8) in the class C.
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4. Proof of the main result

We divide the proof of Theorem 3.1 into several steps. We first investigate a property
of stochastic integral with respect to a Wiener process Wt.

Lemma 4.1. Let φt be a stochastic process, Ft-progressively measurable and such that

P

{∫ T

0

φ2
t dt < ∞

}
= 1 for all T > 0.

Then there exists a random variable η = η(φ) such that

(4.1)
∣∣∣∣ ∫ t

0

φs dWs

∣∣∣∣ ≤ η
√

m(t)
(
| ln m(t)| + 1

)
,

where m(t) =
∫ t

0
φ2

s ds. Furthermore, the distribution of η(φ) is the same for every
process φt.

Proof. To simplify notation, we set

M(t) =
∫ t

0

φs dWs, m(t) =
∫ t

0

φ2
s ds.

We define a family of stopping times τ (t) by

τ (t) =

{
inf{s : m(s) > t},
∞ if t ≥ m(∞) = limt↑∞ m(t).

From Theorem 7.2′ in [9, p. 92], it follows that on an extension (Ω̃, F̃ , P̃) of (Ω,F , P),
there exists an F̃ -Brownian motion µ(t) such that µ(t) = M(τ (t)), t ∈ [0,∞). Conse-
quently, we can represent M(t) by an F̃-Brownian motion µ(t) and the stopping times
m(t), i.e., ∫ t

0

f(s, ω) dWs = µ(m(t)).

On the other hand, since µ(t)) is a Brownian motion, we have, in view of the law of the
iterated logarithm, that

lim sup
t→∞

|µ(t)|√
2t ln ln t

= 1, lim sup
t→0

|µ(t)|√
2t ln ln t

= 1 a.s.

Therefore, the random variable η defined by

η := sup
0<t<∞

|µ(t)|√
t
(
| ln t| + 1

)
is finite, i.e., P{η < ∞} and the distribution of η do not depend on the process (φt). The
definition of η implies that

|µ(t)| < η
√

t
(
| ln t| + 1

)
.

Hence, ∣∣∣∣∫ t

0

φs(ω) dWs

∣∣∣∣ ≤ η
√

m(t)
(
| ln m(t)| + 1

)
.

Lemma 1 is proved. �
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Lemma 4.2. Under the hypotheses of Theorem 3.1, the growth rate of the solutions of
(3.9) is less than the growth rate of an exponential function. That is, there exist two
random variables M and N such that for any solution Xt of (3.9) satisfying X0 = x we
have

Xt ≤ |x|M exp{Nt} for any t > 0.

Furthermore, the distribution of M is independent of x.

Proof. By Itô’s formula we have

d ln |Xt| =
(

X ′
t(AtXt + f(t, Xt)) + 1

2 |BtXt + g(t, Xt)|2
|Xt|2

−
[
X ′

t(BtXt + g(t, Xt))
|Xt|2

]2)
dt

+
X ′

t(BtXt + g(t, Xt))
|Xt|2

dWt,

where X ′ denotes the transpose vector of X.
It follows from (3.10) that∣∣∣∣y′(Aty + f(t, y)) + 1

2 |Bty + g(t, y)|2
|y|2

∣∣∣∣ ≤ |At| + |Bt|2 + k + k2

and ∣∣y′(Bty + g(t, y))
∣∣

|y|2 ≤ |Bt| + k

for any y ∈ Rd \ {0}. On the other hand, by (4.1) we have∣∣∣∣ ∫ t

0

X ′
s(BsXs + g(s, Xs))

|Xs|2
dWs

∣∣∣∣
≤ η

√∫ t

0

|X ′
s(BsXs + g(s, Xs))|2

|Xs|4
ds

[∣∣∣∣ ln
∫ t

0

|X ′
s(BsXs + g(s, Xs))|2

|Xs|4
ds

∣∣∣∣ + 1
]

≤ η

√( ∫ t

0

(
|Bs| + k

)2
ds

)( ∣∣∣∣ln ∫ t

0

(|Bs| + k
)2

ds

∣∣∣∣ + 1
)

≤ η
√

(B + k)2t
[
|ln(B + k)2t| + 1

]
(since x(|ln x| + 1) is increasing).

Hence,

ln |Xt| − ln |x| ≤
(
A + B2 + k + k2

)
t + η

√
(B + k)2t

[
|ln(B + k)2t| + 1

]
,

or

|Xt| ≤ exp
{(

A + B2 + k + k2
)
t + η

√
(B + k)2t

[
|ln(B + k)2t| + 1

]}
.

Putting

N = A + B + k + k2 + 1, M = sup
t≥0

exp
{

η
√

(B + k)2t[|ln(B + k)2t| + 1] − t
}

< ∞

we get
|Xt| ≤ |x|M exp{Nt}, t ≥ 0.

It is easy to see that the distribution of M is independent of x. The proof is complete.
�

Corollary 4.3. For any fixed T < ∞ and ε > 0 we have

lim
x→0

P

{
sup

0≤t≤T
|Xt(x)| > ε

}
= 1.
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Proof. The result follows from the fact that M has the same distribution for every
x ∈ Rd. �

We now turn to the main step of the proof of Theorem 3.1. Suppose that q ∈ C is
such that

lim
y→0

P{|Yt(y)| < qt for any t ≥ 0} = 1.

Since (3.3) is really more stable than (3.8), there exists a q∗ ∈ C such that

lim sup
t→∞

t−1 ln(q∗t /qt) = −ε < 0

and

(4.2) lim
z→0

P {|Zt(z)| ≤ q∗t for any t ≥ 0} = 1.

We have to show that

(4.3) lim
x→0

P{|Xt(x)| ≤ qt for any t ≥ 0} = 1.

By using the transform

(4.4) Ut = Φ−1
t Xt,

it is easy to see that

dUt =
{
ΛUt + Φ−1

t f(t, ΦtUt) − Φ−1
t Btg(t, ΦtUt)

}
dt + Φ−1g(t, ΦtUt) dWt.

To simplify notation we set

f(t, u) = col
(
f1(t, u), f2(t, u), . . . , fd(t, u)

)
= Φ−1

t

[
f(t, Φtu) − Btg(t, Φtu)

]
,

g(t, u) = col
(
g1(t, u), g2(t, u), . . . , gd(t, u)

)
= Φ−1

1 g(t, Φtu).

Then,
dUt =

[
ΛUt + f(t, Ut)

]
dt + g(t, Ut) dWt.

Note that λ[Φ] = λ[Φ−1] = 0 (see (3.7)); by (3.10) it is easy to see that

(4.5) |f(t, u)| ≤ kt min
{
|u|α, |u|β

}
, |g(t, u)| ≤ kt min

{
|u|α, |u|β

}
,

where k : [0,∞) → R+ is a positive function satisfying

(4.6) λ[k] = lim sup
1
t

ln kt = 0.

Applying Itô’s formula to the process |Ut|2 we obtain

d|Ut|2 =
[
2U ′

tΛUt + 2U ′
tf(t, Ut) + |g(t, Ut)|2

]
dt + 2U ′

tg(t, Ut) dWt.

Therefore, for any λd ≤ λ we have

e−2λt|Ut|2 = |U0|2 + 2
∫ t

0

U ′
s(Λ − λI)Us ds +

∫ t

0

e−2λs
(
2U ′

sf(s, Us) + |g(s, Us)|2
)
ds

+ 2
∫ t

0

e−2λsU ′
sg(s, Us) dWs.

Since λ ≥ λd ≥ λi for any i = 1, 2, . . . , d we have U ′
s(Λ − λI)Us ≤ 0. Hence

(4.7)
e−2λt|Ut|2 ≤ |U0|2 +

∫ t

0

e−2λs
(
2U ′

sf(s, Us) + |g(s, Us)|2
)
ds

+ 2
∫ t

0

e−2λsU ′
sg(s, Us) dWs.
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Let h(t) = max{tε1 , tε2}, where 0 ≤ ε1 < 1
2 < ε2. It is clear that h(·) is an increasing

function and there exists a constant c = c(ε1, ε2) such that

(4.8)
√

t(| ln t| + 1) ≤ ch(t), t > 0.

Therefore, (4.1) and (4.8) imply∣∣∣∣ ∫ t

0

e−2λsU ′
sg(s, Us) dWs

∣∣∣∣ ≤ cηh

( ∫ t

0

e−4λs
∣∣U ′

sg(s, Us)
∣∣2 ds

)
.

Hence, from (4.7) we obtain

(4.9)
e−2λt|Ut|2 ≤ |U0|2 +

∫ t

0

e−2λs
(
2U ′

sf(s, Us) + |g(s, Us)|2
)
ds

+ 2cηh

( ∫ t

0

e−4λs
∣∣U ′

sg(s, Us)
∣∣2 ds

)
.

By using (4.5) we have

|u′f(s, u)| ≤ ks min
{
|u|1+α, |u|1+β

}
, |u′g(s, u)| ≤ ks min

{
|u|1+α, |u|1+β

}
|g(s, u)|2 = |g(s, u)| · |g(s, u)| ≤ k2

s min
{
|u|1+α, |u|1+β

}
.

Putting ks = max
(
kt, k

2
t

)
and using (4.9) we have

(4.10)
e−2λt|Ut|2 = |U0|2 + 3

∫ t

0

e−2λsks min
{
|Us|1+α, |Us|1+β

}
ds

+ 2cηh

( ∫ t

0

e−4λsks min
{
|Us|2(1+α), |Us|2(1+β)

}
ds

)
.

We consider two cases:
Case 1: λd < 0. Taking λ = λd, from (4.10) we obtain

e−2λdt|Ut|2 ≤ |U0|2 + 3
∫ t

0

e−2λdsks|Us|1+α ds + 2cηh

( ∫ t

0

e−4λdsks|Us|2(1+α) ds

)
.

By putting vt = |Ut|2e−2λdt it is easy to see that

vt ≤ v0 + 3
∫ t

0

eγsksv
(1+α)/2
s ds + 2cηh

( ∫ t

0

e2γsksv
1+α
s ds

)
,

where γ = (α − 1)λd < 0.
Since lim supt→∞ t−1 ln kt = 0 (see (4.6)) and γ < 0, we have∫ ∞

0

eγsks ds := δ < ∞.

The Cauchy–Schwarz inequality leads to∫ t

0

eγsksv
(1+α)/2
s ds ≤

√∫ t

0

eγsks ds

∫ t

0

eγsksv
1+α
s ds ≤

√
δ

√∫ t

0

eγsksv
1+α
s ds.

On the other hand, since γ < 0, we have e2γs < eγs for any s > 0. Hence

vt ≤ v0 + 3
√

δ

√∫ t

0

eγsksv
1+α
s ds + 2cηh

( ∫ t

0

eγsksv
1+α
s ds

)
.

It is obvious that
√

t ≤ h(t) for any t ≥ 0. We have

(4.11) vt ≤ v0 + (3
√

δ + 2cη)h
( ∫ t

0

eγsksv
1+α
s ds

)
.
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Set H(t, u) = Nh(u), F (t, v) = eγtksv
1+α, and N = 3

√
δ + 2cη. Then (4.11) becomes

vt ≤ v0 + H

(
t,

∫ t

0

F (s, vs) ds

)
.

Suppose that φt is the solution of the equation

(4.12) φ̇t = eγtkt

[
v0 + Nh(φt)

]1+α
, φ0 = 0;

then from Theorem 6.11 in [13, §2.6, p. 111] we have

(4.13) vt ≤ v0 + Nh(φt).

We now estimate the solution φt of (4.12). It is easy to see that

φ̇t ≤ 2αeγtkt

[
v1+α
0 + N1+αh1+α(φt)

]
.

Hence, by putting M = 2αN1+α, ∆ = 2αδ we have

φt ≤ ∆v1+α
0 + M

∫ t

0

eγsksh
1+α(φs) ds.

We choose 0 < ε1 < 1/2 < ε2 such that ε1(1 + α) := γ1 > 1 and ε2(1 + α) := γ2 > 1. Set

G(u) =
∫ u

1

dx

h1+α(x)
.

We have

G(u) =

{
1

1−γ1
u1−γ1 − 1

1−γ1
if 0 < x < 1,

1
1−γ2

u1−γ2 − 1
1−γ2

if 1 ≤ x.

It is easy to see that limu→∞ G(u) = (γ2 − 1)−1 > 0 and limu→0 G(u) = −∞.
By applying Bihari’s inequality (see [6], p. 110) we obtain

(4.14) φt ≤ G−1

{
G

(
∆v1+α

0

)
+ M

∫ t

0

eγsks ds

}
for any t satisfying the following relation:

G
(
∆v1+α

0

)
+ M

∫ t

0

eγsks ds <
1

γ2 − 1
.

Summing up, we get

(4.15) |Xt|2 ≤ |Φt|2e2λdt

{
|X0| + Nh

(
G−1

[
G(∆|X0|1+α) + M

∫ t

0

eγsks ds

])}
.

We prove that there exists a random variable A > 0 such that

(4.16) P
{
|Φt|eλdt ≤ Aqt for any t ≥ 0

}
= 1.

Indeed, the relation lim supt→∞ t−1 ln(q∗t )/qt = −ε < 0 implies that there is a constant
c > 0 such that q∗t ≤ ce−(ε/2)tqt for any t > 0. Moreover, from (4.2) it follows that
λd ≤ λ[q∗]. Let Zt = (Z(1)

t , . . . , Z
(d)
t ) where Z

(k)
t is the kth column of Zt. Denote

K = {k : λ[Z(k)
t ] = λd}. Since Zt is normal, for t sufficiently large (t > t0 say) we have

‖Zt‖ = maxk∈K ‖Z(k)
t ‖. Therefore,

‖Φt‖ = max
0≤k≤d

∥∥∥Z
(k)
t e−λkt

∥∥∥ ≤ max
k∈K

∥∥∥Z
(k)
t e−λdt+(ε/2)t

∥∥∥ ≤ q∗t e−λdt+(ε/2)t ≤ cqte
−λdt

for t > t0. It remains only to put

A = max
{

c, max
0<t<t0

‖Φt‖eλdt/qt

}
to get the result.
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On the other hand, since limX0→0 G(∆|X0|1+α) = −∞ and the distribution of η (and
hence the distribution of M and N) is the same for every X0, for any ε > 0 we have

lim
X0→0

P

{
G−1

[
G(∆|X0|1+α) + M

∫ t

0

eγsks ds

]
≥ ε

}
= 0

uniformly in t. Therefore,

lim
X0→0

P

{
|X0| + Nh

(
G−1

[
G(∆|X0|1+α) + M

∫ t

0

eγsks ds

])
≥ 1

A

}
= 0.

Hence,
lim

X0→0
P
{
|Xt| ≤ qt, t ≥ 0

}
= 1,

i.e., we get (4.3). This means that (3.9) is more stable than (3.8).
Case 2: λd ≥ 0. We take a σ > 0 such that λd + 2σ < λq. Using (4.10) with

λ = λd + σ we also obtain

|Ut|2 ≤ e2(λd+σ)t

[
|U0|2 + 3

∫ t

0

e−2(λd+σ)sks|Us|1+β ds

+ 2cηh

( ∫ t

0

e−4(λds+σ)ks|Us|2+2β ds

)]
.

By the same argument as above and putting vt = |Ut|2e−2(λd+σ)t we have

vt ≤ v0 +
(
3
√

δ + 2cη
)
h

( ∫ t

0

eγsks|v|1+β ds

)
,

where γ = (β − 1)(λd + σ) < 0.
We choose ε1 < 1

2 < ε2 such that γ1 = ε1(1 + β) < 1 and γ2 = ε2(1 + β) < 1. In
this case, limu→0 G(u) = (γ1 − 1)−1 and limu→∞ G(u) = +∞. Therefore, the inverse
function G−1 is defined on [(γ1 − 1)−1, +∞). Similarly to (4.15),

(4.17) |Xt|2 ≤ |Φt|2e2(λd+σ)t

{
|X0| + Nh

(
G−1

[
G

(
∆|X0|1+β

)
+ M

∫ t

0

eγsks ds

] )}
.

It is easy to see that

(4.18) lim
T→∞

{
sup
t>T

e−2σth

(
G−1

[
G

(
∆|X0|1+β

)
+ M

∫ t

0

eγsks ds

])}
= 0

for any X0.
In the same way as in the proof of (4.16), we can find a random variable A satisfying

P
{
|Φt|e(λd+2σ) ≤ Aqt for any t > 0

}
= 1.

In view of (4.17), this implies that

|Xt|2 ≤ A2q2
t e−2σt

{
|X0| + Nh

(
G−1

[
G(∆|X0|1+β) + M

∫ t

0

eγsks ds

])}
for any t > 0.

For ε > 0 fixed, since M and N are equidistributed, it follows from (4.18) that there
is a T0 > 0 such that

P

{
A2e−2λtNh

(
G−1

[
G

(
∆|X0|1+β

)
+ M

∫ t

0

eγsks ds

])
≤ 1 for all t ≥ T0

}
≥ 1 − ε

2

for any |X0| ≤ 1.
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On the other hand, from Corollary 4.3 it follows that there is 1 > δ > 0 such that if
|X0| < δ then

P{|Xt| ≤ qt, t ≤ T0} ≥ 1 − ε

2
.

Summing up, for |X0| < δ we have

P{|Xt| ≤ qt for all t ≥ 0} ≥ 1 − ε,

i.e., we get (4.3),
lim

X0→0
P{|Xt| ≤ qt for all t ≥ 0} = 1.

Theorem 3.1 is proved.

Remark. In comparison with the results in [10, p. 291], we see that Theorem 3.1 allows
us to conclude that the growth rate of solutions of system (3.9) does not exceed the
growth rate of its linear part (3.3), whereas theorems in [10] lead only to the conclusion
that the trivial solution is stable.

Example. Suppose that a(x) and b(x) are two differential functions whose second order
derivatives are bounded by a constant k. By Taylor’s expansion we have

a(x) = Ax + f(x), b(x) = Bx + g(x), x ∈ Rd,

where |f(x)| ≤ k|x|2 and |g(x)| ≤ k|x|2. If the top Lyapunov exponent λd of the linear
system

dZt = AZt dt + BZt dWt

is negative, then there exists a neighbourhood U of 0 such that every solution, starting
from U , of the system

dXt = a(Xt) dt + b(Xt) dWt

has an Lyapunov exponent which does not exceed the top Lyapunov exponent λd.
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